The Research Lab of Dr. Frank A. Gomez

Welcome to the Gomez Group Homepage

Dr. Frank A. Gomez

Professor of Chemistry and Faculty Research Liaison

Curriculum Vitae

Office ASCB 122E
(323) 343-2368
fgomez2@calstatela.edu

The Gomez research group is engaged in developing fundamental and applied research in the area of microfluidics. Specifically, we are focused on developing new microfluidic platforms for point-of-care (POC) diagnostic devices, microfluidic fuel cells (MFCs), and chemical and biochemical separations. Current work involves the development of paper microfluidics and enzyme-linked immunosorbent assays (ELISAs) on microfluidic platforms, enzyme microreactors, surface plasmon resonance (SPR) on chips, novel materials for microfluidics, and chromatography on chips. We also employ response surface methodology (RSM) and artificial neural networks (ANN) to experimentally optimize conditions in microfluidics. The members of the Gomez group include undergraduate and graduate students, high school students, postdoctoral fellows, and visiting scientists from the fields of chemistry, biochemistry, mechanical and electrical engineering, physics, biology, and mathematics.

 

Frank A Gomez

Frank A. Gomez

  • Postdoc : Harvard, MA, 1991-1994 (with Prof. George. M. Whitesides)
  • Ph.D. : UCLA, CA, 1991 (with Prof. M. Frederick Hawthorne)
  • B.S. : Cal State, LA, CA, 1986 (with Prof. Thomas P. Onak)

Frank A. Gomez is Professor of Chemistry and is the university Faculty Research Liaison at Cal State LA where he has been since 1994. He received his B.S. (1986) and Ph.D. (1991) in Chemistry from Cal State LA and UCLA, respectively. From 1991-1994 he was a Damon Runyon-Walter Winchell Cancer Research Fund Postdoctoral Fellow at Harvard University. Since 1994, he has received over $18 million in research funding and has published over 120 technical articles and two books on his research. His research group is engaged in developing fundamental and applied research in the area of microfluidics, point-of-care (POC) diagnostic devices, fuel cells, and chemical and biochemical separations. He has mentored over 105 undergraduate, masters, and high school students and 12 postdoctoral fellows and visiting scientists in his laboratories resulting in over 175 student presentations.

In 1997 he was awarded a NSF CAREER Award and in 2007 he received the CSUPERB Biotechnology Faculty Research Award. Dr. Gomez sat on the board of directors (1989-1991, 1993-1996, 1997-2003) and was secretary (1997-2003) of the Society for Advancement of Chicanos and Native Americans in Science (SACNAS). In 2003 he received the Undergraduate Institution Mentor Award from SACNAS. In 1993 he received the Hispanic Engineer National Achievement Award Conference (HENAAC) Most Aspiring Scientist Award. He has served on a number of NSF, NIH, and NRC review panels. He is strongly committed to science education having served on a number of community and university educational policy and scholarship committees. Gomez was a member of the Montebello Unified School District (MUSD) Board of Education from 1997-2001 and was named Democrat of the Year for the 58th Assembly District in 2002. In 1998 he received the Outstanding Young Educator Award from the California Jaycees. Gomez served on the Montebello City Council from 2009-2013 and was Mayor from 2011-2012. He currently serves on the Board of Directors of the Southern California Conferences for Undergraduate Research (SCCUR), and the Blind Children's Learning Center in Tustin.

 

Gomez Research Group

Group picture

We thank the following for their gracious support.

Funders figure

Students interested in a research position should contact Dr. Gomez for an appointment.

Group Members

Undergraduate Students

 
Paolo Figure
Paolo Argelles
Electrical Engineering
 
Alexis Figure
Alexis Basa
Biochemistry
 
Bernal fig
Franky Bernal
Chemistry
 
Burrola picture
Samantha Burrola
Chemistry
 
Duenas pic
Lauren Duenas
Biochemistry
 
Jenny figure two
Jenny Elomaa
Biochemistry
 
Gaines Figure
Michelle Gaines
Biochemistry
 
Gibeault figure
Sidra Gibeault
Electrical Engineering
 
Ariana Figure
Ariana Gonzalez
Biochemistry
 
Guevara picture 2
Ricardo Guevara
Biochemistry
 
Wilson Figure
Wilson Lee
Chemistry
 
Ortiz figure
Ricardo Ortiz
Chemistry
 
Sanchez figure
Juan Sanchez
Mechanical Engineering
 
Kathryn figure
Kathryn Uchida
Biochemistry
 

Graduate Students

 
Laura Figure
Laura Gallegos
Chemistry
 
Grenalynn Figure
Grenalynn Ilacas
Chemistry
 
Neris figure
Natalia Neris
Chemistry
 
Nico new figure
Nico Pierson
Biotechnology

Visiting Research Scientists

Mehdi Figure
Dr. Mehdi Jalali-Heravi
Visting Research Scientist
 
Maria Figure
Dr. Maria Jose Gonzalez Guerrero
Postdoctoral Fellow

Dr. Gomez's Alumni

  • Dong S. Zhao, M.S. 1997, Ph.D. from UC Riverside.
  • Eun-Soo Kwak, M.S. 1997, Ph.D. from the University of Texas at Austin.
  • Jane Kawaoka, B.S. 1998, Ph.D. from Columbia University.
  • Chuauthemoc Arellanes, B.S. 1998, Ph.D. from UCLA.
  • Sally Esquivel, B.S. 1998, D.D.S. from UCLA.
  • Erica Mito, B.S., 2001, in industry.
  • John Kaddis, B.S., 2001, Ph.D. from USC.
  • Joseph Heintz, B.S. 2001, working at Coca-Cola.
  • Alfredo Plazas, B.S. 2001, elementary school teacher.
  • Cynthia Kodama, B.S. 2002, D.O. from Western University of Health Sciences.
  • Catherine Silverio, M.S., 2002, Ph.D. from UCLA.
  • Maryam Azad, M.S., 2003, in industry.
  • Valerie Villareal, B.S., 2003, Ph.D. from UCLA.
  • Dinora Chinchilla, B.S., 2005, M.D. from UC Irvine.
  • Jose Zavaleta, M.S., 2005, in industry.
  • Jerry Fields, M.S., 2005, in industry.
  • Taguhi Sogomonyan, B.S. 2007, in industry.
  • Abby Brown, B.S. 2005, working in industry.
  • Froseen Dahdouh, B.A., 2006, now working for the government.
  • Attila Gaspar, Visiting Scientist, 2006-2007, returned as Associate Professor of Chemistry at the University of Debrecen in Hungary.
  • Ruthy Montes, M.S., 2007, M.D. from USC.
  • Alvaro Gomez, B.S., 2007.
  • Lilia Hernandez, M.S. 2007, in industry.
  • Violet Calderon, B.S., 2008, in industry.
  • Maral Sarikhani, M.S., 2008, Ph.D. from the University of Pisa.
  • Schetema Stevens, M.S., 2008, in the Ph.D. program at UNLV.
  • Mark Goldberg, M.S., 2008, Ph.D. from Caltech
  • Xiaojun Liu, postdoc 2007-2009, in industry.
  • Roger Lo, postdoc 2008-2009, Associate Professor of Chemical Engineering at CSU Long Beach.
  • Alejandra Ramirez, M.S., 2009, now working for the government.
  • Erica Garcia, M.S., 2009, M.S. from Caltech.
  • Toni Ann Riveros, 2010, M.D. from UCLA; resident at U. Chicago.
  • Dan Ted Botoaca, M.S., 2012.
  • Marisol Salgado, B.S. 2012.
  • Amy Wat, B.S., 2012, in the Ph.D. program at UC Berkeley.
  • Judith Alvarado, M.S., 2012, in the Ph.D. program at UC San Diego.
  • Juliette Ohan, B.S., 2013, in the Ph.D. program at Oregon State University.
  • Hector Carmona, B.S., 2013, D.D.S. from UC San Francisco.
  • Micah Eropkin, B.S., 2014, in the Ph.D. Program at UC Riverside.
  • Lenny Sanchez, M.S., 2014, in industry.
  • Mary Arrastia, B.S., 2015, in the Ph.D. program at Caltech.
  • Maria Ortega, M.S., 2015, in industry.
  • Chris Darakjian, M.S., 2015, teaching in a high school.
  • Vicente Galvan, B.S., 2016, in the Ph.D. program at USC.
  • Kryls Domalaon, B.S., 2016, in medical school at UC Davis.
  • Lissette Estala, B.S., 2016, in the M.S. program at USC.
  • Ani Avoundjian, B.S., 2017, in pharmacy school at USC.
  • Santino Valiulis, B.S., 2017, in the Ph.D. program at UC Riverside.
  • Catherine Tang, B.S., 2017, in industry.
  • Alex Mendez, B. S., 2017, in industry.

Research

Paper Microfluidics

Microfluidic paper analytical devices (µPADs) have great potential as a platform in point-of-care (POC) diagnostic devices and fuel cells. Major reasons for their attractiveness as a substrate for microfluidic devices (MDs) include low cost, compatibility with a plethora of chemical/biochemical reagents and, ability to wick aqueous fluidics without the use of active pumping. Furthermore, paper is thin, available in a variety of thicknesses, lightweight, easy to stack, store, and transport, is compatible with biological samples given its composition (cellulose or blends thereof), easy to chemically modify for functionalization, typically white thereby amenable for colorimetric tests, and is available in many forms with a diverse range of properties. Paper microfluidics is emerging as a multiplexable POC platform that may transcend the capabilities of current assays in settings where resources are limited. We have examined a number of model biochemical systems and have developed a number of new techniques employing µPADs. In addition to further developing new methodologies and examining other biological systems we are also using µPADs in the analysis of environmental and forensic problems. Figure 1 shows representative µPADs developed in our labs.

Figure 1 REVISE

Figure 1. Representative paper microfluidic chips.

References:

  1. “Paper-Based Microfluidic Point-of-Care Diagnostic Devices for Monitoring Drug Metabolism,” Chong, H.; Koo, Y.; Collins, B.; Gomez, F. A. Sankar, J.; Yun, Y. J. Nanomedic. Biotherapeu. Discovery 2013, 3, e122.
  2. Paper Microfluidic-Based Enzyme Catalyzed Double Microreactor”, Ferrer, I. M.; Valadez, H.; Estala, L.; Gomez, F. A. Electrophoresis, 2014, 35, 2417-2419.
  3. “Paper Microfluidics in Bioanalysis,” Gomez, F. A. Bioanalysis, 2014, 6, 2911-2914.
  4. “Development of a Microfluidic-Based Assay on a Novel Nitrocellulose Platform”, Arrastia, M.; Avoundjian, A.; Ehrlich, P. S.; Eropkin, M.; Levine, L.; Gomez, F. A. Electrophoresis, 2015, 36, 884-888.
  5. “A Microfluidic Direct Formate Fuel Cell on Paper”, Copenhaver, T. S.; Purohit, K. H.; Domalaon, K.; Pham, L.; Burgess, B. J.; Manorothkul, N.; Galvan, V., Sotez, S.; Gomez, F. A.; Haan, J. L. Electrophoresis, 2015, 36, 1825-1829.
  6. “An Improved Alkaline Direct Formate Paper Microfluidic Fuel Cell”, Galvan, V.; Domalaon, K.; Tang, C.; Sotez, S.; Mendez, A.; Jalali-Heravi, M.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis, 2016, 37, 504-510.
  7. “Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays”, Gallibu, C.; Gallibu, C.; Avoundjian, A.; Jalali-Heravi, M.; Gomez, F. A. Micromachines, 2016, 7, 6-9.
  8. “A Microfluidic Galvanic Cell on a Single Layer of Paper”, Purohit, K. H.; Emrani, S.; Rodriguez, S.; Liaw, S. –S.; Galvan, V.; Domalaon, K.; Gomez, F. A.; Haan, J. L. J. Power Sources2016318, 163-169.
  9. “Mixed Thread/Paper-Based Microfluidic Chips as a Platform for Glucose Assays,” Gonzalez, A.; Estala, L.; Gaines, M.; Gomez, F. A. Electrophoresis, 2016, 37, 1685-1690.

 

Thread Microfluidics

Microfluidics-based technologies continue to gain traction as alternatives to traditional techniques and have great potential in resource-limited settings where access to more expensive instrumentation is not always possible. Recently, thread has been found to be a useful matrix for the fabrication of biomedical devices. It has a number of characteristics that make it a viable material as a microfluidic platform: 1) It is inexpensive, widely used, and is readily available. 2) It is lightweight, flexible, and difficult to break. 3) It is usually hydrophilic material or can be made hydrophilic by techniques such as plasma oxidation. 4) Thread can be manipulated easily since it can be knitted or woven. Furthermore, since it can be manipulated this means liquid transport can also be manipulated. 5) It can be functionalized using well-known chemical procedures. We have developed a number of novel microfluidic thread-based analytical devices (µTADs) and thread/paper-based analytical devices (µTPADs) to detect a number of analytes through colorimetric assays using commercially available nylon thread. We feel these devices have the potential for use in healthcare and other industries in both developed and underdeveloped resource-limited regions. Figure 2 is a recently developed glucose assay using thread microfluidics.

Figure 2 new

Figure 2. (A) Schematic representation of the µTPAD device fabrication process. The arrows noted in the figure reference the location of a labeled component. (B) Representative nylon flat µTPAD. (C) Photograph of 5 mM concentration of glucose in the nylon flat µTPAD.

References:

  1. “Mixed Thread/Paper-Based Microfluidic Chips as a Platform for Glucose Assays,” Gonzalez, A.; Estala, L.; Gaines, M.; Gomez, F. A. Electrophoresis201637, 1685-1690.
  2. “Thread-Based Microfluidic Chips as a Platform to Assess Acetylcholinesterase Activity”, Gonzalez, A.; Gaines, M.; Gomez, F. A. Electrophoresis2017, 38, 996-1001.

 

Microfluidic Fuel Cells

There is a great need to develop efficient and small power sources to operate portable electronic devices. Over the past several years, we have been focused on developing microfluidic fuel cells (MFCs) utilizing methanol, formic acid, and hydrogen. The use of these fuels entails one of the most promising mobile technologies by which such power can be provided. FCs can be considered chemical reactors designed to convert chemical reactant streams into electrical energy and chemical products. Our work is divided between paper MFCs and those built on a poly(dimethylsiloxane) (PDMS) platform. Focus is on optimizing the design of the FCs, catalyst and its loading, including the type of membrane to use, the catalyst loading, the mechanism of catalyst loading onto the membrane, to hot press or not the catalyst, and variations in the design. FIgure 3 displays some of our representative work.

Figure 2

Figure 3. Microfluidic fuel cells (MFCs), small devices, and light emitting diodes (LEDs) powered by MFCs.

References:

  1. “A Microfluidic Direct Formate Fuel Cell on Paper”, Copenhaver, T. S.; Purohit, K. H.; Domalaon, K.; Pham, L.; Burgess, B. J.; Manorothkul, N.; Galvan, V., Sotez, S.; Gomez, F. A.; Haan, J. L. Electrophoresis, 2015, 36, 1825-1829.
  2. “An Improved Alkaline Direct Formate Paper Microfluidic Fuel Cell”, Galvan, V.; Domalaon, K.; Tang, C.; Sotez, S.; Mendez, A.; Jalali-Heravi, M.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis, 2016, 37, 504-510.
  3. “A Microfluidic Galvanic Cell on a Single Layer of Paper”, Purohit, K. H.; Emrani, S.; Rodriguez, S.; Liaw, S. –S.Galvan, V.; Domalaon, K.; Gomez, F. A.; Haan, J. L. J. Power Sources2016318, 163-169.
  4. “Fabric-Based Alkaline Direct Formate Microfluidic Fuel Cells”, Domalaon, K.; Tang, C.; Mendez, A.; Bernal, F.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis, 2017, 38, 1224-1231.
  5. “An Inexpensive Paper-Based Aluminum Air Battery”, Avoundjian, A.; Galvan, V.; Gomez, F. A. Micromachines, 2017, 8 222.

 

Integration of Modeling in the Optimization of Experimental Parameters in Microfluidics and Capillary Electrophoresis

For several years we have focused and collaborated in applying chemometrics in the optimization of experimental parameters in microfluidics and capillary electrophoresis (CE). The heterogeneity of complex chemical and biological systems raises fundamental difficulties with regard to the ability of investigators to separate and detect analytes of interest, and to correlate variables and predict patterns within samples and differing sample matrices. Fortunately, the recent development of novel learning algorithms, hybrid computational techniques, and gains in raw computing power and speed, has raised several fundamental modeling and simulation research lines to account for these difficulties. Previous work has applied experimental design-based techniques in flow-injection, affinity capillary electrophoresis (ACE) and electrophoretically mediated microanalysis (EMMA). Figure 4 shows some of our recent work.

Figure 4

Figure 4. (A) Schematic representation of the paper microfluidic chip. (B) Three-dimensional response surface for channel width and sample volume. (C) Examples of chips after mixing with blue and yellow dyes. (D) Anal. Chem. cover from Jalali-Heravi, M.; Arrastia, M.; Gomez, F. A. Anal. Chem. 2015, 87, 3544-3555.

References:

  1. "Implementation of Chemometric Methodology in Affinity Capillary Electrophoresis (ACE): Predictive Investigation of Protein-Ligand Binding", Hanrahan, G.; Montes, R.; Pao, A.; Johnson, A.; Gomez, F. A. Electrophoresis, 2007, 28, 2853-2860.
  2. "Response Surface Examination of the Relationship Between Experimental Conditions and Product Distribution in Electrophoretically Mediated Microanalysis (EMMA)," Montes, R.; Gomez, F. A.; Hanrahan, G., Electrophoresis, 2008, 29, 375-380.
  3. "Chemometric Experimental Design-Based Optimization Techniques in Capillary Electrophoresis: A Critical Review of Modern Applications", Hanrahan, G.; Montes, R.; Gomez, F. A., Anal. Bioanal. Chem. 2008, 390, 169-179.
  4. "Chemometrical Experimental Design-Based Optimization Studies in Capillary Electrophoresis Applications", Montes, R.; Dahdouh, F.; Riveros, T. A.; Hanrahan, G.; Gomez, F. A. LCGC, 2008, 26, 712-721.
  5. "Use of Chemometric Methodology in Optimizing Conditions for Competitive Binding Partial Filling Affinity Capillary Electrophoresis (PFACE)", Montes, R.; Hanrahan, G.; Gomez, F. A., Electrophoresis, 2008, 29, 3325-3332.
  6. "Chemometrical Examination of Active Parameters and Interactions in Flow Injection-Capillary Electrophoresis (FI-CE)," Dahdouh, F. T.; Clarke, K.; Salgado, M.; Hanrahan, G.; Gomez, F. A. Electrophoresis, 2008, 29, 3779-3785.
  7. "Application of Artificial Neural Networks in the Prediction of Product Distribution in Electrophoretically Mediated Microanalysis (EMMA)", Riveros, T. A.; Porcasi,L.; Muliadi, S.; Hanrahan, G.; Gomez, F. A. Electrophoresis 2009, 30, 2385-2389.
  8. "On-Capillary Derivatization Using a Hybrid Artificial Neural Network-Genetic Algorithm Approach", Riveros, T. A.; Hanrahan, G.; Muliadi, S.; Arceo, J.; Gomez, F. A. Analyst, 2009, 134, 2067-2070.
  9. "Implementation of a Genetically Tuned Neural Platform in Optimizing Fluorescence from Receptor-Ligand Binding Interactions on Microchips", Alvarado, J.; Hanrahan, G.; Nguyen, H. T. H.; Gomez, F. A. Electrophoresis, 2012, 33, 2711-2717.
  10. "Application of a Computational Neural Network to Optimize the Fluorescence from a Receptor-Ligand Interaction on a Microfluidic Chip", Ortega, M.; Hanrahan, G.; Arceo, M.; Gomez, F. A. Electrophoresis, 2015, 36, 393-397.
  11. “How Chemometrics can Improve Microfluidic Research?”, Jalali-Heravi, M.; Arrastia, M.; Gomez, F. A. Anal. Chem. 2015, 87, 3544-3555 (cover).
  12. “Use of a Computational Model to Optimize a Glucose Assay on a Paper Microfluidic Platform”, Avoundjian, A.; Jalali-Heravi, M.; Gomez, F. A. Anal. Bioanal. Chem. 2017, 409, 2697-2703.

 

Development of Point-of-Care (POC) Diagnostic Devices: Biomarker Analysis

We have developed an open-sandwich enzyme-linked immunoadsorbent assay (ELISA) for osteocalcin on a microfluidic chip in collaboration with Dr. Yeoheung Yun of North Carolina A & T State University (NCAT) (Figure 5A). In this assay, the first antibody is covalently attached onto polystyrene beads and manipulated into the microfluidic channel. Osteocalcin is then injected into the microchannel subsequently binding to the first antibody. Fluorescently labeled antibody (monoclonal-Anti BGLAP-Clone 2D5) is then manipulated into the channel forming the sandwich ELISA. Fluorescence proved the existence of osteocalcin binding to the first antibody on polystyrene beads in the microchannel. An alternative assay, employing APTES, has been proven in concept (Figure 5B). Here, osteocalcin is electrostatically attached to the microchannel wall after modifying the surface with APTES. The use of just one fluorescent antibody has qualitatively demonstrated binding of osteocalcin on-a-chip.

Figure 5 new

Figure 5. (A) Osteocalcin microfluidic ELISA. (B) Alternative osteocalcin assay.

 

References:

  1. "Human-on-a-Chip Technologies as the Next Generation Drug Screening Platforms," Yun, Y.; Lee, S.; Collins, B.; Gomez, F. A. Sankar, J. J. Nanomedic. Biotherapeu. Discover 2012, 2, 1000e113.
  2. "The Future of Microfluidic Point-of-Care (POC) Diagnostic Devices," Gomez, F. A. Bioanalysis, 2013, 5, 1-3.
  3. "Paper Microfluidic-Based Enzyme Catalyzed Double Microreactor", Ferrer, I. M.; Valadez, H.; Estala, L.; Gomez, F. A. Electrophoresis, 2014, 35, 2417-2419.
  4. "Development of Microfluidic-Based Assays to Estimate the Binding between Osteocalcin and Fluorescent Antibodies," Carmona, H.; Valadez, H.; Yun, Y.; Estala, L.; Gomez, F. A. Talanta, 2015, 132, 676-679.
  5. “Microscale Bioanalysis,” Knutsson, M.; Timmerman, P.; Gomez, F. A. Bioanalysis20168, 859-862.
  6. “Point of Care Testing: The Impact of Nanotechnology”, Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F. A.; Hajghassem, H.; Omidfar, K. Biosens. Bioelectron. 201787, 373-387.

 

Surface Plasmon Resonance (SPR) on Microfluidic Chips

We have demonstrated the concept of CE-SPR on-a-chip using a chip fabricated from PDMS. As an extension to this work we developed a miniaturized CE system coupled to a SPR sensor by incorporating a previously described split-flow injection technique to first manipulate sample into the microfluidic chip, followed by separation within the fused silica capillary and final off-capillary detection of analytes via SPR. Instead of using commercial SPR flow cells requiring relatively large detection volumes, samples of less than 1 nL volume are utilized. The interface between the CE system and SPR sensor made it possible to detect minute volumes of sample with minimal dispersion. We have used SPR to study, in real-time and, by label-free means, the reversible and irreversible adsorption of small molecules, pharmaceuticals, detergents and proteins on PDMS surfaces. The SPR sensor is first covered with 0.2 % (w/v) PDMS in octane. During the timescale of a typical lab-on-a-chip analysis or an electrophoretic separation, it was found that small neutral components containing a hydrophobic part do not adsorb/absorb onto PDMS, while larger, water-soluble polymer-like materials (dextran and proteins) generally irreversibly adsorb to PDMS. The technique can be used to monitor the kinetics of adsorption and desorption of the molecules.

 
References
  1. "Facile Fabrication of an Interface for On-Line Coupling of Microchip Capillary Electrophoresis to Surface Plasmon Resonance", Liu, X.; Du, M.; Zhou, F.; Gomez, F. A. Bioanalysis 2012, 4, 373-379.
  2. "Development of an Ultra-Low Volume Flow-Cell for Surface Plasmon Resonance Detection in a Miniaturized Capillary Electrophoresis System", Gaspar, A.; Gomez, F. A. Electrophoresis, 2012, 33, 1723-1728.
  3. "Use of Surface Plasmon Resonance to Study the Adsorption of Detergents on Poly(dimethysiloxane) Surfaces", Gaspar, A.; Kecskemeti, A.; Gomez, F. A. Electrophoresis, 2013, 34, 1249-1252.
  4. "Application of Surface Plasmon Resonance Spectroscopy for Adsorption Studies of Different Types of Components on Poly(dimethylsiloxane)", Gaspar, A.; Gomez, F. A. Anal. Chim. Acta, 2013, 777, 72-77.

     

    Publications

    Publications

    (Underlined names denote undergraduate student co-authors.)

    1. "Synthetic and Rearrangement Studies on the Carboranes B-X-closo-2,4-C2B5H6 (X=Br, I) and B,B'-X2-closo-2,4-C2B5H5.  Correlation of B-Halo- and B,B'-Dihalodicarba-closo-heptaborane Isomer Stabilities," Ng, B.; Onak, T.; Gomez, F.; DiStefano, E. W. Inorg. Chem. 198524, 4091-4096.
    2. "Conversion of closo-2,4-C2B5H7 to [nido-2,4-C2B5H7]-," Abdou, Z. J.; Gomez, F.; Abdou, G.; Onak, T. Inorg. Chem.198827, 3679-3680.
    3. "The Latino Science Recruitment Project," Gomez, F. A. J. Chem. Ed. 199067, 318-320.
    4. "The Use of Mixed Halogens, ICl and IBr, and (C2H5)2NSF3 as Halogenating Agents for Closo-2,4-C2B5H7 and Some Derivatives," Gomez, F. A.; Onak, T.; Arias, J.; Alfonso, C. Main Group Metal Chemistry 199013(4), 237-246.
    5. "A Versatile Protecting Group for 1,2-Dicarba-closo-dodecaborane(12) and the Structure  of a Silylcarborane Derivative," Gomez, F. A.; Johnson, S. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1991113, 5915-5917.
    6. "A Simple Route to C-Monosubstituted Carborane Derivatives," Gomez, F. A.; Hawthorne, M. F. J. Org. Chem. 1992,57, 1384-1390.
    7. "Synthesis and Structural Characterization of Metallacarboranes Containing Bridged Dicarbollide Ligands," Gomez, F. A.; Johnson, S. E.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 199231, 3558-3567.
    8. "Synthesis and Structural Characterization of Pyrazole Bridged Metalla-bis(dicarbollide Derivatives of Cobalt, Nickel, Copper, and Iron: Models for Venus Flytrap Cluster Reagents," Varadarajan, A.; Johnson, S. E.; Gomez, F. A.; Chakrabarti, S.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992114, 9003-9011.
    9. "Organofunctionalized Derivatives of O-Carborane as Precursors to Non-Oxide Ceramics of Boron," Johnson, S. E.; Gomez, F. A.; Hawthorne, M. F.; Thorne, K. J.; MacKenzie, J. D. Eur. J. Solid State & Inorg. Chem. 199229, 113-125.
    10. "Carboracycles:  A Family of Novel Macrocyclic Carborane Derivatives," Chizhevsky, I. T.; Johnson, S. E.; Knobler, C. B.; Gomez, F. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1993115, 6981-6982.
    11. "Determination of Binding Constants of Ligands to Proteins by Affinity Capillary Electrophoresis: Compensation for Electroosmotic Flow," Gomez, F. A.; Avila, L. Z.; Chu, Y. -H.; Whitesides, G. M. Anal. Chem. 199466, 1785-1791.
    12. "Affinity Capillary Electrophoresis: Insights into the Binding of SH3 Domains by Peptides Derived from an SH3-Binding Protein," Gomez, F. A.; Chen, J. K.; Tanaka, A.; Schreiber, S. L.; Whitesides, G. M. J. Org. Chem. 199459, 2885-2886.
    13. "Determination of the Net Charge of Proteins Using Capillary Electrophoresis," Gao, J.; Gomez, F. A.; Haerter, R.; Whitesides, G. M. Proc. Natl. Acad. Sci. U.S.A.199491, 12027-12030.
    14. "Using Capillary Electrophoresis to Follow the Acetylation of the Amino Groups of Insulin and to Estimate their Basicities," Gao, J.; Mrksich, M.; Gomez, F. A.; Whitesides, G. M. Anal. Chem. 199567, 3093-3100.
    15. "Determination of the Binding of Ligands Containing the N-2,4-dinitrophenyl Group to Bivalent Monoclonal Rat anti-DNP Antibody Using Affinity Capillary Electrophoresis," Mammen, M.; Gomez, F. A.; Whitesides, G. M. Anal. Chem.199567, 3526-3535.
    16. "Multiple-Plug Binding Assays Using Affinity Capillary Electrophoresis," Gomez, F. A.; Mirkovich, J. N.; Dominguez, V. M.; Liu, K. W.; Macias, D. MJ. Chromatogr. A1996727, 291-299.
    17. "Carboracyles: Macrocyclic Compounds Composed of Carborane Icosahedra Linked by Organic Bridging Groups," Jiang, W.; Chizhevsky, I. T.; Mortimer, M. D.; Chen, W.; Knobler, C. B.; Johnson, S. E.; Gomez, F. A.; Hawthorne, M. F. Inorg. Chem. 199635, 5417-5426.
    18. "Determination of the Binding of b-Cyclodextrin Derivatives to Adamantane Carboxylic Acids Using Capillary Electrophoresis," Kwak, E. -S.; Gomez, F. A. Chromatographia 199643, 659-662.
    19. "Enzyme-Catalyzed Microreactions Using Capillary Electrophoresis: A Quantitative Study," Zhao, D. S.; Gomez, F. A.Chromatographia 199744, 514-520.
    20. "Double Enzyme-Catalyzed Microreactors Using Capillary Electrophoresis," Zhao, D. S.; Gomez, F. A. Electrophoresis199819, 420-426.
    21. "The Use of Affinity Capillary Electrophoresis for Determining Binding Constants of Ligands to Receptors," Zhao, D. S.; Kwak, E. -S.; Kawaoka, J.; Esquivel, S.; Gomez, F. A. Am. Lab. 199830, 40-47.
    22. "Use of Mobility Ratios to Estimate Binding Constants in Affinity Capillary Electrophoresis," Kawaoka, J.; Gomez, F. A. J. Chromatogr. B1998715, 203-210.
    23. "Use of a Partial-Filling Technique in Affinity Capillary Electrophoresis for Determining Binding Constants of Ligands to Receptors," Heintz, J.; Hernandez, M.; Gomez, F. A. J. Chromatogr. A1999840, 261-268.
    24. "Optimization of Capillary Electrophoresis Conditions for In-Capillary Enzyme-Catalyzed Microreactions," Kwak, E. -S.; Esquivel, S.; Gomez, F. A. Anal. Chim. Acta1999397, 183-190.
    25. "1-[Ferrocenyl(hydroxy)methyl]-1,2-dicarba-closo-dodecaborane," Crundwell, G.; Arellanes, C.; Gomez, F. A.; Kantardjieff, K. Acta Crystallogr., Sect. C1999C55, IUC9900087.
    26. "Flow-Through Partial-Filling Affinity Capillary Electrophoresis Can Estimate Binding Constants of Ligands to Receptors," Mito, E.; Gomez, F. A. Chromatographia199950, 689-694.
    27. "Use of Capillary Electrophoresis and Indirect Detection to Quantitate In-Capillary Enzyme-Catalyzed Microreactions," Zhang, Y.; El-Maghrabi, R.; Gomez, F. A. Analyst2000125, 685-688.
    28. "Estimation of Receptor-Ligand Interactions by the Use of a Two-Marker System in Affinity Capillary Electrophoresis," Mito, E.; Zhang, Y.; Esquivel, S.; Gomez, F. A. Anal. Biochem2000280, 209-215.
    29. "On-Column Derivatization and Analysis of Amino Acids, Peptides, and Alkylamines by Anhydrides Using Capillary Electrophoresis," Zhang, Y.; Gomez, F. A. Electrophoresis200021, 3305-3310.
    30. "Multiple-Step Ligand Injection Affinity Capillary Electrophoresis for Determining Binding Constants of Ligands to Receptors," Zhang, Y.; Gomez, F. A. J. Chromatogr. A2000897, 339-347.
    31. "On-Column Ligand Synthesis Coupled to Partial-Filling Affinity Capillary Electrophoresis to Estimate Binding Constants of Ligands to a Receptor," Zhang, Y.; Kodama, C.; Zurita, C.; Gomez, F. A. J. Chromatogr. A2001928, 233-241.
    32. "On-Column Enzyme-Catalyzed Microreactions Using Capillary Electrophoresis: Quantitative Studies," Zhang, Y.;Kaddis, J.; Silverio, C.; Zurita, C.; Gomez, F. A. J. Cap. Elect. Microchip Tech. 20027, 1-9.
    33. "Determination of Binding Constants Between Teicoplanin and D-Ala-D-Ala Terminus Peptides by Affinity Capillary Electrophoresis," Silverio, C. F.; Plazas, A.; Moran, J.; Gomez, F. A. J. Liq. Chrom. & Rel. Tech. 200225, 1677-1691.
    34. "Flow-Through Partial-Filling Affinity Capillary Electrophoresis Can Estimate Binding Constants of Neutral Ligands to Receptors Via a Competitive Assay Technique," Kaddis, J.; Mito, E.; Heintz, J.; Plazas, A.; Gomez, F. A.Electrophoresis, 200324, 1105-1110.
    35. "Separation of DNA by Capillary Electrophoresis in Uncoated Silica Columns Using Hydroxypropylmethyl Cellulose as the Sieving Matrix," Villareal, V.; Zhang, Y.; Zurita, C.; Moran, J.; Silva, I.; Gomez, F. A. Anal. Lett. 200336, 451-463.
    36. "Determination of Binding Constants Between the Antibiotic Ristocetin A and D-Ala-D-Ala Terminus Peptides by Affinity Capillary Electrophoresis," Azad, M.; Hernandez, L.; Plazas, A.; Rudolph, M.; Gomez, F. A. Chromatographia200357, 339-344.
    37. "On-Column Derivatization and Analysis of the Antibiotics Teicoplanin and Ristocetin Coupled to Affinity Capillary Electrophoresis," Silverio, C. F.; Azad, M.; Gomez, F. A. Electrophoresis, 200324, 808-815.
    38. "Partial-Filling Affinity Capillary Electrophoresis," Villareal, V.; Kaddis, J.; Azad, M.; Zurita, C.; Silva, I.; Hernandez, L.; Rudolph, M.; Moran, J.; Gomez, F. A. Anal. Bioanal. Chem.2003, 376, 822-831.
    39. "On-Column Synthesis Coupled to Affinity Capillary Electrophoresis to Determine Binding Constants of Peptides to Glycopeptide Antibiotics," Azad, M.; Silverio, C.; Zhang, Y.; Villareal, V.; Gomez, F. A. J. Chromatogr., A2004,1027, 193-204.
    40. "Partial-Filling Techniques for Affinity Capillary Electrophoresis to Probe Receptor-Ligand Interactions," Brown, A.; Silva, I.; Chinchilla, D.; Hernandez, L.; Gomez, F. A. LCGC Europe2004, 1-7.
    41. "Estimation of Binding Constants for the Substrate and Activator of Rhodobacter sphaeroides ADP-Glucose Pyrophosphorylase Using Affinity Capillary Electrophoresis," Kaddis, J.; Zurita, C.; Moran, J.; Borra, M.; Polder, N.; Meyer, C. R.; Gomez, F. A. Anal. Biochem2004327, 252-260.
    42. "Estimation of Binding Constants between Ristocetin and Teicoplanin to Peptides Using On-Column Ligand Derivatization Coupled to Affinity Capillary Electrophoresis," Azad, M.; Brown, A.; Silva, I.; Gomez, F. A. Anal. Bioanal. Chem. 2004379, 149-155.
    43. "Use of a Dual-marker Form of Analysis to Estimate Binding Constants Between Receptors and Ligands by Affinity Capillary Electrophoresis," Villareal, V.; Brown, A.; Gomez, A.; Silverio, C.; Gomez, F. A., Chromatographia2004,60, 73-78.
    44. "Optimization of Conditions for Flow-Through Partial-Filling Affinity Capillary Electrophoresis to Estimate Binding Constants of Ligands to Receptors," Brown, A.; Desharnais, R.; Roy, B.C.; Malik, S; Gomez, F. A. Anal. Chim. Acta,2005, 540, 403-410.
    45. "Flow Injection-Capillary Electrophoresis (FI-CE): Recent Advances and Applications," Hanrahan, G.; Dahdouh, F.;Clarke, F.; Gomez, F.A. Curr. Anal. Chem20051, 321-328.
    46. "Multiple-Injection Affinity Capillary Electrophoresis to Estimate Binding Constants of Receptors to Ligands,"Chinchilla, D.; Zavaleta, J.; Martinez, K.; Gomez, F. A. Anal. Bioanal. Chem. 2005383, 625-631.
    47. "Recent Developments in Affinity Capillary Electrophoresis. A Review," Zavaleta, J.; Chinchilla,. D.; Brown, A.; Sogomonyan, T.; Ramirez, A.; Calderon, V.;Gomez, F. A. Curr. Anal. Chem. 20062, 35-42.
    48. "Multiple-Injection Affinity Capillary Electrophoresis to Examine Binding Constants Between Glycopeptide Antibiotics and Peptides," Zavaleta, J.; Chinchilla, D.; Martinez, K.; Gomez, F. A. J. Chromatogr. A, 20061105, 59-65.
    49. "Multiple-Injection Affinity Capillary Electrophoresis." Zavaleta, J.; Chinchilla, D.; Ramirez, A.; Calderon, V.; Gomez, F. A. LCGC, 200624, 1118-1132; 2007, 84-92.
    50. "Partial Filling Affinity Capillary Electrophoresis Techniques to Probe the Binding of Glycopeptide Antibiotics to D-Ala-D-Ala Terminus Peptides," Zavaleta, J.; Chinchilla, D. B.; Kaddis, C. F.; Martinez, K.; Brown, A.; Gomez, A.; Pao, A.; Ramirez, A.; Nilapwar, S.; Ladbury, J. E.; Gomez, F. A. J. Cap. Elect. Microchip Tech.20069, 101-117.
    51. "Partial-Filling Multiple-Injection Affinity Capillary Electrophoresis (PFMIACE) to Examine Binding Constants of Receptors to Ligands," Zavaleta, J.; Chinchilla, D.; Ramirez, A.; Pao, A.; Martinez, K.; Nilapwar, S.; Ladbury, J. E.; Mallik, S.; Gomez, F. A., Talanta200771,  192-201.
    52. "1-[Ferrocenyl(hydroxy)methyl]-1,7-dicarba-closo-dodecaborane: Synthesis and X-ray Crystal Structure." Fields, J.; Ouyang, X.; Herron, S. R.; Kantarjieff, K. A.; Jabalameli, A.; Gomez, F. A. J. Chem. Crystallogr.  200737, 55-62.
    53. "Determination of Binding Constants of Polyethylene Glycol Vancomycin Derivatives to Peptide Ligands Using Affinity Capillary Electrophoresis," Hernandez, L.; Hanrahan, G.; Rudolph, M.; Lammertink, R.; Kornfield, J.; Gomez, F. A.Chromatographia2007,  65, 299-303.
    54. "Design and Fabrication of Chemically Robust Three-Dimensional Microfluidic Valves," Maltezos, G.; Garcia, E.; Hanrahan, G.; Gomez, F. A.; Vyawhare, S.; van Dam, R. M.; Chen, Y.; Scherer, A. Lab Chip, 2007, 7,  1209-1211.
    55. "The Design and Development of a Flow Injection-Capillary Electrophoresis (FI-CE) Analyzer Employing Fiber Optic Detection." Hanrahan, G.; Tse, F.; Dahdouh, F. T.; Clarke, K.; Gomez, F. A. J. Cap. Elect. Microchip Tech. 2007, 10, 1-6.
    56. "Voltage Gradient Partial Filling Multiple Injection Affinity Capillary Electrophoresis to Estimate Binding Constants of Receptors to Ligands," Ramirez, A.; Gomez, F. A. J. Cap. Elect. Microchip Tech. 2007, 10, 43-50.
    57. "Implementation of Chemometric Methodology in Affinity Capillary Electrophoresis (ACE): Predictive Investigation of Protein-Ligand Binding," Hanrahan, G.; Montes, R.; Pao, A.; Johnson, A.; Gomez, F. A. Electrophoresis, 2007, 28, 2853-2860.
    58. "Simple Fabrication of Fritless Chromatographic Microchips Packed with Conventional Reversed-Phase Silica Particles," Gaspar, A.; Piyasena, M. E.; Gomez, F. A. Anal. Chem. 2007, 79, 7906-7909.
    59. "Through-a-Chip Affinity Capillary Electrophoresis to Estimate Binding Constants Between Receptors and Ligands," Brown, A. L.; Morales, C.; Gomez, F. A. Talanta, 2008, 74, 605-612.
    60. "Chemometric Experimental Design-Based Optimization Techniques in Capillary Electrophoresis: A Critical Review of Modern Applications," Hanrahan, G.; Montes, R.; Gomez, F. A., Anal. Bioanal. Chem. 2008390, 169-179.
    61. "Response Surface Examination of the Relationship Between Experimental Conditions and Product Distribution in Electrophoretically Mediated Microanalysis (EMMA)," Montes, R.; Gomez, F. A.; Hanrahan, G., Electrophoresis, 2008,29, 375-380.
    62. "Electrochromatography in Fritless Chromatographic Microchips Packed with Conventational Reversed-Phase Silica Particles," Gaspar, A.; Hernandez, L.; Stevens, S.; Gomez, F. A., Electrophoresis, 200829, 1638-1642.
    63. "Use of Chemometric Methodology in Optimizing Conditions for Competitive Binding Partial Filling Affinity Capillary Electrophoresis (PFACE)," Montes, R.; Hanrahan, G.; Gomez, F. A., Electrophoresis, 200829, 3325-3332.
    64. "Magnetically Controlled Valve for Flow Manipulation in Polymer Microfluidic Devices," Gaspar, A.; Piyasena, M.; Daroczi, L.; Gomez, F. A. Microfluid. Nanofluid. 2008, 6, 525-531.
    65. "Chemometrical Experimental Design-Based Optimization Studies in Capillary Electrophoresis Applications," Montes, R.; Dahdouh, F.; Riveros, T. A.; Hanrahan, G.; Gomez, F. A. LCGC, 2008, 26, 712-721..
    66. "Magnetic Bead-Based Methods to Study the Interaction of Teicoplanin with Peptides and Bacteria," Piyasena, M. E.; Real, L. J.; Diamond, R. A.; Xu, H.; Gomez, F. A. Anal. Bioanal. Chem. 2008, 392, 877-886.
    67. "Chemometrical Examination of Active Parameters and Interactions in Flow Injection-Capillary Electrophoresis (FI-CE)," Dahdouh, F. T.; Clarke, K.; Salgado, M.; Gomez, F. A.; Hanrahan, G. Electrophoresis, 200829, 3779-3785.
    68. "Fritless Chromatographic Microfluidic-Based Columns for Chemical Separations," Gaspar, A.; Goldberg, M.; Baghdachi, S.; Stevens, S.; Torres, J.; Salgado, M.; Gomez, F. A. Am. Lab. 200840, 13-16.
    69. "Microfluidic Polymerase Chain Reaction," Maltezos, G. M.; Gomez, A.; Zhong, J.; Gomez, F. A.; Scherer, A. Appl. Phys. Let. 200893, 243901-1-3.
    70. "Frontal Analysis Continuous Microchip Capillary Electrophoresis to Study the Binding of Ligands to Receptors Derivatized on Magnetic Beads," Liu, X.; Gomez, F. A. Electrophoresis 2009393, 615-621.
    71. "Recent Advances in Affinity Capillary Electrophoresis (2007)," Liu, X.; Dahdouh, F.; Salgado, M.; Gomez, F. A. J. Pharm. Sci.. 200998, 394-410.
    72. "Microchip Frontal Affinity Chromatography to Study the Binding of a Ligand to Teicoplanin-Derivatized Microbeads," Liu, X.; Gomez, F. A. Electrophoresis 2009, 30, 1194-1197.
    73. "Application of Artificial Neural Networks in the Prediction of Product Distribution in Electrophoretically Mediated Microanalysis (EMMA)," Riveros, T. A.; Porcasi,L.; Muliadi, S.; Hanrahan, G.; Gomez, F. A. Electrophoresis 2009, 30, 2385-2389.
    74. "Fabrication of a Microfluidic Enzyme Reactor Utilizing Magnetic Beads," Liu, X.; Lo, R.; Gomez, F. A.Electrophoresis200930, 2129-2133.
    75. "Use of Magnetic Beads to Study the Interaction of Ristocetin with Peptides and Bacteria," Sarakhanikhorami, M.; Lo, R. C.; Gomez, F. A. Bioanalysis20091, 715-719. 
    76. "Development of Microfluidic Chips for Heterogeneous Receptor-Ligand Interaction Studies," Goldberg, M. D.; Lo, R. C.; Abele, S.; Macka, M.; Gomez, F. A. Anal. Chem. 200981, 5095-5098.
    77. "Application of External Micro-Spectrophotometric Detection for Microchips," Gaspar, A.; Bacsi, I.; Garcia, E. F.; Braun, M.; Gomez, F. A. Anal. Bioanal. Chem. 2009, 395, 473-478.
    78. "On-Capillary Derivatization Using a Hybrid Artificial Neural Network-Genetic Algorithm Approach," Riveros, T. A.; Hanrahan, G.; Muliadi, S.; Arceo, J.; Gomez, F. A. Analyst2009, 134, 2067-2070.
    79. "Use of Magnetic Beads in Microfluidic Binding Assays and On-Chip Enzymatic Microreactions," Riveros, T. A.; Lo, R.; Liu, X.; Valdez, A.; Lozano, M.; Gomez, F. A. Am. Lab. 2010, 42, 11-19.
    80. "Analysis and Stability Study of Temozolomide Using Capillary Electrophoresis," Andrasi, M.; Bustos, R.; Gaspar, A.; Gomez, F. A.; Kelkner, A. J. Chromatogr. B2010, 878, 1801-1808.
    81. "Microfluidic Thin Chips for Chemical Separations," Gaspar, A.; Salgado, M.; Stevens, S.; Gomez, F. A.Electrophoresis 2010, , 31, 2520-2525.
    82. "Split Injection: A Simple Introduction of Subnanoliter Sample Volumes for Chip Electrophoresis," Gáspár, A.; Koczka, P. I.; Carmona, H.; Gomez, F. A. Microchemical. J. 201199, 180-185.
    83. "Facile Fabrication of an Interface for On-Line Coupling of Microchip Capillary Electrophoresis to Surface Plasmon Resonance," Liu, X.; Du, M.; Zhou, F.; Gomez, F. A. Bioanalysis 20124, 373-379.
    84. "Human-on-a-Chip Technologies as the Next Generation Drug Screening Platforms," Yun, Y.; Lee, S.; Collins, B.; Gomez, F. A. Sankar, J. J. Nanomedic. Biotherapeu. Discover 20122, 1000e113.
    85. "Development of an Ultra-Low Volume Flow-Cell for Surface Plasmon Resonance Detection in a Miniaturized Capillary Electrophoresis System," Gaspar, A.; Gomez, F. A. Electrophoresis201233, 1723-1728.
    86. "Glass/PDMS Hubrid Microfluidic Device Integrating Vertically Aligned SWCNTs for Electrochemical Determination," Moraes, F.; Lima, R.; Segato, T.; Cesarino, T.; Melendez, J.; Machado, S.; Gomez, F. A.; Carrilho, E. Lab Chip2012,12, 1959-1962.
    87. "Implementation of a Genetically Tuned Neural Platform in Optimizing Fluorescence from Receptor-Ligand Binding Interactions on Microchips," Alvarado, J.; Hanrahan, G.; Nguyen, H. T. H.; Gomez, F. A. Electrophoresis201233, 2711-2717.
    88. "The Future of Microfluidic Point-of-Care (POC) Diagnostic Devices," Gomez, F. A. Bioanalysis20135, 1-3.
    89. "Application of Surface Plasmon Resonance Spectroscopy for Adsorption Studies of Different Types of Components on Poly(dimethylsiloxane)", Gaspar, A.; Gomez, F. A. Anal. Chim. Acta2013777, 72-77.
    90. "Use of Surface Plasmon Resonance to Study the Adsorption of Detergents on Poly(dimethysiloxane) Surfaces", Gaspar, A.; Kecskemeti, A.; Gomez, F. A. Electrophoresis201334, 1249-1252
    91. "Paper-Based Microfluidic Point-of-Care Diagnostic Devices for Monitoring Drug Metabolism," Chong, H.; Koo, Y.; Collins, B.; Gomez, F. A. Sankar, J.; Yun, Y. J. Nanomedic. Biotherapeu. Discovery 2013, 3, e122.
    92. "Paper Microfluidic-Based Enzyme Catalyzed Double Microreactor", Ferrer, I. M.; Valadez, H.; Estala, L.; Gomez, F. A. Electrophoresis201435, 2417-2419.
    93. "Paper Microfluidics in Bioanalysis," Gomez, F. A. Bioanalysis2014, 6, 2911-2914.
    94. "Development of Microfluidic-Based Assays to Estimate the Binding between Osteocalcin and Fluorescent Antibodies," Carmona, H.; Valadez, H.; Yun, Y.; Estala, L.; Gomez, F. A. Talanta, 2015, 132, 676-679.
    95. "Application of a Computational Neural Network to Optimize the Fluorescence from a Receptor-Ligand Interaction on a Microfluidic Chip", Ortega, M.; Hanrahan, G.; Arceo, M.; Gomez, F. A. Electrophoresis2015, 36, 393-397.
    96. “Development of a Microfluidic-Based Assay on a Novel Nitrocellulose Platform”, Arrastia, M.; Avoundjian, A.; Ehrlich, P. S.; Eropkin, M.; Levine, L.; Gomez, F. A. Electrophoresis, 201536, 884-888.
    97. “How Chemometrics can Improve Microfluidic Research?”, Jalali-Heravi, M.; Arrastia, M.; Gomez, F. A. Anal. Chem. 201587, 3544-3555 (cover).
    98. “A Microfluidic Direct Formate Fuel Cell on Paper”, Copenhaver, T. S.; Purohit, K. H.; Domalaon, K.; Pham, L.; Burgess, B. J.; Manorothkul, N.; Galvan, V., Sotez, S.; Gomez, F. A.; Haan, J. L. Electrophoresis201536, 1825-1829.
    99. An Improved Alkaline Direct Formate Paper Microfluidic Fuel Cell”, Galvan, V.; Domalaon, K.; Tang, C.; Sotez, S.; Mendez, A.; Jalali-Heravi, M.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis201637, 504-510.
    100. “Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays”, Gallibu, C.; Gallibu, C.; Avoundjian, A.; Jalali-Heravi, M.; Gomez, F. A. Micromachines20167, 6-9.
    101. “A Microfluidic Galvanic Cell on a Single Layer of Paper”, Purohit, K. H.; Emrani, S.; Rodriguez, S.; Liaw, S. –S.Galvan, V.; Domalaon, K.; Gomez, F. A.; Haan, J. L. J. Power Sources2016318, 163-169.
    102. “Microscale Bioanalysis,” Knutsson, M.; Timmerman, P.; Gomez, F. A. Bioanalysis20168, 859-862.
    103. “Mixed Thread/Paper-Based Microfluidic Chips as a Platform for Glucose Assays,” Gonzalez, A.; Estala, L.; Gaines, M.; Gomez, F. A. Electrophoresis201637, 1685-1690.
    104. “Point of Care Testing: The Impact of Nanotechnology”, Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F. A.; Hajghassem, H.; Omidfar, K. Biosens. Bioelectron. 2017, 87, 373-387.
    105. “Use of a Computational Model to Optimize a Glucose Assay on a Paper Microfluidic Platform”, Avoundjian, A.; Jalali-Heravi, M.; Gomez, F. A. Anal. Bioanal. Chem. 2017409, 2697-2703.
    106. “Experimental Analysis of Fabrication Parameters in the Development of Microfluidic Paper-Based Analytical Devices (uPADS)” Lee, W.; Gomez, F. A. Micromachines20178, 99.
    107. “Thread-Based Microfluidic Chips as a Platform to Assess Acetylcholinesterase Activity”, Gonzalez, A.; Gaines, M.; Gomez, F. A. Electrophoresis201738, 996-1001.
    108. “A Microfluidic Paper-Based Device to Assess Acetylcholinesterase Activity”, Liu, C.; Gomez, F. A. Electrophoresis201738, 1002-1006.
    109. “Fabric-Based Alkaline Direct Formate Microfluidic Fuel Cells”, Domalaon, K.; Tang, C.; Mendez, A.; Bernal, F.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis2017, 38, 1224-1231.
    110. “Paper-Based Point-of-Care Testing in Disease Diagnostics”, Syedmoradi, L.; Gomez, F. A. Bioanalysis, 2017, 9, 841-843.
    111. “An Inexpensive Paper-Based Aluminum Air Battery”, Avoundjian, A.; Galvan, V.; Gomez, F. A. Micromachines2017, 8 222.
    112. “Enzyme Chemotaxis on Paper-Based Devices”, Ilacas, G. C.; Basa, A.; Sen, A.; Gomez, F. A. Anal. Sci. 2017, in press.
    113. “Enzyme-Linked Immunosorbent Assays (ELISA) Based on Thread, Paper, and Fabric”, Gonzalez, A.; Gaines, M.; Gallegos, L. Y.; Guevara, R.; Gomez, F. A. Electrophoresis2017, in press.
    114. “An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery”, Burrola, S.; Gonzalez Guerrero, M. J.; Avoundjian, A.; Gomez, F. A. Energy Reports 2017, submitted.
    115. “Simple and Sensitive Colorimetric Assay System for Dopamine Using Microfluidic Paper-Based Analytical Devices”, Liu, C.; Gomez, F. A.; Miao, Y.; Cui, P.; Lee, W. Anal. Chim. Acta. 2017, submitted.

       

      Books

      1. "Biological Applications of Microfluidics," Gomez, F. A. ed., John Wiley & Sons, Inc., 2008.
      2. "Chemometrics in Capillary Electrophoresis," Hanrahan, G.; Gomez, F. A. eds., John Wiley & Sons, Inc., 2009.

       

      Book Chapters

      1. Affinity Capillary Electrophoresis to Examine Receptor-Ligand Interactions. Azad, M.; Kaddis, J.; Villareal, V.; Hernandez, L.; Silverio, C. S.; Gomez, F. A. In Methods in Molecular Biology, Humana Press, 2004, pp 153-168.
      2. Applications of Capillary Electrophoresis to Molecular Recognition and Analysis of In-Capillary Enzyme-Mediated Transformations. Zavaleta, J.; Chinchilla, D.; Brown, A.; Ramirez, A.; Calderon, V.; Sogomonyan, T.; Montes, R.; Gomez, F. A. In Advances in Chromatography, CRC Press, 2006, pp 125-172.
      3. Microfluidics. Gomez, F. A. In Biological Applications of Microfluidics, Gomez, F. A. Ed. John Wiley & Sons, Inc., 2008, pp. 1-7.
      4. Chemical Separations in 3D Microfluidics. Maltezos, G. M.; Gomez, A.; Gomez, F. A.; Scherer, A. In Biological Applications of Microfluidics; Gomez, F. A., Ed. John Wiley & Sons, Inc., 2008, pp. 263-272.
      5. Magnetic Bead-Based Methods to Study the Interaction of Teicoplanin with Peptides and Bacteria. Piyasena, M. E.; Gomez, F. A. In Biological Applications of Microfluidics; Gomez, F. A., Ed. John Wiley & Sons, Inc., 2008, pp. 473-488.
      6. On-Column Ligand/Receptor Derivatization Coupled to Affinity Capillary Electrophoresis. Zavaleta, J.; Chinchilla, D.; Gomez, A.; Sogomonyan, T.; Silverio, C.; Azad, J. Gomez, F. A. In Methods in Molecular Biology, Humana Press, 2008, pp. 647-660.
      7. Chemometrical Experimental Design-Based Optimization Studies in Capillary Electrophoresis Applications. Montes, R.; Riveros, T. A.; Dahdouh, F.; Hanrahan, G.; Gomez, F. A. In Chemometrics in Capillary Electrophoresis, Hanrahan, G. and Gomez, F. A. eds., John Wiley & Sons, Inc., 2010, pp. 75-92.
      8. Microfluidics in Protein Chromatography. Gomez, F. A. In Protein Chromatography: Methods and Protocols in Methods in Molecular Biology, Loughgan, S. and Walls, D., Eds. Humana Press, 2011, pp. 137-150..
      9. Microchip Capillary Electrophoresis to Study the Binding of Ligands to Teicoplanin Derivatized on Magnetic Beads. Riveros, T. A.; Lo, R.; Salgado, M.; Carmona, H.; Gomez, F. A. In Capillary Electrophoresis and Microchip Capillary Electrophoresis, Garcia, C. D. and Carrilho, E., Eds. John Wiley & Sons, Inc., 2013, pp. 359-366.

        Talks/Presentations

        Recently published or submitted:

        • “Point of Care Testing: The Impact of Nanotechnology”, Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F. A.; Hajghassem, H.; Omidfar, K. Biosens. Bioelectron. 201787, 373-387.
        • “Use of a Computational Model to Optimize a Glucose Assay on a Paper Microfluidic Platform”, Avoundjian, A.; Jalali-Heravi, M.; Gomez, F. A. Anal. Bioanal. Chem. 2017409, 2697-2703.
        • “A Microfluidic Paper-Based Device to Assess Acetylcholinesterase Activity”, Liu, C.; Gomez, F. A. Electrophoresis2017, 38, 1002-1006.
        • “Thread-Based Microfluidic Chips as a Platform to Assess Acetylcholinesterase Activity”, Gonzalez, A.; Gaines, M.; Gomez, F. A. Electrophoresis2017, 38, 996-1001.
        • “Fabric-Based Alkaline Direct Formate Microfluidic Fuel Cells”, Domalaon, K.; Tang, C.; Mendez, A.; Bernal, F.; Purohit, K.; Pham, L.; Haan, J.; Gomez, F. A. Electrophoresis2017, 38, 1224-1231.
        • “An Inexpensive Paper-Based Aluminum Air Battery”, Avoundjian, A.; Galvan, V.; Gomez, F. A. Micromachines2017, 8, 222.
        • “Enzyme Chemotaxis on Paper-Based Devices”, Ilacas, G. C.; Basa, A.; Sen, A.; Gomez, F. A. Anal. Sci. 2017, in press.
        • “Thread-, Paper-, and Fabric-Based ELISAs”, Gonzalez, A.; Gaines, M.; Gallegos, L. Y.; Guevara, R.; Gomez, F. A. Electrophoresis2017, in press.
        • “An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery”, Burrola, S.; Gonzalez Guerrero, M. J.; Avoundjian, A.; Gomez, F. A. Energy Reports 2017, submitted.

         

        Recent talks and presentations:

        • Thread/Paper-Based Enzyme-Linked Immunosorbent Assay (ELISA). Guevara, R.; Gonzalez, A.; Gaines, M.; Gallegos, L.; Gomez, F. A. Southern California Conference for Undergraduate Research (SCCUR), Riverside, CA, November, 2017.
        • An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery. Burrola, S.; Gonzalez, M.; Avoundjian, A.; Gomez, F. A. Southern California Conference for Undergraduate Research (SCCUR), Riverside, CA, November, 2017.
        • A Microfluidic Glucose Sensor Incorporating a Novel Thread-Based Electrode System. Uchida, K.; Gaines, M.; Gomez, F. A. Southern California Conference for Undergraduate Research (SCCUR), Riverside, CA, November, 2017.
        • The Effects of Paper Microfluidics Research into the Undergraduate Curriculum at Cal State LA. Duenas, L.; Lee, W.; Gomez, F. A. Southern California Conference for Undergraduate Research (SCCUR), Riverside, CA, November, 2017.

         

        Group News

        Congratulations to Ani Avoundjian, Alex Mendez, Catherine Tang, and Santino Valiulis for graduating this May, 2017. Good luck to all of you.

         

        Michelle CSUPERB Figure

        Michelle Gaines presenting her work at the CSUPERB conference in January, 2017 in Santa Clara.

         

        ORSCA talks

        Presenting at the Cal State LA 25th Annual Student Research Symposium on February 24 (From top left clockwise), Michelle Gaines, Nathalie del Rosario, Wilson Lee, and Franky Bernal.

         

        Alexis UCLA fig

        Alexis Basa presenting her work at the ACS Undergraduate Research conference in April, 2017 at UCLA.