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ABSTRACT

Equivalents to the Axiom of Choice and Their Uses

By

James Szufu Yang

In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst

Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it

Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC.

This paper starts with an introduction to the foundations of ZFC set the-

ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the

Cartesian product, the Axiom of Choice, and their related proofs. It then intro-

duces several equivalent forms of the Axiom of Choice and proves that they are all

equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few

fundamental theorems in set theory, linear analysis, and abstract algebra.

This paper is concluded by a brief review of the work in it, followed by a few

points of interest for further study in mathematics and/or set theory.
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CHAPTER 1

Introduction

In many of our mathematics classes, at some point the instructor would men-

tion the Axiom of Choice but doesn’t talk too deeply about it. For many students,

the Axiom of Choice remains a mystery although almost everyone knows its basic

idea. Often we are told that “pick an element from each set of a nonempty collection

of nonempty sets, you can form a (choice) set”. This is probably the impression a

math student has about the Axiom of Choice throughout his or her math career,

unless the student chooses to study set theory in a graduate program.

In fact, the Axiom of Choice has been “probably the most interesting and, in

spite of its late appearance, the most discussed axiom of mathematics, second only

to Euclid’s axiom of parallels which was introduced more than two thousand years

ago” [5]. Since being formulated by Ernst Zermelo in 1904, the Axiom of Choice has

been controversial but now used without reservation by most mathematicians. “The

status of the Axiom of Choice has become less controversial in recent years. To most

mathematicians it seems quite plausible and it has so many important applications

in practically all branches of mathematics that not to accept it would seem to be a

wilful hobbling of the practicing mathematician” [15, p. 201].

The goal of this paper is hence not to question the status of the Axiom of

Choice. Instead, we want to study more about the Axiom of Choice, especially about

its variants and uses.

In our study of the Axiom of Choice, we should be aware that axiomatic set

theory is developed in the framework of first-order predicate calculus, and there are
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a few “equivalent” axiom systems in common mathematical use. By “equivalent” we

mean that these axiom systems all prove the same first-order theorems, which are

logical consequences of the axioms [4, 16].

Unlike other alternative axiomatic set theories such as Gödel-Bernays set the-

ory, Zermelo-Fraenkel (ZF) set theory with Axiom of Choice (ZFC) has only one type

of object: set. Therefore, in our discussion, we do not consider objects that may

be elements of sets but are not sets themselves. Such objects are called atoms by

some mathematicians. On the other hand, we also do not consider classes, which are

objects too big to be sets.

Remark 1.1. Cantor sensed the difference between “the collection of all sets” and

and the usual sets. He called the former “inconsistent totalities” and the latter “con-

sistent totalities”. Russell pointed out the paradox, later under his name, in Gottlob

Frege’s set theory but was not able give a resolution. This issue had been known to the

mathematics community for years. Proper classes were accepted as legitimate objects

in axiomatized set theory by von Neumann in 1925. Some of his ideas were adopted

by Paul Bernays in his papers published in 1937 and after. Kurt Gödel modified

Bernays’s axioms in 1940. This new set theory was hence known as Gödel-Bernays

(GB) set theory or von Neumann-Bernays (VNB) set theory [4, p.15]. It is also know

as von NeumannBernaysGdel (NBG) set theory. We would call it NBG because it

properly gives credits to all these three great mathematicians. In NBG set theory, sets

can be elements of classes, while classes can’t be elements of anything. NBG and ZF

prove exactly the same first-order theorems except that NBG carries a more cumber-
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some logical baggage [20, p.70] and [16].

ZFC axiomatic set theory is built upon first-order logic. There are only two

binary predicates necessary in ZFC set theory, namely the membership relation, ∈,

and the “equal to” relation, =. Therefore there are only two atomic formulas: x ∈ y

and x = y. Statements in ZFC set theory are written with these two formulas and

the following quantifiers and logic operators, ∀ (for all), ∃ (there exists), ¬ (not), ∧

(and), ∨ (or), =⇒ (if), ⇐⇒ (if and only if, iff). As we adopt ZFC axioms we treat

the concepts of set and member (element) as undefined primitive notions [4, 16, 20].
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CHAPTER 2

Zermelo-Fraenkel Axioms and Partially Ordered Sets

2.1 Zermelo-Fraenkel Axioms

Ernst Zermelo published his axiomatized set theory in 1908, including most of

the eight Zermelo-Fraenkel (ZF) Axioms. Later other mathematicians observed that

for a satisfactory theory of ordinal numbers, the axioms established by Zermelo were

not sufficient. The Axiom of Replacement was then proposed by Abraham Fraenkel

(in 1922) and others such as Thoralf Skolem. This system of axioms became known

as the “Zermelo-Fraenkel Axioms”. The idea of the Axiom of Regularity appeared in

Dmitry Mirimanoff’s paper in 1917, and was later explicitly included in ZF axioms by

John von Neumann in 1925 [4, 20]. Note that some of the ZF axioms are just a single

axiom while some are so called “axiom schema”. An axiom schema is a collection of

axioms, one axiom for each of a particular type of formula of first-order logic [16].

Axiom 2.1. (Axiom of Extensionality) If X and Y have the same elements, then

X = Y . ∀X ∀Y [ ∀x (x ∈ X ⇐⇒ x ∈ Y ) =⇒ X = Y ].

The principle of extensionality is probably the most intuitive axiom in ZFC.

“It expresses the basic idea of a set: A set is determined by its elements” [20]. It says

two sets are the same if and only if they have the same elements. In other words,

distinct sets have at least one element that are not the same. This axiom also leads

to a widely used proof technique that when we prove two sets are equal (the same),
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we only need to show that they are included (or contained, ⊆) by each other.

Axiom 2.2. (Axiom of Pairing) For any u and v there exists a set {u, v}.

∀u ∀v ∃X ∀x (x ∈ X ⇐⇒ x = u ∨ x = v).

The Axiom of Pairing is very basic yet important. Without this axiom we

cannot construct ordered pairs to order, so we cannot discuss relations of arity (di-

mension of the domain of a relation) greater than one, and so n-tuples aren’t possible

when n > 1. Hence we cannot even define function since functions are relations.

Moreover, without relations and functions defined, we cannot discuss Cartesian prod-

uct either [16].

Axiom 2.3. (Axiom Schema of Specification) If P is a property with parameter p,

then for any X and p there exists a set Y = {u ∈ X | P (u, p)} that contains all those

u ∈ X that have property P. ∀X ∀p ∃Y ∀u [u ∈ Y ⇐⇒ u ∈ X ∧ P (u, p) ].

The Axiom Schema of Specification is also known as the Axiom Schema of

Separation, the Subset Axiom Schema, or sometimes by some mathematicians, the

Axiom Schema of Restricted Set Comprehension. It actually got set theory out of

Russell’s paradox, which was under the older rule of Axiom Schema of Set Compre-

hension, which says that if P is a property, then there exists a set Y = {x | P (x)}.

Russell’s Paradox occurs when P (x) = x /∈ x [20, p. 4]. Hence it is also called the

Axiom Schema of Restricted Set Comprehension.
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A natural consequence of the formula above is that Y ⊆ X, thus this axiom

helps us define subset so that we don’t have subset as a undefined primitive notion.

This is why it’s also called the Subset Axiom Schema.

Note that the existence of the empty set, ∅, can be proved by the Axiom of

Specification, and it’s unique by the Axiom of Extensionality. However, some authors

have an Axiom of Empty Set, which is not an original ZF axiom though. We will give

a short proof on the unique existence of the empty set followed by its definition and

notation.

Axiom 2.4. (Axiom of Union) For any X there exists a set Y =
⋃
X , the union of

all elements of X . ∀X ∃Y ∀u [u ∈ Y ⇐⇒ ∃X (X ∈ X ∧ u ∈ X)]

The Axiom of Union is saying that, for any set X , there exists a set Y, whose

elements are exactly the elements of the elements of X . With this axiom we can

define union of sets. Note that there is no corresponding “Axiom of Intersection”.

Instead, for any set X , there exists a unique set Y such that for any x, x ∈ Y , x

belongs to every element of X . With union and intersection defined, by the Axiom of

Extensionality, the algebra of sets are possible. For example, addition and subtrac-

tion of sets, relative complement of a set, the Commutative Laws, Associate Laws,

Distributive Laws, De Morgan’s Laws, etc. are all possible [4] and [16, p. 31].

Axiom 2.5. (Axiom of Power Set) For any X there exists a set Y = P(X), the set

of all subsets of X. ∀X ∃Y ∀x ∈ Y (x ∈ Y ⇐⇒ x ⊆ X).
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The Axiom of Power Set actually guarantees finite Cartesian products. How-

ever, for infinite Cartesian products, we need the Axiom of Choice [16, p. 41]. In

addition, the Axiom of Power Set also enables us to define ordinal numbers, with

which the von Neumann universe is possible. (Also see Axiom 2.8.)

Note that we have been using the binary predicates, atomic formulas, quan-

tifiers, and operator in first-order logic in the definitions of axioms. However, in the

following three axioms, we will not give a first-order logic formula in their definitions

because these formulas are too cumbersome and not helpful for the context and so

unnecessary.

Axiom 2.6. (Axiom of Infinity) There exists an infinite set.

The infinite set is defined inductively, so some authors phrase this axiom as,

“There exists an inductive set. ∃X ∅ ∈ X and X is inductive” [16]. The idea is that

there is a set X with ∅ ∈ X, and such that x ∈ X implies x ∪ {x} ∈ X. The set

x ∪ {x} is called the successor of x. With the Axiom of Infinity, the set of natural

numbers, N, can be constructed, and hence infinite ordinals are possible.

Axiom 2.7. (Axiom Schema of Replacement or Axiom Schema of Substitution) If a

function has a set as its domain, then its range is also a set.

There is an issue when applying a function in its traditional sense on a collec-

tion that is not a set. For example, if, with a function in its traditional sense, we take
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the image of a domain that is a collection of ordinals, then the image may be too big

to be a set. It could be a proper class [17, p. 93]. The Axiom Schema of Replacement

asserts that the image is a set because ZF set theory cannot legally refer to a class [4,

p. 179]. This axiom schema was mainly due to Fraenkel.

Axiom 2.8. (Axiom of Regularity or Axiom of Foundation or Axiom of Restriction)

Every nonempty set has a ∈-minimal element.

The Axiom of Regularity is rarely used by mathematicians. Most of mathe-

matics would go on the same with or without it. It, however, produces interesting

intuitive consequences such as for any set x, x /∈ x, and for any sets x and y, x ∈ y ∈ x

is impossible. The axiom is equivalent to: there is no infinite descending ∈-chain. A

more important consequence of the Axiom of Regularity is the von Neumann Universe

or von Neumann Hierarchy of Sets, V , which contains all sets in ZFC set theory. V is

of course not a set. It is the structure of the universe of all sets. Note that the Axiom

of Regularity cannot be derived from the other axioms of ZFC, if they are consistent

(Bernays, 1954) [16, 21].

These are all the Zermelo-Fraenkel axioms. As a demonstration of using the

most basic concepts in ZF set theory in proofs, let’s try to prove the existence of

the empty set, followed by defining the empty set, as an example of how the ZF set

theory builds up its system.

Proposition 2.9. (The Empty Set) There is a unique set with no elements.
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∃X ∀x, x /∈ X.

Proof. Since set is an undefined primitive notion, by first-order logic, there exists at

least one set Z. By Axiom 2.1 (the Axiom of Extensionality), let Y be a set such

that for any X, X ∈ Y iff X ∈ Z and X 6= X. Then Y does not have any elements.

By Axiom 2.1, Y is unique. Hence Y is the empty set.

Next, we can then define the empty set.

Definition 2.10. (Empty Set) The empty set is a set with no elements, denoted by

∅.

Remark 2.11. The Zermelo-Franekel axioms are not independent – some of them

are implied by the others. For example, the Axiom Schema of Specification is derived

from the Axiom Schema of Replacement, and that the Axiom of Pairing is derivable

from the Axiom of Power Set and the Axiom Schema of Replacement [19, p. 237].

This dependence issue serves as a good topic for further study after this paper.

2.2 Partially Ordered Sets

By the Axiom of Pairing, we could define ordered pairs, and then relation and

function. There are different ways to define ordered pairs. Our definition of ordered

pair here is due to Kaximierz Kuratowski in 1921. In this section, we will give defi-
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nitions required to prove the equivalents to the Axiom of Choice as follows.

Definition 2.12. (Ordered Pair) For all sets x and y, we define the ordered pair

(x, y) = {{x}, {x, y}}.

Definition 2.13. (Ordered n-tuple) For any set xi, i ∈ N, we define the ordered

n-tuple (x1, . . . , xn) = ((x1, . . . , xn−1), xn).

Definition 2.14. (Relation) A relation is a set of ordered pairs [4, p. 40].

Definition 2.15. (Function) A function from a set A to a set B is a relation f from

A to B with the property that for every a ∈ A there exists one and only one (not

necessarily distinct) element b ∈ B such that (a, b) ∈ f.

Definition 2.16. (Partial Order Relation) The binary relation 6 is a partial order

on a set X if for all x, y, z ∈ X,

(a) x 6 x. (Reflexivity)

(b) If x 6 y and y 6 z, then x 6 z. (Transitivity)

(c) If x 6 y and y 6 x, then x = y. (Antisymmetry)

If 6 partially orders X, we call X a partially ordered set under 6, denoted by

(X,6). [2, 16]

Note that the term “poset” is short for “partially ordered set” by many au-
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thors, so we will also use “poset” instead of “partially ordered set” when appropriate.

Definition 2.17. (Strict Order Relation) The binary relation < is a strict order on

a set X if for all x, y, z ∈ X,

(a) x ≮ x. (Irreflexivity)

(b) If x < y and y < z, then x < z. (Transitivity)

(c) If x < y, then y ≮ x. (Asymmetry)

If < strictly orders X, we call X a strictly ordered set under <, denoted by (X,<).

As a shorthand, we say x < y if x 6 y and x 6= y. [16]

Definition 2.18. (Total or Linear Order Relation) The binary relation 6 is a lin-

ear or total order on a set X if 6 is a partial order and for all x, y ∈ X, x 6 y

or y 6 x. This property is called comparability or connectedness, or trichotomy.

Definition 2.19. (Minimal, Maximal, Minimum, Maximum) Let (X,6) be a set of

sets and x ∈ X. We define

(a) x is minimal if and only if, for all y ∈ X, if y 6 x, then x = y.

(b) x is maximal if and only if, for all y ∈ X, if x 6 y, then x = y.

(c) x is a minimum if and only if for all y ∈ X, x 6 y.

(d) x is a maximum if and only if for all y ∈ X, y 6 x. [16, p. 10]

Proposition 2.20. (Properties of Maximal, Minimal, Maximum, and Minimum)

(a) Maximum elements are maximal.
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(b) Minimum elements are minimal.

(c) There can be at most one maximum element.

(d) There can be at most one minimum element.

(e) A maximal element in a linear order is a maximum.

(f) A minimal element in a linear order is a minimum.

Definition 2.21. (Chain, Maximal Chain) Let (X,6) be a set of partially ordered

set.

(a) X is a chain if for all x, y ∈ X, either x 6 y or y 6 x.

(b) Y is a chain in X if Y is a totally ordered subset of X.

(c) Y is a maximal chain in X if for any chain Z in X, Y ⊆ Z implies

Y = Z. [19, p. 244]

Definition 2.22. (Upper Bound, Lower Bound Least Upper Bound, Greatest Lower

Bound) Let (X,6) be a poset and Y ⊆ X.

(a) An element u ∈ X is an upper bound for Y if y 6 u for all y ∈ Y .

(b) An upper bound u0 for Y is the least upper bound for Y if u0 6 u for

every upper bound u for Y.

(c) An element v ∈ X is a lower bound for Y if v 6 y for all y ∈ Y .

(d) A lower bound v0 for Y is the greatest lower bound for Y if v 6 v0 for

every lower bound v for Y. [13]

Note that in Definition 2.22, we assume the existence of the least upper bound

12



and the greatest lower bound. In addition, the least upper bound and the greatest

lower bound are unique if they exist.
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CHAPTER 3

The Axiom of Choice

3.1 The Cartesian Product

If we have two sets X and Y , the Cartesian product of these two sets would

simply be X × Y = {(x, y) | x ∈ X and y ∈ Y }. The idea of Cartesian product is

critical in understanding the Axiom of Choice. In fact, the nonempty Cartesian prod-

uct of nonempty sets is equivalent to the Axiom of Choice. Here are some necessary

definitions from [16, pp. 33–36].

Definition 3.1. (Finite n-ary Cartesian Product) For all i ∈ N, the Cartesian

product X1×X2× . . .×Xn is the set of all n-tuples defined by X1×X2× . . .×Xn =

{(x1, . . . , xn) | for each xi ∈ Xi}. If all Xi = X are identical, we also write

X ×X × . . .×X = Xn.

In general, we can also define the Cartesian product of arbitrarily (finitely or

infinitely, countably or uncountably) many sets.

Definition 3.2. (Generalized Cartesian Product) Let I be an index set. Given

{Xi | i ∈ I}, a family of sets indexed by I, the generalized Cartesian prod-

uct is
∏

i∈I Xi = {f | f : I →
⋃
i∈I Xi with f(i) ∈ Xi for each i ∈ I}. If all Xi = X

are identical, then
∏

i∈I Xi = {f | f : I → X} = XI .
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Note that in the case of finite indexed family, Definition 3.1 and Definition 3.2

do not produce the same sets. For instance, X1×X2 and
∏

i∈{1,2}Xi are different sets

in ZF set theory. A typical element of X1 × X2 in ZF set theory is an ordered pair

(x1, x2) with x1 ∈ X1 and x2 ∈ X2. Note that (x1, x2) ⊆ P(X1 ∪ X2) since, by our

definition, (x1, x2) = {{x1}, {x1, x2}} ⊆ P(X1 ∪ X2). On the other hand, a typical

element of
∏

i∈{1,2}Xi is a function f : {1, 2} → X1 ∪ X2 for each f(i) ∈ Xi with

i ∈ {1, 2}. Also, f ⊆ {1, 2}×(X1∪X2) because f is a function. Since P(X1∪X2) and

{1, 2}× (X1 ∪X2) are different sets, X1×X2 and
∏

i∈{1,2}Xi cannot be the same set

by the Axiom of Extensionality. However, X1 × X2 and
∏

i∈{1,2}Xi are isomorphic,

i.e. φ :
∏

i∈{1,2}Xi → X1 × X2 defined by φ(f) = (f(1), f(2)) is an isomorphism.

Thus we almost always treat them as the same and say
∏

i∈{1,2}Xi = X1 ×X2 [6].

To see the isomorphism, let I = {1, 2}, X1 = {a, b}, and X2 = {x, y}. By

Definition 3.1,

X1 ×X2 = {(a, x), (a, y), (b, x), (b, y)} (3.1)

However, by Definition 3.2, since
⋃
i∈{1,2}Xi = {a, b, x, y}, each element of

∏
i∈{1,2}Xi

is a function f : {1, 2} → {a, b, x, y} with f(1) ∈ {a, b} and f(2) ∈ {x, y}. Moreover,

since f is a function, f ⊆ {1, 2}×{a, b, x, y}. Hence we have four functions (indexed):

(1) f11 = {(1, a), (2, x)}

(2) f12 = {(1, a), (2, y)}

(3) f21 = {(1, b), (2, x)}

(4) f22 = {(1, b), (2, y)}

Therefore,
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∏
i∈{1,2}Xi = {f11, f12, f21, f22}

= {{(1, a), (2, x)}, {(1, a), (2, y)}, {(1, b), (2, x)}, {(1, b), (2, y)}} (3.2)

Obviously the two sets in equations (3.1) and (3.2) are not the same, but there is a

natural bijection between them. By applying φ(f) = (f(1), f(2)), we have

(1) φ(f11) = (f11(1), f11(2)) = (a, x), i.e. {(1, a), (2, x)} 7→ (a, x).

(2) φ(f12) = (f12(1), f12(2)) = (a, y), i.e. {(1, a), (2, y)} 7→ (a, y).

(3) φ(f21) = (f21(1), f21(2)) = (b, x), i.e. {(1, b), (2, x)} 7→ (b, x).

(4) φ(f22) = (f22(1), f22(2)) = (b, y), i.e. {(1, b), (2, y)} 7→ (b, y).

Clearly
∏

i∈{1,2}Xi
∼= X1 ×X2 and we almost always write

∏
i∈{1,2}Xi = X1 ×X2.

3.2 The Axiom of Choice

In 1935 Kurt Gödel showed that ZFC is consistent if ZF is consistent. In 1963

Paul Cohen showed that ZF with the negation of the Axiom of Choice (¬ AC) is

consistent if ZF is. Therefore the Axiom of Choice is independent of ZF [16, p. 54].

As a side note, in 1940 Gödel showed the Continuum Hypothesis (CH) cannot be

disproved from either ZF or ZFC. In 1963 Cohen showed that CH cannot be proved

from either ZF or ZFC Axioms [1, p. 107]. Hence CH is independent of ZFC. From

now on we will abbreviate the Axiom of Choice as AC when appropriate throughout

this paper, especially in our proofs. To understand the Axiom of Choice, the most

important concept is choice function.
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Definition 3.3. (Choice Function) Let X be a nonempty family of nonempty sets.

A choice function on X is a map f : X →
⋃
X such that for each X ∈ X , f(X) ∈ X.

Since we think the concept of choice function is critical because of its close re-

lationship with the concept of Cartesian product, we separate the definition of choice

function from that of AC. Now we define the Axiom of Choice in terms of the concept

of choice function.

Axiom 3.4. (Axiom of Choice, AC) Any nonempty collection of nonempty sets has

a choice function.

Ernst Zermelo introduced choice function and the Axiom of Choice in 1904 to

prove the Well Ordering Theorem. The idea of AC is that, given a nonempty family

of nonempty sets, there exists a map (choice function) from each nonempty set to one

element in itself. AC guarantees such a map exists; however, it does not guarantee

that we can always construct such a map. As in Bertrand Russell’s boots-and-socks

metaphor, we can always choose what we want from “ℵ0 pairs” of boots since among

boots we can distinguish right and left. For example, we can define a function to

choose the right boot from the pth pair of boots, where p is prime. On the other

hand, we cannot define or construct such a function to choose the right sock from the

pth pair of socks because we cannot distinguish right and left in socks. Nonetheless,

AC guarantees such a function exists even though we cannot define it. This is where

the controversy comes from.
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Proposition 3.5. Each element of the Generalized Cartesian Product is a choice

function.

Proof. Since the choice function is f : X →
⋃
X , if we index X by g : I → {Xi} and

let f ′ : {Xi} →
⋃
i∈I Xi. Then f ′ is actually the choice function f in a different nota-

tion. By indexing the domain X of the choice function, the choice function is the same

as the composition g ◦ f ′ : I → {Xi} →
⋃
i∈I Xi, which is simply g ◦ f ′ : I →

⋃
i∈I Xi,

a typical element of the Generalized Cartesian Product of nonempty sets.

Proposition 3.5 strongly suggests that the Generalized Cartesian Product of

nonempty sets is closely related to the Axiom of Choice. Note that there are plenty

various ways to define AC. Here we introduce two simple alternative forms.

Theorem 3.6. The following statements are equivalent to AC:

(a) Disjoint Family Form:

Suppose that X is a nonempty disjoint family of nonempty sets. Then there is

a choice function for X .

(b) Power Set Form:

Suppose X is a nonempty set. Then there is a function f : P(X) \ {∅} → X

such that for all nonempty subsets A ⊆ X, f(A) ∈ A.

In other words, in form (a), for any distinct nonempty A,B ∈ X , A ∩B = ∅.

Then there exists a function f : X →
⋃
X , such that for each A ∈ X , f(A) ∈ A [6,
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p. 108].

In Zermelo’s papers in 1908, he introduced a modified form of AC, which is

close to form (a). He called the image of such a choice function a transversal or a

choice set for a family of pairwise disjoint sets, and he asserts that any family of

mutually disjoint nonempty sets has a transversal, which is the same idea of AC [18].

Proof. We will prove AC =⇒ Disjoint Family Form =⇒ Power Set Form =⇒ AC.

(i) AC =⇒ Disjoint Family Form:

Immediately, since a nonempty disjoint family of nonempty sets is a nonempty

collection of nonempty sets, there is a choice function for X . So AC implies form (a).

(ii) Disjoint Family Form =⇒ Power Set Form:

Let X be a nonempty set. Then P(X) \ {∅} is a family of nonempty (not

necessarily disjoint) sets. Let X = {Y × {Y } | Y ⊆ X, Y 6= ∅}. Then for A × {A},

B×{B} ∈ X with nonempty A, B ⊆ X, suppose A×{A} andB×{B} are not disjoint,

i.e. (A× {A}) ∩ (B × {B}) 6= ∅, then there exits a (y, Y ) ∈ (A× {A}) ∩ (B × {B})

such that (y, Y ) ∈ (A×{A})∩ (B×{B}) = (A∩B)× ({A}∩{B}) implies y ∈ A∩B

and Y ∈ {A} ∩ {B}, which forces Y = A = B as shown below.

Since A, B are nonempty, {A} ∩ {B} 6= ∅; since {A}, {B} are singletons and

{A} ∩ {B} 6= ∅, {A} = {B}. Furthermore, Y ∈ {A} ∩ {B} implies Y ∈ {A} = {B}

and so Y = A = B.

Thus if A and B are distinct nonempty subsets of X, the corresponding ele-

ments of X , A× {A} and B × {B}, are disjoint.

So we can now apply the Disjoint Family Form to X to get a choice function
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g : X →
⋃
X such that for each A × {A} ∈ X , we have g(A × {A}) ∈ A × {A}.

This means that g(A × {A}) = (a,A) for some a ∈ A. Thus we define the re-

quired function f : P(X) \ {∅} → X by f(A) = π(g(A × {A})) so that f(A) =

π(g(A × {A})) = π(a,A) = a ∈ A for each nonempty A ⊆ X, where π is a function

π : X × P(X) \ {∅} → X and (y, Y ) 7→ y for all y ∈ Y with Y ⊆ X. Hence

f : P(X) \ {∅} → X is the required (choice) function in the Power Set Form of AC.

(iii) Power Set Form =⇒ AC:

Given a family A of nonempty sets, define X =
⋃
A. Note that if A ∈ A,

then A ⊆ X. Now let g be the (choice) function g : P(X) \ {∅} → X =
⋃
A as in

the Power Set Form of AC. Since A ∈ A ⇒ A ⊆ X and X ∈ P(X) \ {∅} we have

A ∈ A ⇒ A ∈ P(X) \ {∅} and so A ⊆ P(X) \ {∅}. So if we restrict the domain of

g, P(X) \ {∅}, to A, we have g|A : A → X =
⋃
A. Rewriting g|A and call it f , we

have f : A →
⋃
A and A 7→ g(A) ∈ A, i.e. f(A) ∈ A with A ∈ A. Then f is the

choice function for A . Hence AC.

Theorem 3.7. The Cartesian product of a nonempty family of nonempty sets is

nonempty. This statement is equivalent to AC.

Proof. Let Y be a nonempty set. Let X = P(Y ) \ {∅}. Then X is a collection of

nonempty sets and can be indexed. Let X = {Xi}i∈I , then each Xi ⊆ Y . Then the

Cartesian product of all elements Xi 6= ∅ of X is
∏

i∈I Xi = {f | f : I →
⋃
i∈I Xi

for each f(i) ∈ Xi}, which is nonempty and whose elements are all choice functions
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on X by Proposition 3.5. Hence a nonempty Cartesian product of nonempty sets

implies AC.

Conversely, assuming AC, then since X is a family of nonempty sets, there is

a choice function g : X →
⋃
X on X , such that for each X ∈ X , f(X) ∈ X. By

Proposition 3.5, if we index X in g : X →
⋃
X , we have f : I →

⋃
i∈I Xi for each

f(i) ∈ Xi. Then f is an element of the Cartesian product
∏

i∈I Xi, so
∏

i∈I Xi is not

empty with each Xi not empty. Hence AC implies that the Cartesian product of a

nonempty family of nonempty sets is nonempty.
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CHAPTER 4

Equivalents to the Axiom of Choice

In Chapter 3, we gave two alternative forms of AC in Theorem 3.6. They are

intuitively quite close to AC. In this chapter, we will introduce other more important

equivalents to AC, namely Hausdorff’s Maximal Principle (HMP), Zorn’s Lemma

(ZL), and the Well Ordering Theorem (WOT). We will prove that they are all equiv-

alent. Our proof sequence will be AC =⇒ HMP =⇒ ZL =⇒ WOT =⇒ AC. Before

we start the proof, we need a few definitions and a theorem.

4.1 AC =⇒ HMP

Definition 4.1. (Self-Map) Let X be a set. A self-map on X is a map from X to

itself, f : X → X.

Definition 4.2. (Fixed Point) Let f : X → Y be a map. Then a fixed point of X

under f is a point x ∈ X such that f(x) = x.

It follows that X ∩ Y 6= ∅ if f has any fixed points at all. Also, Definition 4.2

implies that the n-fold composition at x is f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x) = fn(x) = x.

Definition 4.3. (Increasing Map) Let X be a partially ordered set. f : X → X is an

increasing map if for all x ∈ X we have x 6 f(x).
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We will use the Bourbaki-Witt Theorem to prove that AC implies HMP. To

prove this theorem, we need to define chain completeness and admissible subset.

Definition 4.4. (Chain Complete) A poset X is chain complete if every chain, in-

cluding the empty chain, in X has a least upper bound in X [14, p. 53].

Definition 4.5. (Admissible Subset) Let f : X → X be an increasing map with X

chain complete and let B ⊆ X. Suppose a ∈ X. Then B is an admissible subset of

X that contains a if

(i) a ∈ B.

(ii) f(B) ⊆ B.

(iii) If T is a chain in B, then supT ∈ B [13].

Note that the admissible subset B in Definition 4.5 is chain complete by the

induced ordering of X [11, p. 13]. We will have more explanation about this after

Proposition 4.7.

Proposition 4.6. The set X in Definition 4.5 is itself admissible containing a.

Proof. Obviously X ⊆ X. (i) a ∈ X. Since f is a self-map, f : X → X implies (ii)

f(X) ⊆ X. Let T be a chain in X. Since X is chain complete, every chain in X has

a least upper bound in X, so does T . Hence, (iii) T is a chain in X ⇒ supT ∈ X.

Therefore, X is admissible containing a.
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Proposition 4.7. Let A be the set of all admissible subsets of X that contain a ∈ X.

Let M =
⋂
A then M is an admissible subset of X that contains a.

Proof. Obviously M ⊆ X. By Definition 4.5 (admissibility), (i) If A ∈ A, then a ∈ A.

Since this is true for all A ∈ A, a ∈
⋂
A = M . Hence a ∈ M . (ii) We want to show

that f(M) ⊆ M . Suppose x ∈ M , then x ∈ A for every A ∈ A. Then since A is

admissible, f(A) ⊆ A. This is true for each A ∈ A. So f(x) ∈
⋂
A = M . The

same is true for every x ∈ M , so f(M) ⊆ M as required. (iii) Let T be a chain in

M =
⋂
A. Then T is a chain in A for each A ∈ A. Since A is admissible, supT ∈ A.

Thus for all A ∈ A, supT ∈
⋂
A = M as required. Therefore M is an admissible

subset of X that contains a.

Proposition 4.7 implies that M =
⋂
A is the unique smallest element of A and

is the smallest admissible subset of X such that any admissible subset of X contained

in M is equal to M . We will use this fact later in our proof. Also, a, f(a), and supT

are all in M and hence in every admissible subset of X. In other words, a ∈M ∈ A,

and S ∈ A ⇒ M ⊆ S. In our proof in the following Bourbaki-Witt Theorem, we

need to prove that M is a chain.

Note that the admissible subset B ∈ (A,⊆) in Definition 4.5 (admissibility)

is chain complete by the induced ordering of X [11, p. 13]. In other words, an ad-

missible subset of a chain complete poset is chain complete. This is because A is

defined by those admissible subset closure rules on X. So it is a closure system on
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the complete lattice P(X) ordered by inclusion ⊆. In fact, (A,⊆) is a poset [13, p.

114].

Proposition 4.8. Let X be a chain complete partially ordered set and let f : X → X

be an increasing self-map. Let a ∈ X. If U = {x ∈ X | a 6 x}, then U is an

admissible subset of X that contains a.

Proof. Clearly U ⊆ X by Axiom 2.3 (the Subset Axiom Schema). (i) a ∈ U is given.

(ii) Since f is a self-map, f |U : U → U implies f(U) ⊆ U . To see this, let x ∈ U .

Then a 6 x 6 f(x) ⇒ a 6 f(x), so f(x) ∈ U and hence f(U) ⊆ U as required. (iii)

Let T ⊆ U be a chain in U , then a 6 t for all t ∈ T . So t 6 supT , which implies

a 6 supT . Hence supT ∈ U . Thus, U is an admissible subset of X that contains

a.

We will now introduce the Bourbaki-Witt Theorem (BWT), which is crucial

in proving HMP using AC. Once BWT is established, proving HMP is very easy.

However, proving BWT itself takes a lot of work. Basically this task relies on the

definition of admissible subset throughout the proof. In particular, in the two lemmas

necessary for the proof, we will check the three conditions of admissibility in proving

each lemma.

Theorem 4.9. (Bourbaki-Witt) Let X 6= ∅ be a chain complete poset. Let f : X →

X be an increasing self-map. Then for every a ∈ X, there exists a fixed point of f at
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or above a.

Proof. By Proposition 4.6, X is admissible. Let a ∈ X and fix a throughout this proof.

Let A be the collection of admissible subsets of X that contain a. Let M =
⋂
A,

then by Proposition 4.7, M is admissible. Note that M 6= ∅ since a ∈ M . Also, M

is the smallest admissible subset of X and is the smallest element of A, i.e. M ∈ A,

and S ∈ A ⇒M ⊆ S.

By Proposition 4.8, the set U = {x ∈ X | a 6 x} is an admissible subset of X

that contains a and so M ⊆ U ∈ A; hence, a 6 x for all x ∈M . So a is the minimum

of M .

Our goal now will be to prove that M is a chain because if M is a chain in

the chain complete set X, then by Definition 4.4 M would have a least upper bound

p = supM ∈ X and then since M is admissible, f(M) ⊆ M implies f(p) ∈ M .

Hence, f(p) 6 p because p = supM . But, since f is an increasing map, it is given

that p 6 f(p); hence, f(p) 6 p 6 f(p)⇒ f(p) = p. So p is a fixed point of f .

To prove that M is a chain, we consider the following two sets, C and Mc:

C = {c ∈M | for all x ∈M, either x 6 c⇒ f(x) 6 c or x 6 c⇒ x = c} (4.1)

Mc = {x ∈M | x 6 c or f(c) 6 x} for each extreme point c ∈M (4.2)

The c in (4.1) is called an extreme point of M and C is a set of extreme

points of M . Given that a is the minimum of M : if x 6 a then x = a. This meets

the condition of C, so a ∈ C and C 6= ∅. Note that C ⊆ M by the Subset Axiom

Schema (Axiom 2.3).
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Now look at the set Mc. Since a is the minimum of M , we have a 6 c for

all c ∈ C; hence a ∈ Mc and Mc 6= ∅. By Axiom 2.3 (the Subset Axiom Schema),

Mc ⊆M is the subset of M determined by c ∈ C. Some authors put M(c) instead.

Recall that after the proof of Proposition 4.7, we mentioned that the set A

is a partially ordered set under set inclusion, (A,⊆), so any admissible subset B

(containing a) of the chain complete set X is chain complete. That is because A ⊆

P(X) is defined by the admissible subset closure rules under (ii) the function f and

under (iii) taking least upper bound, i.e. f(B) ⊆ B and supT ∈ B for any chain

T in B. Thus (A,⊆) is a closure system on the complete lattice (P(X),⊆), which

is bounded by ∅ and X itself with the least upper bound and the greatest lower

bound given respectively by union (∪) and intersection (∩) of subsets of X. Note

that B ∈ (A,⊆).

The proof of our theorem (BWT) depends on the following two lemmas. Again,

our goal is to show that M is a chain in X. To do this, we need to establish the fact

Mc = M = C using these two lemmas. Once we know that M is a chain, with the

fact that M is an admissible subset of the chain complete admissible set X, M is

chain complete as well; hence supM ∈M . Then eventually we will show that supM

is a fixed point using the fact that f is an increasing self-map.

Lemma 4.10. Mc = M for all c ∈M .

Proof of Lemma 4.10. We have Mc ⊆Mand need to show that M ⊆Mc. It suffices to

show that Mc is admissible because then M ⊆Mc since M is the smallest admissible
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subset of X that contains a. First of all, it is clear that Mc ⊆M ⊆ X.

Now check the conditions of admissibility.

(i) a ∈Mc:

We already know that a ∈Mc.

(ii) f(Mc) ⊆Mc:

Let x ∈ Mc ⊆ M , then x ∈ M and by (4.2), x ∈ Mc ⇒ x 6 c or f(c) 6 x for

each c ∈ C. Note that c ∈ C ⇒ c ∈M by (4.2) and (4.1) for all c ∈ C. In summary,

if x ∈Mc, then we have x 6 c or f(c) 6 x with x, c ∈M .

Case I: x 6 c.

If x 6 c then by (4.1), f(x) 6 c or x = c with x, c ∈M .

(a) If f(x) 6 c, then f(x) ∈M and immediately by (4.2) f(x) ∈Mc.

(b) If x = c, then f(c) 6 c⇒ f(x) 6 c because f is increasing. Thus we have

f(x) ∈Mc.

Case II: f(c) 6 x.

On the other hand, if f(c) 6 x ∈ Mc ⊆ M , then f(c) ∈ Mc ⊆ M . Also,

f(c) 6 x 6 f(x) because f is increasing. Then f(c) 6 f(x) and by (4.2) we have

f(x) ∈Mc.

Therefore, we conclude that f(x) ∈Mc for all x ∈Mc; hence f(Mc) ⊆Mc.

(iii) T is a chain in Mc ⇒ supT ∈Mc:

Let T be a chain in Mc, and let supT be the least upper bound of T in X.

We will show that supT ∈Mc.

Since M is admissible, we have supT ∈ M . Since x /∈ Mc when x falls in

between c and f(c). We only consider two cases. If x 6 c for all x ∈ T , then
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supT 6 c and so, by (4.2), supT ∈ Mc. Otherwise, if there are some x ∈ T such

that f(c) 6 x, then f(c) 6 x 6 supT ⇒ f(c) 6 supT , and so supT ∈ Mc by (4.2).

Hence, T is a chain in Mc ⇒ supT ∈ Mc. Therefore Mc is admissible subset of X

that contains a.

Note that Mc is admissible implies M ⊆ Mc since M is the smallest admis-

sible subset of X. On the other hand, (4.2) implies Mc ⊆ M . Hence, Mc = M as

required.

Now we present the second lemma required to prove BWT and prove it.

Lemma 4.11. C = M

Proof of Lemma 4.11. This lemma says that every element of M is an extreme point.

It will suffice to prove that C is an admissible subset of X that contains a. Note that

C ⊆ M . So we only need to show that M ⊆ C. If C is admissible, than since M is

the smallest admissible subset of X that contains a, we have M ⊆ C. It is clear that

C ⊆M ⊆ X.

Now check the conditions of admissibility.

(i) a ∈ C:

We already showed that a ∈ C.

(ii) f(C) ⊆ C:

Let c ∈ C ⊆M , so c ∈M and f(c) ∈M since M is admissible. We will show

that f(c) ∈ C. Let x ∈M and suppose x 6 f(c). According to (4.1) we need to show
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f(c) ∈ C by showing f(x) 6 f(c) or x = f(c). Since x ∈M = Mc (Lemma 4.10), by

(4.2) we have x 6 c or f(c) 6 x.

Case I: x 6 c.

Then by (4.1) f(x) 6 c or x = c.

(a) If f(x) 6 c, then f(x) 6 c 6 f(c) since f is increasing, so f(x) 6 f(c).

Thus we have x 6 f(c) ⇒ f(x) 6 f(c) with c ∈ C and so f(c) ∈ C by

(4.1).

(b) If x = c, then f(x) = f(c) and by plugging f(x) and f(c) into (4.1) we

have x 6 f(c)⇒ f(x) = f(c)⇒ f(x) 6 f(c), hence f(c) ∈ C.

Case II: f(c) 6 x.

Then x 6 f(c) ⇒ f(c) 6 x, so x = f(c). So x 6 f(c) ⇒ x = f(c); hence

f(c) ∈ C by (4.1). Thus, by Case I and II, we have f(C) ⊆ C.

(iii) T is a chain in C ⇒ supT ∈ C:

Let T be a chain in C. Let b = supT be the least upper bound of T in X. We

must prove that b ∈ C. Considering (4.1), let x ∈ M and let x 6 b. We must show

that f(x) 6 b or x = b. Since x ∈ M = Mc for all c ∈ M (Lemma 4.10), by (4.2) we

have x 6 c or f(c) 6 x for every c ∈ T ⊆ C.

Case I: f(c) 6 x for all c ∈ T .

Then since c 6 f(c), we have c 6 x for all c ∈ T , thus x is an upper bound

of T . Hence b 6 x since b = supT . But we assumed that x 6 b, so x = b. Hence

x 6 b⇒ x = b for all x ∈M and so by (4.1) b = supT ∈ C.

Case II: x 6 d for some d ∈ T .

Let d ∈ T ⊆ C be an extreme point of M and let x 6 d. Since d is an extreme
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point, we have f(x) 6 d or x = d by (4.1).

(a) If f(x) 6 d, since b = supT , f(x) 6 d 6 b, and so x 6 b ⇒ f(x) 6 b.

So b = supT ∈ C by (4.1).

(b) If x = d, since b ∈M = Md and d ∈ C, by (4.2) we have b 6 d or f(d) 6 b.

(1) If b 6 d, since b = supT , d 6 b. So b = d = x. Hence x 6 b⇒ x = b.

Thus b = supT ∈ C.

(2) If f(d) 6 b, then since we assumed x 6 b, we have f(x) = f(d) 6 b

and so x 6 b⇒ f(x) 6 b. Hence b = supT ∈ C.

Therefore T is a chain in C ⇒ supT ∈ C. It follows that C is an admissible

subset of X that contains a.

(4.1) shows that C ⊆M by Axiom 2.3 (the Subset Axiom Schema). But since

M is the smallest admissible subset of X that contains a , we have C = M .

With the two lemmas we can now complete the proof of the theorem.

Next we will show that M is a chain in X. Let x, y ∈M . Since M = Mc = C

for all c ∈ M , we can say that x ∈ C and y ∈ Mc = Mx if we take c = x. Then we

have y 6 x or f(x) 6 y. For f(x) 6 y, since x 6 f(x), x 6 y. Thus we have y 6 x

or x 6 y for all x, y ∈M and so M is a chain in X.

Let p = supM . Since M is a chain in X and M is an admissible subset

of X, M is chain complete and so supM = p ∈ M ⊆ X. Since M is admissible,

f(M) ⊆ M ⇒ f(p) ∈ M . Hence f(p) 6 p because p = supM . But, since f is an

increasing map, p 6 f(p); hence, f(p) 6 p 6 f(p)⇒ f(p) = p. Therefore, p is a fixed

point of f [7, 11, 13].
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Next we will prove that AC implies HMP. Hausdorff’s Maximal Principle is an

earlier formulation of Zorn’s Lemma proved by Felix Hausdorff in 1914. Its basic idea

is that every chain is contained in a maximal chain. We will prove Zorn’s Lemma

using Hausdorff’s Maximal Principle later after this section. For now let us define

Hausdorff’s Maximal Principle.

Theorem 4.12. Hausdorff’s Maximal Principle

Let the set C of all chains of a poset (X,6) be partially ordered by set inclusion, ⊆.

Then (C,⊆) has a maximal element.

Proof. Suppose on the contrary that C has no maximal element. Then to each C ∈ C,

there is associated a nonempty set C∗ = {C ′ ∈ C | C ( C ′}, a collection of strict

super sets of C. Note that here we don’t allow C = C ′ because this would allow the

existence of maximal elements.

By AC, there is a function g with domain {C∗ | C ∈ C} satisfying g(C∗) ∈

C∗. In other words, there is a C ′ ∈ C∗ such that g(C∗) = C ′. Consequently, for

each C ∈ C there is a function f : C → C defined by f(C) = g(C∗) = C ′ with

C ( g(C∗) = f(C) = C ′ for all C ∈ C. Note that f is an increasing self-map since

C ( f(C) = g(C∗).

Let (B,⊆) ⊆ (C,⊆) be a sub-collection of chains in X. Then since each B ⊆ C

has a least upper bound
⋃
B∈B B =

⋃
B ∈ C, (C,⊆) is a nonempty chain complete

poset. Then by Theorem 4.9 (Bourbaki-Witt), for every chain C ∈ C there exists
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a fixed “point” chain C̄ at or above C with f(C̄) = C̄. But C̄ ( f(C̄) because

f : C → C is an increasing self-map. We have a contradiction. Thus (C,⊆) has a

maximal element. [13]

4.2 HMP =⇒ ZL

Theorem 4.13. (Zorn’s Lemma) Let (X,6) be a poset in which every chain has an

upper bound in X. Then X has a maximal element. [4, p. 151]

Proof. By HMP, there is a maximal chain C in X. By hypothesis C has an upper

bound u ∈ X. We shall prove that u is a maximal element of X.

If there is an x ∈ X with u 6 x, then C ∪{x} is a chain that contains C since

C ∪ {x} is a comparable subset of X. Since C is a maximal chain, C ∪ {x} = C and

so x ∈ C. Thus x 6 u and hence u = x. Therefore u is a maximal element of X.

4.3 ZL =⇒ WOT

Definition 4.14. (Well-Ordered Set, Well-Ordered Relation) A linearly ordered set

(X,6) is said to be well-ordered if and only if every nonempty subset B of X con-

tains a least element; that is, if there exists an element b ∈ B such that b 6 x for

every x ∈ B. Such an element b is called the minimum or least element of B. If X is

a well-ordered set then 6 is a well-order relation.

Theorem 4.15. (Well-Ordering Theorem or Well-Ordering Principle) Every set can
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be well-ordered.

Proof. Let X be a nonempty set. Let X∗ = {(Xk,6k) | Xk ⊆ X} where (Xk,6k) are

well-ordered subsets of X indexed by k ∈ I. In other words, X∗ is the collection of all

subsets Xk ⊆ X for which there is a well ordering 6k on Xk, i.e., it’s the collection

of all subsets of X which can be well-ordered. Note that X∗ ⊆ P(X), where P(X)

is partially ordered by set inclusion, (P(X),⊆), and X∗ is partially ordered by 6∗ as

defined below.

We partially order X∗ by 6∗ as follows: (Xi,6i) 6∗ (Xj,6j) for i, j ∈ I if and

only if

(a) Xi ⊆ Xj.

(b) 6i ⊆6j. In other words x 6i y ⇒ x 6j y, for all x, y ∈ Xi.

(c) If x ∈ Xi and y ∈ Xj \Xi, then x 6j y.

We write (X∗,6∗).

In order to apply Zorn’s Lemma, we show that any chain C in (X∗,6∗) has

an upper bound in X∗. Note that C = {(Xc,6c) ∈ X∗ | Xc ⊆ X can be well-ordered

and 6c is a linear order}, where C ⊆ X∗ and (C,6∗).

The natural candidate for this upper bound is (
⋃
Xc∈C Xc,6′) or (

⋃
C,6′),

where, for any (Xc,6c) ∈ C, (Xc,6c) 6∗ (
⋃
C,6′) with:

(a) Xc ⊆
⋃
C, which is true since with C a chain under set inclusion, ⊆,

Xc ∈ C ⇒ Xc ⊆
⋃
C.

(b) 6c ⊆6′, which is true since Xc ⊆
⋃
C and for any x, y ∈ Xc, {(x, y) |

x 6c y} ⊆ {(x, y) | x 6′ y}. i.e. for any x, y ∈ Xc, x 6c y ⇒ x 6′ y.
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(c) If x ∈ Xc and y ∈
⋃
C \ Xc, then x 6′ y. True because x ∈ Xc ⊆

⋃
C

implies x ∈
⋃
C. y ∈

⋃
C \Xc implies y ∈

⋃
C. So either x 6′ y or

y 6′ x since 6′ is a liner order (see “proof” below). Since y /∈ Xc, y 
′ x

and so x 6′ y.

Note that 6′ is a linear ordering on
⋃
C. Here is an informal proof.

Let x, y ∈
⋃
Xc∈C Xc =

⋃
C. Then x ∈ Xx for some Xx ∈ C and y ∈ Xy for

some Xy ∈ C. Since C is a chain, it is linearly ordered by set inclusion, so either

Xx ⊆ Xy or Xy ⊆ XX . WLOG suppose that Xx ⊆ Xy, then x, y ∈ Xy with (Xy,6y).

So either x 6y y or y 6y x since Xy is well-ordered under the linear ordering 6y.

Since 6y⊆6′, we have x 6′ y or y 6′ x and so
⋃
C is linearly ordered under 6′.

This applies to all subsets Xc ⊆
⋃
C for all Xc ∈ C, where 6c ⊆ 6′. WLOG

if x, y ∈
⋃
C, then either x 6′ y or y 6′ x since

⋃
C is bigger than or equal to any

Xc ∈ C. Thus 6′ is a linear order relation on
⋃
C.

To apply Zorn’s Lemma, we need to show that (
⋃
C,6′) ∈ X∗. Obviously

(
⋃
C,6′) is an upper bound for C if (

⋃
C,6′) is well-ordered. We shall prove that

(
⋃
C,6′) is well-ordered and hence (

⋃
C,6′) ∈ X∗. We don’t know whether

⋃
C is

well-ordered yet, but we do know a nonempty intersection of a nonempty subset of⋃
C with an element of the chain C, e.g. Xi ∈ C, is well-ordered.

Let S 6= ∅, S ⊆
⋃
C with (S,6′) since S by property (b) inherits the ordering

from
⋃
C. Then there exists (Xi,6′) ∈ C such that Xi ∩ S 6= ∅ and S ∩ Xi ∈ X∗

with (S ∩Xi,6′). Note that by properties (a) and (b) the order on Xi is 6′ because

Xi ∈ C ⇒ Xi ⊆
⋃
C and so Xi inherits the order 6′ on

⋃
C.

Since (Xi,6′) ∈ X∗ is well-ordered, S ∩ Xi ⊆ Xi is also well-ordered and
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contains a unique least element, say x0 ∈ S ∩ Xi. We want to show that x0 is the

least element of
⋃
C under 6′.

Let x ∈ S ⊆
⋃
C. Then x ∈ Xj for some Xj ∈ C. We want to show that

x0 6′ x. Since C is a chain, we know Xi ⊆ Xj or Xj ⊆ Xi.

Case I: Xi ⊆ Xj.

If x ∈ Xi ⊆ Xj, then x0 6′ x since they are both in S ∩Xi with x0

being the least element. If x ∈ Xj \Xi, then x0 6′ x by property (c).

Case II: Xj ⊆ Xi.

Then x ∈ Xi as well. We know that x ∈ S ∩
⋃
C, so x ∈ S ∩Xi. Since x0 is

the least element of S ∩Xi, we have x0 6′ x.

Hence x0 is the least element of S ⊆
⋃
C for all arbitrary nonempty subset S

of
⋃
C. So x0 is the least element of

⋃
C since it is a nonempty subset of itself. Thus⋃

C is under the linear ordering 6′ and has a least element. We conclude that
⋃
C

is well-ordered.

Thus (
⋃
C,6′) is well-ordered and so (

⋃
C,6′) ∈ X∗.

Since any chain C in X∗ has an upper bound (
⋃
C,6′ in X∗, by Zorn’s lemma,

(X∗,6∗) has a maximal element (XM ,6M).

We claim that XM = X and hence (X,6M) is well-ordered, because if XM 6=

X, take any x̃ ∈ X \XM and extend 6M to XM ∪{x̃}, where (XM ∪{x̃},6M) ∈ X∗,

by defining x 6M x̃ for all x ∈ XM ; then (XM ,6M) �∗ (XM ∪ {x̃},6M) [strictly less

under 6∗], which contradicts the maximality of (XM ,6M). So X = XM and so any

arbitrarily chosen set X or (X,6M) can be well-ordered. [13]
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4.4 WOT =⇒ AC

Theorem 4.16. WOT implies AC.

Proof. Let X be any nonempty set whose elements are nonempty sets. By WOT there

exists a linear order relation 6 such that (
⋃
X∈X X,6) or (

⋃
X ,6) is well-ordered.

Consequently, each set X ∈ X contains a least element x. Therefore, the

function f : X →
⋃
X , defined by f(X) = x ∈ X, for all X ∈ X , is a choice function.

This proves AC. [13]
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CHAPTER 5

Uses of the Axiom of Choice in Mathematics

The Axiom of Choice (AC) has many more equivalents than the three we have

studied, including some weak forms such as Axiom of Dependent Choice, Principle of

Finite Choice, Axiom of Countable Choice, etc. Among those, HMP, ZL, and WOT

are probably the most frequently seen variants of AC. Now that we have shown their

equivalences, we should also study their applications in mathematics.

An interesting fact is that AC itself is hardly ever used directly to prove things

in mathematics. The main purpose of AC is to appear intuitive, so as to disguise its

strangeness. HMP, ZL, and WOT are not so obviously true but are more frequently

used in proofs [16].

We will give a few theorems each proved by some equivalents of AC.

5.1 Application in Set Theory

Definition 5.1. (Transitive Set) A set X is transitive if every element of X is a

subset of X.

In other words, if X is a transitive set and x ∈ X, then x ⊆ X. A transitive

set has the property that for all sets x, y, if x ∈ y and y ∈ X then x ∈ X. In

abbreviation, we put x ∈ y ∈ X. [2, 9]

Definition 5.2. (Ordinal Number or Ordinal, ON) A set α is an ordinal number
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or, in short, ordinal if

(a) α is transitive.

(b) α is well-ordered by ∈. [10]

We denote ON to mean the collection of all ordinal numbers. [16]

Note that the collection of ordinals, ON, is not a set. In our subsequent proofs,

we assume ordinals in ON start with 0 when we take ON as not infinitely descending.

We also have to define ordinal ordering, <, successor ordinal, and limit ordinal.

Definition 5.3. (<, Successor Ordinal, Limit Ordinal) Let α, β be ordinals.

(a) For all ordinals α, β, α < β if and only if α ∈ β. We write α ≤ β to mean

α ∈ β or α = β.

(b) For all ordinals α, define the successor ordinal α+ = α ∪ {α}. We also

denote α+ = α + 1 to mean the successor ordinal of α.

(c) A nonzero ordinal α is a limit ordinal if for all ordinals β, α 6= β+. [16]

Definition 5.4. (Initial Segment) Let the set X be linearly ordered by 6 and A ⊆ X.

A is an initial segment if x ∈ X, y ∈ A then x 6 y implies x ∈ A.

Trivially, ∅ and X are initial segments.

Proposition 5.5. The union of a family of initial segments is an initial segment.

The intersection of a nonempty family of initial sections is an initial segment.
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Proposition 5.6. Suppose I ⊆ X and J ⊆ X are initial segments. Then either

I ⊆ J or J ⊆ I.

Note that Proposition 5.5 and Proposition 5.6 can actually be considered as

properties of initial segments. They are important concepts for our next proof yet

they are quite intuitive, so we won’t give them proofs since their proofs are not im-

portant to the context of this paper.

Definition 5.7. (Cofinal Subset) If X is linearly ordered by 6, we say A is cofinal

in X iff A ⊆ X and for every x ∈ X there is y ∈ A such that x 6 y.

Theorem 5.8. Every linearly ordered set has a well-ordered cofinal subset.

Proof using WOT. Let (X,6) be a nonempty linearly ordered set. Then by WOT,

X can be well-ordered by a well-order relation � and so every nonempty subset of

(X,�) has a least element.

Since the collection of ordinals (ordinal numbers, ON) is well-ordered, we can

well-order X by indexing its elements with ordinals α. Suppose the well-ordered set

is (X,�) with X = {xα}α�β = {xα | α � β for some β ∈ ON}. Note that the

original ordering 6 has nothing to do with the new well-ordering �. In other words,

� scrambles X and put it in well-order.

We want a cofinal subset of X. Let the well-ordered cofinal subset of X be

A = {xγ | δ � γ ⇒ xδ 6 γ for some δ ∈ ON}. Then A 6= ∅ since x0 ∈ A with
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0 ∈ ON being the initial ordinal. This is because the condition for x0 ∈ A, i.e.,

δ � 0⇒ xδ 6 x0, is vacuously true.

Now we want to show that A is cofinal.

Suppose that xα ∈ (X,�). Let γ be the least ordinal such that α � γ with

xγ ∈ A. Then δ � γ ⇒ Xδ 6 xγ. There are two cases.

Case I: xα ∈ A. Then δ � α ⇒ xδ 6 xγ. Since xα, xγ and α � γ, we have

α � γ ⇒ xα 6 xγ. Thus for any arbitrary xα ∈ X, there exists an xγ ∈ A such that

xα 6 xγ and so A is cofinal in X.

Case II: xα /∈ A. Then δ � α but xα 6 xδ, WLOG assuming the negation of xδ 6 xα

is xα 6 xδ. So xα 6 xγ since xδ 6 xγ. Note that xα ∈ X, still. So we have an

arbitrary xα ∈ X and there exists an xγ ∈ A such that xα 6 xγ. Thus A is cofinal in

X as required.

Now we show that A is well-ordered. We want to show that every nonempty

subset of A has a least element.

Let S be a nonempty subset of A. Let ∆ = {λ | xλ ∈ S for some λ ∈ ON}.

Then ∆ 6= 0 since S 6= ∅. Note that all the xλ are also in A since S ⊆ A.

Let β be the smallest ordinal in ∆. Then β � λ for all β 6= λ ∈ ON. Since

β ∈ ∆, there exists xβ ∈ S ⊆ A and so xβ ∈ A.

Now since β � λ and xβ, xλ ∈ A, by the condition of A, we have β � λ ⇒

xβ 6 xλ for all xλ ∈ S. Hence xβ is the smallest element of S and so A is well-ordered.

Therefore A is a well-ordered cofinal subset of X as required. [16]

Proof using ZL. Let (X,6) be a nonempty linearly ordered set. We want a well-
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ordered cofinal subset of X. To use Zorn’s Lemma, we need a nonzero poset.

Let A be the nonempty collection of all well-ordered subsets of X ordered by

“end-extension”: A ⊆ B if A is an initial segment of B for any A,B ∈ A.

Then by Proposition 5.6, A is linearly ordered under set inclusion ⊆, so (A,⊆)

is a poset. Note that elements in A ⊆ P(X) are subsets of X, i.e. Wk ⊆ X if Wk ∈ A.

We claim that A has no infinite descending chains. To see this, suppose A has

an infinite descending chain A0 > A1 > A2 > · · · and xi ∈ Ai \ Ai+1 for each Ai ∈ A

with i ∈ N, then x0 > x1 > · · · , hence A0 dosn’t have a least element and so would

not be well-ordered. A contradiction, so A has no infinite descending chains.

To apply ZL we must show each chain in A has an upper bound in A. Let C be

a chain in A. Then
⋃
W∈CW =

⋃
C is an upper bound for C. Then we want to show

that
⋃
C is a well-ordered subset of X ordered by “end-extension”, i.e.,

⋃
C ∈ A.

Obviously
⋃
C ⊆ X is linearly ordered since X is linearly ordered. We will show that⋃

C has a smallest element by showing it does not have an infinite descending chain.

Suppose
⋃
C did not have a least element such that it had an infinite descend-

ing chain x0 > x1 > · · · , then x0 must be contained in a subset W ∈ C, so x0 ∈ W .

W would have an infinite descending chain starting at x0. We have a contradiction.

So
⋃
C has a smallest element and is well-ordered, hence

⋃
C ∈ A.

So every chain in A has an upper bound in A. By Zorn’s Lemma, A has a

maximal element WM ⊆ X. Since WM ∈ A is maximal and A is linearly ordered,

WM is the largest well-ordered subset of X. So all other well-ordered subsets of X

are subsets of WM , i.e., Wk ⊆ WM for all Wk ∈ A.

If x ∈ X, there is a well-ordered initial segment W containing x, x ∈ W . Since
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W ⊆ WM , there is y ∈ WM with x 6 y. So WM is a cofinal subset of X.

5.2 Application in Linear Analysis

Definition 5.9. (Vetor Space). If F is a field, then the vector space over F is a

set V of vectors with operations of addition, + : V ×V → V and scalar multiplication

· : F × V → V which satisfy the following properties for all vectors u, v, w ∈ V and

scalars λ, µ ∈ F.

1. (u+ v) + w = u+ (v + w). (Associativity)

2. v + w = w + v. (Commutativity)

3. There is a zero vector ~0 ∈ V which has the property that v +~0 = v for every

v ∈ V.

4. For each v in V there is a vector −v ∈ V such that v + (−v) = ~0.

5. λ(v + w) = λv + λw.

6. (λ+ µ)v = λv + µv.

7. (λµ)v = λ(µv).

8. 1 · v = v. [8, p. 50]

Definition 5.10. (Spanning Set). A subset S of a vector space V is said to span V

or to be a spanning set for V if span (S) = V. That is, each vector in V can be

written as a finite linear combination of the vectors in S. [8, p. 70]
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Definition 5.11. (Linearly Dependent/Independent) A subset X of a vector space V

over a field F is said be linearly dependent if there is a finite subset {v1, v2, . . . , vm}

of distinct elements of X and scalars λ1, λ2, . . . , λm ∈ F, not all 0, such that λ1v1 +

λ2v2 + · · ·+ λmvm = ~0. A set of vectors is called linearly independent if it is not

linearly dependent. [8, p. 74]

Proposition 5.12. Suppose S is a subset of a vector space V over a field F, then

(a) S is linearly independent if and only if every finite subset of S is linearly

independent.

(b) S is linearly independent if and only if λ1~v1 + · · · + λm~vm = ~0 for scalars

λ1, . . . , λm ∈ F and distinct vectors ~v1, . . . , ~vm ∈ S implies λ1 = λ2 =

· · · = λm = 0.

Definition 5.13. (Basis). A linearly independent spanning set for a vector space V

is called a basis for V.

Proposition 5.14. Suppose B is a subset of vector space V. Then the following are

equivalent.

(a) B is a basis for V.

(b) B is a maximal linearly independent set in V.

(c) B is a minimal spanning set for V. [8]

Theorem 5.15. Every vector space has a basis.
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Proof. Let V be a vector space over some field F. We want to show that V has a

basis. Note that every vector space contains at least the zero vector ~0. If V contains

only ~0, V = {~0}, then the empty set ∅ is a basis for V . Then we are done. Otherwise,

we consider the case where V contains at least one nonzero vector as follows.

Let L be the set of all linearly independent subsets of V , i.e. L = {B ⊆ V | B

is linearly independent}. Then L is a poset under set inclusion, i.e. (L,⊆). Note

that L 6= ∅. Since V contains at least one nonzero element, V will have a linearly

independent subset. To see this, suppose V = {~v} has only one element. Then the

singleton set {~v} is in L and so L 6= ∅.

To use Zorn’s Lemma, we need a poset. Here L is the poset we need.

Let C = {Bk}k∈I ⊆ L be a chain in L. Then a natural upper bound of C

would be
⋃
Bk∈C Bk =

⋃
C ⊆ V . Note that all elements of C, i.e. all Bk, are linearly

independent subsets of V , so Bk ⊆ V .

In order to make use of Zorn’s Lemma, we need to show that
⋃
C is linearly

independent, i.e.
⋃
C ∈ L.

Let ~v1, ~v2, . . . , ~vn ∈
⋃
Bk∈C Bk =

⋃
C, where ~vi are distinct vectors in

⋃
C for

each i, 1 ≤ i ≤ n. To show linear independence, let λ1~v1 + λ2~v2 + · · · + λn~vn = ~0,

where λi ∈ F, 1 ≤ i ≤ n, are scalars. Then for each ~vi, there is a Bi ∈ C with

~vi ∈ Bi. Since C is a chain, one of the linearly independent B1, . . . , Bn ∈ C is

largest. Call it BM . Then ~v1, . . . , ~vn are all in BM . Since BM is linearly independent,

λ1 = λ2 = · · · = λn = 0 by Proposition 5.12.

Since {~v1, . . . , ~vn} ⊆
⋃
C is linearly independent,

⋃
C is linearly independent
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by Proposition 5.12 and so
⋃
C ∈ L. Then by Zorn’s Lemma, L has a maximal

element, i.e. a maximal linearly independent subset of V , which is a basis of V by

Proposition 5.14.

5.3 Application in Abstract Algebra

Definition 5.16. (Ring, Commutative Ring, Identity) A ring R is a set together

with two binary operations + and · (called addition and multiplication) satisfying the

following axioms:

(a) (R,+) is an abelian group,

(b) · is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R,

(c) The distributive laws hold in R: for all a, b, c ∈ R,

(a+ b) · c = a · c+ b · c and c · (a+ b) = c · a+ c · b.

The ring R is commutative if multiplication is commutative. R is said to have an

identity (or contain a 1) if there is an element 1 ∈ R with

1 · a = a · 1 = a for all a ∈ R.

We also denote the ring R with its binary operations by (R,+, ·). [3]

We shall write ab instead of a · b for a, b ∈ R. The additive identity of R will

be denoted by 0 and the additive inverse of the ring element a will be denoted by −a.

Definition 5.17. (Field) A field F is a commutative ring (F,+, ·) if and only if:
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(a) (F,+) is an abelian group,

(b) (F \ {0}, ·) is an abelian group,

(c) multiplication, ·, distributes over addition, +.

Note that F is a commutative ring with identity 1, where 1 6= 0. In F , ev-

ery nonzero a ∈ F has a multiplicative inverse, i.e., there exists b ∈ F such that

ab = ba = 1.

Definition 5.18. (Ideal of a Commutative Ring) Let R be a commutative ring and

let r ∈ R. A subset I of R is an ideal of R if and only if

(a) rI = {ra | a ∈ I} = {ar | a ∈ I} = Ir,

(b) I is closed under · by elements from R, i.e. rI = Ir ⊆ I for all r ∈ R.

Proposition 5.19. Let R be a commutative ring. Then R is a field if and only if its

only ideals are {0} and R.

Definition 5.20. (Trivial Ideal, Proper Ideal, Maximal Ideal) Let R be a commu-

tative ring. Then R and {0} are ideals. {0} is called the trivial ideal and can

be denoted by 0. An ideal I of R is proper if I 6= R. An proper ideal M in a ring

R is a maximal ideal of R if M 6= R and the only ideals containing M are M and R.

Theorem 5.21. Every commutative ring with identity has a maximal ideal.
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Proof. Let R be a commutative ring with identity 1. We want to show that R contains

a maximal ideal.

If R is a field, then the only ideals are {0} and R. Since R is not a proper

ideal, the trivial ideal {0} is the maximal ideal. We are done.

If R is not a field, then there are other proper ideals between {0} and R.

Particularly if R is not a field, then there exists a non-invertable a ∈ R with no

multiplicative inverse in R.

If I ⊆ R is a proper ideal of R, then 1 /∈ I since otherwise I = R and I is not

proper. With the same non-invertable a ∈ R, let I = {ar | a ∈ I, r ∈ R and ar 6= 1}.

Then I is a proper ideal. To see that I is an ideal, let x, y ∈ I, then x = ar1, y = ar2

for some r1, r2 ∈ R. Then x+ y = a(r1 + r2) ∈ I and ar1 · ar2 = a · (ar1r2) ∈ I. Also,

0 ∈ I since 0 · r = 0 ∈ I and −a ∈ I since −a + a = 0 ∈ I. To see that I is proper,

we know that I 6= R because 1 /∈ I. Thus, I is a proper ideal.

To use Zorn’s Lemma, we need a nonempty poset.

Since ideals are partially ordered by set inclusion ⊆, let P be the collection

of all proper ideals of R partially ordered by set inclusion, i.e., P = {I ⊆ R | I is

an ideal}. Then P 6= ∅ since the above-mentioned ideal I ∈ P . Note that all such

proper ideals I ∈ P must contain a non-invertable a as shown above.

To apply Zorn’s Lemma, we need to show that every chain C in P has an

upper bound in P .

Let C = {Ik}k∈J = {Ik ∈ C | Ii ⊆ Ij or Ij ⊆ Ii, i, j, k ∈ J} be a chain in

(P,⊆). A natural upper bound of C is
⋃
Ik∈C Ik =

⋃
C. Then

⋃
C contains all the

ideals Ik in C. Note that
⋃
C ⊆ R and that Ik ∈ C ⊆ P for all proper ideals Ik ∈ C.
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Next, we want to show that
⋃
C ∈ P , i.e., we want to show that

⋃
C is a

proper ideal.

To see that
⋃
C is an ideal, first we know that 0 ∈

⋃
C since 0 ∈ Ik for all

k ∈ J . Also, let r = −1, then we have −a ∈
⋃
C.

Now, suppose that a, b ∈
⋃
C. Then there exists some Ii, Ij ∈ C with a ∈ Ii

and b ∈ Ij. Since C is a chain, either Ii ⊆ Ij or Ij ⊆ Ii. WLOG suppose that Ij ⊆ Ii.

Then both a, b ∈ Ii, hence a+ b ∈ Ii, and so a+ b ∈
⋃
C. Hence

⋃
C is closed under

addition.

Finally, suppose that a ∈
⋃
C and r ∈ R. Then a ∈ Ik ∈

⋃
C for some Ik ∈ C.

Thus ar ∈ Ik and so ar ∈
⋃
C. So

⋃
C is closed under multiplication by arbitrary

ring elements.

So
⋂
C ∈ P is a proper ideal, i.e.,

⋃
C ∈ P .

Therefore
⋃
C ∈ P is an upper bound of a chain C in R. By Zorn’s Lemma

P has a maximal element, i.e. R has a maximal ideal.
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CHAPTER 6

Conclusion

In Chapters 1 and 2, we start with a review of the history of (ZF) axiomatic set

theory, exploring how mathematics can be built up with only a few axioms. During

the review, we learned the nature of the foundation of mathematics by seeing how

mathematicians discover problems that challenge the consistence of theoretic mathe-

matics and how mathematicians come up with a solution. In particular we saw how

Russell’s Paradox was found and overcome by modifying one axiom in ZF and then

brought in a new concept, class, to handle problems that the original ZF axiomatic

set theory could not manage. The system of mathematics was hence expanded to a

broader universe.

One moral from this is that the foundation of mathematics is made of ideas and

thoughts expressed with symbols and logic. It is not the mathematics most people

would think is, i.e., the mathematics that is composed of numbers, arithmetic, and

applications in sciences. In a deeper sense we learn that mathematics isn’t always

so “certain”. It depends. Especially when we learn how AC was assumed and used

almost unconsciously by some mathematicians, formally brought up to discussion,

been challenged and later accepted by most mathematicians. From the nature of AC,

we also see that, for many mathematicians, mathematics doesn’t always have to be

“constructible” to produce good mathematics. This part of modern mathematics can

be very counter-intuitive. One famous such example is the Banach-Tarski paradox.

We thereafter explore the fundamentals necessary to AC − partially ordered set and

its related theories.
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In Chapter 3, we start with Cartesian product and see how it is related to

AC. Then we study AC by exploring the relationship between Cartesian product and

AC, studying the concept of “choice function”, and eventually AC itself. We then

studied some simpler forms of AC, i.e., the disjoint form, the power set form, and then

Cartesian product. These simpler forms of AC don’t really apply to more complicated

cases in mathematics. So we study the more advanced forms in Chapter 4 − HMP,

ZL, and WOT.

In Chapter 4, we prove the equivalences between AC, HMP, ZL, and WOT.

The most difficult part in this chapter is to prove the Bourbarki-Witt Theorem. We

use Bourbaki-Witt to prove that AC implies HMP and experience a cumbersome

task. Instead, we could have used transfinite induction, which seems less complicated

than the Bourbaki-Witt approach. Anyway, it is a good experience and we actually

experience AC and its equivalent theorems. This gives us a better sense especially

when we apply them in proofs.

In Chapter 5, we use the equivalents to AC to prove three theorems in set

theory, linear analysis, and abstract algebra. Here we experience the very fundamental

theorems we almost always assume true in linear analysis and abstract algebra. This

gives us a feel of how set theory supports other branches of mathematics. It seems that

they all find theoretical and logical sources of reason in set theory. This makes our

effort writing this paper worthwhile, especially in understanding how other theories

in mathematics are rooted in set theory.

This study brings a few points of interest in further studies. In experiencing

how mathematics was expanded by strengthening its axiom systems, we see there are
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other “mathematics” to study, i.e., the non-ZFC part of mathematics. We also see

that mathematics is not “constant” or “certain”. It is dynamic − it is expanding

and growing. The reasons of this expansion and growth are in the studies in the

foundation of mathematics. One such interest of study would be Kurt Gödel’s and

Paul Cohen’s theories. In set theory itself, the nearest topics to study after this can

be combinatorial set theory, measure theory, Borel and analytic sets, and models of

set theory, etc. There are a lot more interesting topics in set theory to study, such as

constructible sets, forcing, (very) large cardinals, etc. However, these topics of interest

to study would take years in one’s time in a graduate program if not self-learning.

Anyway, this paper serves as a beginning interest in set theory. We deal with

the most fundamental ideas in mathematics in the beginning and end in applications

in the very fundamental and important theorems in linear analysis and abstract al-

gebra that we learned in undergraduate mathematics. Our work here accomplishes

the goal of this paper although, if time permits, we would also like to prove the

Thychonoff theorem in general topology using WOT and ZL.
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Switzerland, Birkhäuser Verlag, 1999.

[10] Karel Hrbacek, Thomas Jech, Introduction to Set Theory: Third Edition, Revised

and Expanded, Marcel Dekker, Inc., New York · Basel, 1999.

53



[11] Serge Lang, Real and Functional Analysis, 3rd ed., Graduate Texts in Mathe-

matics Vol. 142, Springer-Verlag Berlin Heidelberg, 1993.

[12] Kam-tim Leung & Doris L. Chen, Elementary Set Theory, Part I/II, Hong Kong

University Press (printed by Condor Production Ltd.), Hong Kong, 1967.

[13] You-Feng Lin/Shwu-Yeng T. Lin, Set Theory: An Intuitive Approach, Houghton

Mifflin Company, Boston, 1974.

[14] George Markowsky, Chain-complete posets and directed sets with applications,

Algebra Universalis, 6, No 1, (1976), 53-68.

[15] Elliot Mendelson, Introduction to Mathematical Logic, New York: Van Nostrand

Reinhold, 1964.

[16] Judith Roitman, Introduction to Modern Set Theory, Revised Edition, 2011.

Available at http://galois.math.ku.edu/~roitman/stb3fullWeb.pdf, or at

http://www.math.ku.edu/~roitman/, 2011. (Earlier publication by John Wiley

& Sons, Inc., 1990)

[17] A. Shen and N.K. Vereshchagin, Basic Set Theory, Student Mathematical Li-

brary Vol. 17, American Mathematical Society, 2002. (Translated by Shen from

Russian)

[18] Standford Encyclopedia of Philosophy, The Axiom of Choice, 2015,

http://plato.stanford.edu/entries/axiom-choice/

[19] Patrick Suppes, Axiomatic Set Theory, Dover Publications, Inc., New York, 1972.

54



[20] Thomas Jech, Set Theory: The Third Millennium Edition, Revised and Ex-

panded, Springer-Verlag Berlin Heidelberg, 2003.

[21] Robert L. Vaught, Set Theory: An Introduction, 2nd ed., Birkhäuser Boston,
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