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Abstract The global circulation models (GCMs) are useful
tools for simulating climate change, projecting future temper-
ature changes, and therefore, supporting the preparation of
national climate adaptation plans. However, different GCMs
are not always in agreement with each other over various
regions. The reason is that GCMs’ configurations, module
characteristics, and dynamic forcings vary from one to anoth-
er. Model ensemble techniques are extensively used to post-
process the outputs fromGCMs and improve the variability of
model outputs. Root-mean-square error (RMSE), corre-
lation coefficient (CC, or R) and uncertainty are commonly
used statistics for evaluating the performances of GCMs.
However, the simultaneous achievements of all satisfactory
statistics cannot be guaranteed in using many model ensemble
techniques. In this paper, we propose a multi-model ensemble
framework, using a state-of-art evolutionary multi-objective

optimization algorithm (termed MOSPD), to evaluate differ-
ent characteristics of ensemble candidates and to provide com-
prehensive trade-off information for different model ensemble
solutions. A case study of optimizing the surface air tempera-
ture (SAT) ensemble solutions over different geographical re-
gions of China is carried out. The data covers from the period
of 1900 to 2100, and the projections of SATare analyzed with
regard to three different statistical indices (i.e., RMSE, CC,
and uncertainty). Among the derived ensemble solutions, the
trade-off information is further analyzed with a robust Pareto
front with respect to different statistics. The comparison re-
sults over historical period (1900–2005) show that the opti-
mized solutions are superior over that obtained simple model
average, as well as any single GCM output. The improve-
ments of statistics are varying for different climatic regions
over China. Future projection (2006–2100) with the proposed
ensemble method identifies that the largest (smallest) temper-
ature changes will happen in the South Central China (the
Inner Mongolia), the North Eastern China (the South Central
China), and the North Western China (the South Central
China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios,
respectively.

1 Introduction

It has been a growing interest in assessing the surface air
temperature (SAT) of Global Coupled Atmosphere-Ocean
Circulation Models (GCMs) over different regions in the field
of climate change and natural resources management.
Currently, a number of GCMs with various resolutions and
modules are developed and maintained by universities, gov-
ernment agencies, and non-profit organizations around the
world. The SAT, as one of the major outputs from GCMs, is
able to cause crucial changes in many aspects of society,
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including water availability and supply (Piao et al. 2007;
Gosling et al. 2011; Miao and Ni 2009; Miao et al. 2014;
Sheffield et al. 2012; Sun et al. 2014a; Yang et al. 2016,
2017), food security (Tubiello et al. 2007; Lobell et al. 2008;
Piao et al. 2010), ecological environment (Allan et al. 2013;
Allen et al. 2010; Miao et al. 2010; Tabari and Hosseinzadeh
Talaee 2013; Wu et al. 2017a, b), human health (Robine et al.
2008; Gosling et al. 2009), biological diversity (Wake and
Vredenburg 2008; de Oliveira et al. 2014), and so on.
According to the recent Fifth Assessment Report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC)
(IPCC 2007, 2013), the projected SAT will more or less in-
crease in the next century all over the world, especially under
the highest greenhouse gas emission scenario or the
Representative Concentration Pathway 8.5 (RPC8.5) scenar-
io. The projected SAT increase has urged decision makers to
adjust their current natural resources management and devel-
opment plans and prepare in advance of the temperature-
induced consequences of potential drought, increasing water
demands, and hydroclimate events. However, it has been no-
ticed that the performances of GCMs are not always in agree-
ment with each other during both historical simulations and
future projections (Sun et al. 2014b; Coquard et al. 2004;
Phillips and Gleckler 2006; Räisänen 2007; Giorgi and
Coppola 2010; Sun et al. 2015). The performance disagree-
ment of among GCMs is well acknowledged, and it impedes a
broader and practical use of GCMs among public communi-
ties, decision makers, and scientists. To comprehensively
evaluate the performances of GCMs, it is recommended by
many researchers (Miao et al. 2014; Duan and Phillips 2010;
Giorgi and Francisco 2000a, b; Gleckler et al. 2008) that the a
comprehensive evaluation on the GCMs’ outputs should in-
clude multiple statistical measures at the same time, such as
root-mean-square error (RMSE), CC (R), and uncertainty.
This is because single statistic measure has its own pros and
cons, which cannot systematically reveal the intrinsic charac-
teristics of model outputs.

In order to better utilize the GCMs’ outputs and improve
their prediction reliability (Tebaldi and Knutti 2007), a num-
ber of multi-model ensemble techniques have been invented.
Those model ensemble techniques are designed to post-
process the GCMs’ outputs and, therefore, to derive a weight-
ed solution, which is as close as to observation with respect to
a user-defined criterion. Some popular methods are the simple
model average (SMA) (Hagedorn et al. 2005), Bayesian mod-
el average (BMA) (Duan and Phillips 2010; Min and Hense
2006, 2007; Miao et al. 2013), reliability ensemble average
(REA) (Giorgi and Mearns 2002; Torres and Marengo 2013),
etc. In general, the multi-model ensemble approach is able to
generate an ensemble solution that is superior than any single
model’s output by equally or unequally assigning weights to
each participating model (Reichler and Kim 2008; Robertson
et al. 2004; Weigel et al. 2008; Lambert and Boer 2001;

Fischer et al. 2012; Buser et al. 2009). The most significant
advantages of using multi-model ensemble techniques lie in
its capability of reducing model uncertainty, i.e., the deviation
range between simulation and observation (Miao et al. 2014;
Giorgi and Francisco 2000a; Zanis et al. 2009), and in improv-
ing model outputs’ reliability (Feng et al. 2011). Typically,
only one best ensemble output will be produced using those
above referred multi-model ensemble techniques. The ulti-
mate single ensemble solution is not able to reveal multiple
aspects of model performances and provide any trade-off in-
formation between another ensemble solution. According to
the personal communication with many scientist and engi-
neers at the China Meteorology Administration, operating
agencies use GCMs’ outputs in a prudential manner, in which
the different ensemble solutions with various weighting
schemes are always compared, tested, and validated against
observation before application. The weights to the final en-
semble solution are selected by an instrumental mean among
various different combinations of weights. Therefore, an au-
tomatic ensemble technique is required to have the capability
of deriving multiple equivalently important ensemble solu-
tions, as well as the capability of revealing the trade-off infor-
mation among multiple evaluation criteria with respect to a
single ensemble solution. Traditionally, to evaluate the multi-
ple aspects of the performances of GCMs, the Taylor diagram
(Taylor 2001) is commonly used. The Taylor diagram is a 2-D
plot that concisely summarizes how well a pattern matches the
observation in terms of their correlation, root-mean-square
difference, and the ratio of their variances (Taylor 2001). A
Taylor diagram is constructed based on the geometric relation-
ship (cosine law) between the CC (R), the centered root-mean-
square error (RMSE), and the standard deviations of between
the simulation and observation. In a two-dimensional Taylor
diagram, multiple statistical measures can be shown and eval-
uated. However, there are only two independent indices in-
cluded in the Taylor diagram. The axis in a Taylor diagram
indicates that once any two statistical indices are set, the third
one will be determined by the geometric relationship (cosine
law). In other words, there are only two independent measures
in a Taylor diagram. If more independent statistical measures,
such as uncertainties, are being required in the model evalua-
tion, a new framework is needed to jointly present a third
independent statistics in the same plot.

With regard to these concerns, in this paper, we apply a
state-of-art multi-objective optimization algorithm, termed
multi-objective shuffled complex evolutionary global optimi-
zation with principle component analysis and crowding dis-
tance (MOSPD) (Yang et al. 2015), to derive multiple GCM
ensembles and demonstrate the trade-offs among various so-
lutions. According to Yang et al. (2015), the newly developed
MOSPD algorithm combines (1) the strengths of the
MOCOM algorithm (Yapo et al. 1998), (2) the concept of
the crowding distance-based offspring selection probability

1058 T. Yang et al.



strategy (Deb 2001), and (3) the tool of principal component
analysis (Hotelling 1933, 1936) that restores andmaintains the
population diversity during searching. TheMOSPD algorithm
is effective and efficient in solving reservoir operation prob-
lems, and it is competitive as it compares with other evolu-
tionary searching algorithms over many test functions. The
advantages of using MOSPD are that (1) the evolutionary-
based searching characteristics allow multiple solutions being
derived simultaneously in a single run and (2) it is capable of
dealing high-dimensional problems and extensively
exploiting the objective space so that most of the extreme
solutions can be obtained. From the application point of view,
these advantages of MOSPD fit the goal of incorporating
more independent statistics in the GCM ensemble evaluation
because (1) the weight space is high dimensional and (2) the
optimization run can generate a set of ensemble solutions si-
multaneously in a single run. Therefore, in this paper, we test
out the robustness and capability of the newly developed
MOSPD algorithm in ensemble various GCMs’ outputs.

In the multi-objective optimization context, there will be a
set of optimized solutions instead of one single solution that
outperforms the rests.Within this set of solutions, one solution
cannot be defined as a better solution than another one, as they
are equally Bgood^ with respect to each other. Those equally
good or important solutions are called non-dominated solu-
tions (Deb 2001). According to Deb (2001), a solution x1 is
said to be dominating to another solution x2 if the following
two statements are true: (1) The solution x1 is no worse than x2
in all objectives and (2) the solution x1 is strictly better than x2
in at least one objective. It means that to move from one
solution to any other solutions, at least one objective function
value has to be sacrificed/worsen in order to obtain a better
value in other objective functions. Therefore, the optimized
non-dominated solutions reveal the trade-off information with
respect to multiple competing objectives. In a GCM ensemble
example, if considering different statistical measures (i.e.,
RMSE, CC, and uncertainty) as objective functions, at least
one statistical measure will be compromised in order to reach
a better performance in another aspect. In other words, the
improvement of RMSE will result in the deterioration of at
least one other statistics if moving from one ensemble solution
with low RMSE towards another one with high RMSE.
Furthermore, by displaying the non-dominated solutions in a
single plot, a robust line (for two objective functions) or sur-
face (for more than two objective functions) will be formed.
This line or surface is commonly called the BPareto front.^
The global Pareto front directly demonstrates the conflicting
relationship among multiple objective functions. Using the
Pareto front to convey the trade-off information is intuitive
and straightforward. The adding of additional independent
statistical measure in the model evaluation could further help
policy makers in selecting an acceptable solution for making
an effective climate change adaptation plan.

The advantage of using multi-objective optimization in the
GCM ensemble problem lies in two aspects. First, by pictur-
ing the Pareto front of optimized ensemble solutions, decision
makers/users are able to gain a comprehensive understanding
about both the pros and cons of any single ensemble solution.
Differing from the Taylor diagram, more independent mea-
surements are able to be included in this framework. For ex-
ample, a 3-D Pareto front, including RMSE, CC, and model
uncertainty as evaluation criteria, is more comprehensive than
a 2-D evaluation approach, which is similar to a Taylor dia-
gram. In addition, the Pareto front is also able to provide the
quantifications of the differences between a selected solution
and its alternatives.With the purpose of extending to a broader
use of GCMs by water agencies, the application of the multi-
objective optimization algorithm onmodel ensemble is able to
assist policy makers in selecting a more comprehensive deci-
sion inmitigating the conflicts amongmultiple stakeholders or
interested parties.

In this paper, a case study over seven geographical regions
of China is conducted, in which we use the SAT outputs from
24 GCMs to develop the ensemble. The proposed MOSPD
algorithm is applied on the weight tuning process to produce
the final non-dominated solutions. The ensemble results de-
rived with MOSPD are compared with the observations, as
well as the results from SMA.We further carry out a statistical
analysis on the weight distribution obtained from the opti-
mized solutions. The simulation results in historical period
(1900–2005) show that the non-dominated solutions derived
fromMOSPD are superior to both SMA and any single model
result with lower RMSE values, higher CC values, and small-
er uncertainty range. However, there are still certain system-
atic biases between ensemble results and observations. During
the prediction period (2006–2100), we find that the largest
increases are 1.01 °C/100 years in region 2, 2.40 °C/100 years
in region 7, and 5.67 °C/100 years in region 5 under RCP 2.6,
RCP 4.5, and RCP 8.5 scenarios, respectively. The smallest
increases happen in region 6 (0.74 °C/100 years), region 3
(1.75 °C/100 years), and region 2 (4.19 °C/100 years), under
RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.

The contributions of this paper are (1) introducing an ap-
plication of a newly developed multi-objective optimization
framework to derive multi-model ensemble solutions which
are better than SMA and contain more comprehensive infor-
mation of ensemble solutions; (2) extending the application of
the newly developedMOSPD algorithm to the field of climate
change and multi-model ensemble; and (3) evaluating the
model ensemble performances over China in a comprehensive
perspective, therefore, to provide policy maker auxiliary in-
formation about ensemble solutions.

This paper is organized into six sections: Section 2 de-
scribes the study region and data. The optimization model
for the GCM ensemble problem and the multi-objective opti-
mization algorithm is introduced in Section 3. In Section 4, the
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historical SAT simulation and projection results are shown.
Section 5 presents the discussions and conclusions. Finally,
the limitations and future works are addressed in Section 6.

2 Study region and data

In this paper, the study region is China located between 15°–
55° N and 70°–135° E. It has been reported that the climate in
China varies considerably in both space and time due to its
complex land topography (Gao et al. 2008). There are few
studies focusing on predicting the temperature changes in dif-
ferent geographical regions over China. Therefore, we divide
the study region (China) into seven sub-regions based on the
official geographical classification reported by China
Meteorology Administration as shown in Fig. 1. The CMIP5
model ensemble and optimization are individually conducted
for each sub-region in order to distinguish the various charac-
teristics of the temperature changes corresponding to different
topographies and hydrology.

There are twomain datasets used in this study. The first one
is the SAT outputs from 24 GCMs (Table 1) from the recent
Fifth Assessment Report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC). The SAT outputs are the
main forcing data, as well as the inputs to the model ensemble
optimization model. The second dataset contains the gridded
SAT historical records over China, which is considered as the
observation and reference in this study. The historical SAT
records are obtained from the Climate Research Unit (CRU)
Time Series Data archive. The historical data covers the period
from 1900 to 2005. Temporal resolution is monthly, and the
spatial resolution is 0.5°× 0.5°. Figure 2 demonstrates the

averaged mean SAT over the period of 1900 to 2005 using
the CRU Time Series Data.

Three RCPs, namely RCP 2.6, RCP 4.5, and RCP 8.5, are
used in evaluating the ensemble solution during future projec-
tion period (2006–2100). The RCP 2.6, RCP 4.5, and RCP 8.5
are subject to different assumptions that future radiative forc-
ings are 2.6, 4.5, and 8.5 W/m2 by 2100, respectively. In
addition, each RCP scenario indicates different greenhouse
gas concentrations. The amounts of greenhouse gas concen-
tration are assumed to be 421, 538, and 936 ppm in the year
2100, for RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respec-
tively. Each GCM’s output is re-gridded to a spatial resolution
of 0.5° × 0.5° to match the resolution of CRU observation.

3 Optimization model and algorithm

3.1 Optimization model

The multi-model ensemble optimization problem during the
historical period can be mathematically expressed as the fol-
lowing equation:

Sim t1; t2;…; tnð Þ ¼ ∑
m

i¼1
Wi w1;w2;…;wnð Þ∙Ti t

0
1; t

0
2;…; t

0
n

� �
ð1Þ

Subject to

w1 þ w2;…;þwm ¼ 1 ð2Þ
wj∈ 0; 1½ �; j ¼ 1; 2;…;m ð3Þ

where the vector Sim(t1, t2, … , tn) is the SAT model ensem-
ble, in which tn is the nth year’s mean temperature. The vector

Ti t
0
1; t

0
2;…; t

0
n

� �
is the SAT from the output of the ith GCM.m

Fig. 1 The study area classified
with different climates over China
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is the number of GCMs involved in the ensemble. In this
paper, we chose 24 different GCMs; therefore, m = 24. wi

represents the weights assigned to each GCM, which is sub-
jected to Eqs. (2) and (3) as constraints. The higher the wi, the
higher the contribution of the ith GCM in constructing the
model ensemble Sim(t1, t2, … , tn).

The objective function of the optimization model is set to
be optimizing three statistical measurements, namely, RMSE,
correlation coefficient (CC), and uncertainty, which describe
the differences between the multi-model ensemble vector with
the observation vector Obs ~t1;~t2;…;~tnð Þ from various per-
spectives. As it is shown in the following Eq. (4), the objective
functions are (1) to minimize the RMSE, (2) to maximize the
CC, and (3) to minimize the uncertainty range. The uncertain-
ty range describes the averaged deviation range between en-
semble solution and observation considering the weighted
sum of the deviation range for all time steps.

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1
~ti−ti
� �2

n

vuut
0
BB@

1
CCA

max
∑n

i¼1
~ti−t

¼� �
ti−t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1
~ti−t

¼� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 ti−t

� �2
r

0
BB@

1
CCA

min average
∑
n

i¼1
wi T i−Simð Þ

∑
n

i¼1
wi

2
664

3
775
1

.
2

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

where the t
¼

and t represent the mean value of the observation
and simulation vector, respectively. Generally, the lower the
RMSE value, the less differences in the magnitude between
the simulation and observation. The higher the CC, the more
similar the variation patterns of the simulation and observa-
tion. Similarly, the lower the uncertainty, the less variation of
the model ensemble and more confident of the future projec-
tions. With regard to the optimization problem defined earlier,
the tunable parameters are 24 weights for all the participating
GCMs. The parameters are bounded in [0,1] and subjected to
the constraints that the sum of the weights equals to 1 (Eqs. 2
and 3).

3.2 Searching algorithm

The searching algorithm used in this paper is a newly developed
multi-objective evolutionary optimization algorithm, termed
Multi-Objective Shuffled Complex Evolutionary Global
Optimization with Principle Component Analysis and
Crowding Distance—University of California Irvine
(MOSPD-UCI) (Yang et al. 2015). TheMOSPD-UCI algorithm

is an updated version of the Multi-Objective Shuffled Complex
Evolutionary Global Optimization—University of Arizona
(MOCOM-UA) algorithm (Yapo et al. 1998) and also an exten-
sion of the single-objective Shuffled Complex Evolution (SCE-
UA) global optimization algorithm (Duan et al. 1992). In the
MOSPD algorithm, two enhancementmodules have been added
to the original MOCOM-UA algorithm (Yang et al. 2015). The
first module revises the selection possibilities of the members
with identical Pareto ranking so that the generated non-
dominated solutions can form a more uniformed distribution
along the Pareto front. The second module monitors the diver-
sity of the population during evolution based on principal com-
ponent analysis, which has been shown to prevent the popula-
tion from degenerating.

The MOSPD-UCI algorithm uses a population-based
searching strategy, which generates a set of solution can-
didates and iteratively updates the candidates until all the
candidates are non-dominated to each other. This concept
used in MOSPD-UCI is identical to that in MOCOM-UA.
According to Yang et al. (2015) and Yapo et al. (1998),
the general steps of the evolution can be summarized in-
cluding the following: (1) a total of m × p points are ran-
domly sampled in the parameter space to form the initial
population, where m is the number of groups (complexes)
and p is the total number of individuals in a group
(complex); (2) the objective functions are evaluated for
each individual; and (3) the entire population is shuffled
and split into m groups (complexes). In each of the groups
(complexes), the p individuals form the sub-population;
(4) the Pareto ranks (Goldberg and Holland 1988) are
calculated for the entire population; (5) a triangular pos-
sibility function is used to assign a selection possibility to
each individual according to its Pareto ranks; (6) the se-
lection possibility for each individual is adjusted accord-
ing to its crowding distance among the population; (7) a
simplex is constructed by selecting n + 1 individuals ac-
cording to the possibility distribution of the sub-
population derived from the previous step; (8) the
Nelder-Mead evolution strategy (Nelder and Mead 1965)
is implemented to obtain a new individual, and the popu-
lation is updated; (9) the principle component analysis is
carried out to check the parameter span in the orthogonal
coordinate system and restore the lost dimensions along
the axis in the orthogonal coordinate system; and (10) the
steps from (3) to (9) are repeated until the maximum of
the Pareto ranks in step (4) becomes 1, which means that
the individuals in the population are all non-dominated in
relation to each other. Detailed descriptions and procedure
flowchart of the MOSPD algorithm can be found by Yang
et al. (2015) for interested reader.

The following settings are used in applying the MOSPD-
UCI algorithm on the multi-model ensemble optimization
model (Eqs. 1–3): the number of complexes is 8, the number
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of individuals in 115, the population size is 920, the maximum
iteration is 10,000,000, the tunable parameters have a dimen-
sion of n − 1, where n is the number of GCMs, and the con-
straint is described in Eq. (1).

4 Results and discussion

4.1 Historical simulation

In Fig. 3, the comparison between the optimized non-
dominated solutions with MOSPD and the SMA ensemble
solution during the historical period (1900–2005) are present-
ed. According to Fig. 3, the non-dominated solutions derived
from MOSPD form a robust Pareto front towards the right
bottom corner in the objective space (the space created by
RMSE, CC, and uncertainty). It is found that the ensemble
solutions for different regions are associated with various
values of RMSE, CC, and uncertainty as compared to obser-
vations. For a better visualization, in Fig. 4, we project the
results of region No. 1 (the North Central China) from Fig. 3
into different 2-D objective planes. Figure 4a is exactly the
sub-plot for region No. 1 obtained from Fig. 3. Figure 4b–d
shows the projected ensemble solutions on the RMSE-
uncertainty plane, the correlation-RMSE plane, and the
correlation-uncertainty plane, respectively. As it is shown in
Fig. 4, there still exist some differences between the optimized

Table 1 List of selected CMIP5 Global Circulation Models (GCMs) in this study

GCM No. Name of model Spatial resolution Distribution institute

1 BCC-CSM 1.1 64 × 128 Beijing Climate Center, China Meteorological Administration, China

2 BCC-CSM 1.1 (m) 160 × 320 Beijing Climate Center, China Meteorological Administration, China

3 BNU-ESM 64 × 128 Beijing Normal University, China

4 CanESM2 64 × 128 Canadian Centre for Climate Modelling and Analysis, Canada

5 CCSM4 192 × 288 National Center for Atmospheric Research (NCAR),USA

6 CNRM-CM5 128 × 256 Centre National de Recherches Meteorologiques, France

7 CSIRO-Mk3.6.0 96 × 192 Australian Commonwealth Scientific and Industrial Research Organization

8 FGOALS-g2 108 × 128 Institute of Atmospheric Physics, Chinese Academy of Sciences, China

9 FIO-ESM 64 × 128 The First Institute of Oceanography, SOA, China

10 GFDL-CM3 90 × 144 Geophysical Fluid Dynamics Laboratory, USA

11 GFDL-ESM2G 90 × 144 Geophysical Fluid Dynamics Laboratory, USA

12 GISS-E2-H 90 × 144 Goddard Institute for Space Studies (NASA), USA

13 GISS-E2-R 90 × 144 Goddard Institute for Space Studies (NASA), USA

14 HadGEM2-ES 145 × 192 Met Office Hadley Centre, UK

15 IPSL-CM5A-LR 96 × 96 Institut Pierre-Simon Laplace, France

16 IPSL-CM5A-MR 143 × 144 Institut Pierre-Simon Laplace, France

17 MIROC5 128 × 256 Atmosphere and Ocean Research Institute, University of Tokyo, Japan

18 MIROC-ESM 64 × 128 Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), Japan

19 MIROC-ESM-CHEM 64 × 128 Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), Japan

20 MPI-ESM-LR 96 × 192 Max Planck Institute for Meteorology (MPI-M), Germany

21 MPI-ESM-MR 96 × 192 Max Planck Institute for Meteorology (MPI-M), Germany

22 MRI-CGCM3 160 × 320 Meteorological Research Institute, Japan

23 NorESM1-M 96 × 144 Norwegian Climate Centre, Norway

24 NorESM-ME 96 × 144 Norwegian Climate Centre, Norway

Source: Miao et al. (2014)

Fig. 2 The averagedmean SATover the period of 1900 to 2005 using the
climate research unit time series data
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solutions and the theoretical best location, which is located at
the corner with RMSE = 0, uncertainty = 0, and correlation
coefficient = 1. Nevertheless, the optimized non-dominated
solutions have better objective values than that with the
SMA ensemble as a baseline.

In order to further verify the model ensemble results de-
rived from MOSPD, both Taylor diagram and skill scores are
employed to compare the ensemble solutions with observa-
tion. The Taylor diagram provides a direct measurement of the
closeness and similarity between the ensemble/individual
GCM outputs and the observations. The similarity is mea-
sured in terms of their RMSE, CC, and standard deviation
(Std). The three statistical indices are presented in a 2-D plot
and related by the following cosine law equation:

RMS2 ¼ σ2
m þ σ2

o−2σoσmR ð5Þ

where σo and σm are the standard deviations of the simulation
and observation, respectively (Taylor 2001). The comparison

between the SMA and non-dominated solutions derived from
the MOSPD algorithm are shown in Fig. 5. According to
Fig. 5, the non-dominated solutions derived with MOSPD
are relatively closer to the observation than the result of
SMA in 2-D space created by the Taylor diagram. These re-
sults are consistent with those shown in previous Figs. 3 and 4,
in which the dimension of the objective functions space (i.e.,
statistical index space) is extended to 3-D.

Furthermore, the skill scores, which measure the differences
between the non-dominated solutions derived from the
MOSPD algorithm and the SMA, are calculated according to
the following Eqs. (6), (7), and (8). The skill scores indicate the
percentage of improvement of the solutions derived from the
MOSPD algorithm with respect to that obtained from SMA.

R ratio ¼ 1−∣RSMA=Rns∣ ð6Þ

RMSE ratio ¼ 1−RMSEns=RMSESMA ð7Þ

Fig. 3 Historical simulation of the SMA ensemble solution (blue) and the non-dominated solutions (red) derived from MOSPD over 7 geographical
regions in China during 1900–2005
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Uncertainty ratio ¼ 1−Uncertaintyns=UncertaintySMA ð8Þ

where ns represents the non-dominated solutions.
As it is shown in previous Figs. 3 and 4, the non-

dominated solutions have better RMSE, CC, and uncer-
tainty values than the SMA. Therefore, the R ratio in
Eq. (6) is calculated as 1 minus the absolute value of the
CC of SMA (RSMA) over the absolute value of the CC of
the non-dominated solutions (Rns). Theoretically, if the Rns

is greater than RSMA, the R ratio will lie in the range of
(−∞, 1). The closer the R ratio is to 1, the more correlated
the non-dominated solutions are to the observation. Similar
logic applies to the RMSE and uncertainty ratios (Eqs. 7–
8). The RMSE ratio and uncertainty ratio are bounded to (
− ∞ , 1]. The larger the ratio is, the better the performances
of non-dominated solutions are over the SMA. The results
of the CC, RMSE, and uncertainty ratios are presented in
Fig. 6.

Note that in Fig. 4, the derived non-dominated solutions are
associated with various combinations of RMSE, CC, and un-
certainty. A set of non-dominated solutions will form a robust
surface when they are projected on each objective plane
(Fig. 5). The philosophy behind this is that no single solution
is better than the other because they are equally good with
regard to the fitnesses of all objectives, i.e., RMSE, CC, and
uncertainty. The ensemble weights for each non-dominated
solution are also different, which indicate the contributions
of a single model with respect to producing the corresponding
ensemble solution. In the following Fig. 7, the distributions of
the weights among the derived non-dominated solutions are
shown with boxplots. In Fig. 7, the x-axis is the model index
as listed in Table 1. The shapes of the boxplots in Fig. 7 indi-
cate the contribution of each participating GCM in producing
the non-dominated ensemble solutions. Generally, the higher
the center of each weight distribution and the narrower the
distribution shape, the better performance and higher

Fig. 4 The SMA ensemble solution (blue) and the non-dominated solutions (red) for region 1 (North Central China) during 1900–2005 in the a
objective space, b RMSE-uncertainty projection plane, c correlation-RMSE projection plane, and d correlation-uncertainty projection plane
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contributions a participating GCM has in producing the opti-
mal ensemble. According to Fig. 7, the mean values and the
general shapes of the weight distribution are different from
one region to another. It indicates that the performances of
individual GCMs are geographically related. One particular
GCM, which performs well in a particular region, may not
produce consistently reliable and good simulations when ap-
plied in another region. Given the fact the output from any
single GCM is geographically dependent, it is a tedious task to
select a number of different GCMs and performmodel ensem-
ble in one region. In addition, a low RMSE value from one
ensemble solution does not guarantee the acceptable values

for other statistical measures, such as CC or uncertainty. Using
the multi-criterion evaluation approach presented in this pa-
per, and the trade-off information among final non-dominated
solutions, decision makers could easily pick the combination
of GCMs and the ensemble solution that fits in his/her needs
considering the local hydrology in the region of interests. For
example, according to the weight distribution shown in Fig. 7,
it is able to confidently select models that have higher mean
values or better performance for each geographical region.
This is because that the higher mean value of the weight of a
single model among ensemble candidates indicates that this
model has a larger significance and importance in improving

Fig. 5 The Taylor diagram of the results fromSMA and the non-dominated solutionswithMOSPD for seven geographical regions over China. aRegion
1. b Region 2. c Region 3. d Region 4. e Region 5. f Region 6. g Region 7
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statistical performance of ensemble solution than other
models. The selection is based on large numbers of non-
dominated solutions, which are consistently superior to both
individual model and SMA ensemble. Based on the weight
distributions shown in Fig. 7, we list the best top 3 models for
each geographical region in Table 2. The mean values of the
distributions of weights are calculated and used for developing
a single ensemble in order to further compare with SMA and
observations.

The results of the model ensemble with MOSPD-UCI al-
gorithm (from the mean values), SMA, and observations dur-
ing the historical period (1900–2005) are shown in Fig. 8. In
Fig. 8, both MOSPD-UCI algorithm and SMA tend to under-
estimate the SAT for all climatic regions over China.

Nevertheless, the results with MOSPD-UCI algorithm are
much closer to the observation than the SMA for region
Nos. 1–6 (Fig. 8a–f). For region 7 (Fig. 8g), the differences
between two methods are negligible. According to our skill
score analysis provided in Fig. 6, the MOSPD-UCI algorithm
is capable of significantly reducing the RMSEwith an approx-
imate percentage of 30% for region Nos. 1–6. But the im-
provements for region 7 (Fig. 6g) are limited.

In summary, the proposed multi-objective optimization ap-
proach has a consistently better performance in deriving

Fig. 6 The correlation, RMSE, and uncertainty ratios of the non-dominated solutions over SMA for seven geographical regions over China. aRegion 1.
b Region 2. c Region 3. d Region 4. e Region 5. f Region 6. g Region 7

�Fig. 7 The weight distribution of the non-dominated solutions for seven
geographical regions over China. a Region 1. b Region 2. c Region 3. d
Region 4. e Region 5. f Region 6. g Region 7
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model ensembles when it is compared to the SMA. The
improvements mainly lie in reducing the RMSE between
the simulated result and the observation as it is shown in
Fig. 6. In addition, the optimal solutions (weight sets) are
equally important among all ensemble candidates.
According to our study, the argument that one solution
is superior to another is questionable, because among the
optimized ensemble candidates, the improvement of one
objective (either RMSE, CC, or uncertainty) can only be
achieved by sacrificing at least one of the other two

objective values. From this point of view, in practical
uses of GCM ensemble, it is suggested to have multiple
evaluation criterion so that comprehensive understanding
about the trade-offs among different ensemble solutions
can be utilized in the decision-making process. By eval-
uating the model contribution among multiple equally
important ensemble solutions, a more confident selection
of GCMs and a better corresponding climate adaptation
plan could be achieved, in which such information will
be provided by our proposed multi-objective optimiza-
tion framework.

4.2 Future projection

Using the same weight combination obtained with the
MOSPD algorithm in historical simulation period
(1900–2005), we present the model outputs for the pro-
jection period (2006–2100) in Fig. 9. The projections are
conducted for different regions under low (RCP 2.6),
medium (RCP 4.5), and high (RCP 8.5) CO2 emission
scenarios. The average temperature increases over
100 years for each region under each scenario are listed
in Fig. 9. According to Fig. 9, the largest increase is
1.01 °C/100 years (region 2), 2.40 °C/100 years (region

Table 2 The best three models for each geographical region according
to the mean values of weight distributions

Climate region Top 1 Top 2 Top 3

1 CCSM4 GISS-E2-R IPSL-CM5A-MR

2 CSIRO-Mk3.6.0 MIROC5 CanESM2

3 BNU-CSM1.1 (m) GFDL-ESM2G MPI-ESM-MR

4 CanESM2 MIROC-ESM NorESM1-M

5 CanESM2 NorESM1-M GISS-E2-R

6 CanESM2 BCC-CSM 1.1 MPI-ESM-LR

7 CSIRO-Mk3.6.0 GISS-E2-H IPSL-CM5A-MR

Fig. 8 Comparisons among the model ensemble with MOSPD, SMA, and observation for different regions. a Region 1. b Region 2. c Region 3. d
Region 4. e Region 5. f Region 6. g Region 7
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7), and 5.67 °C/100 years (region 5) under RCP 2.6,
RCP 4.5, and RCP 8.5 scenarios, respectively. The
smallest increase happens in region 6 (0.74 °C/100 years),
region 3 (1.75 °C/100 years), and region 2 (4.19 °C/
100 years), under RCP 2.6, RCP 4.5, and RCP 8.5 sce-
narios, respectively.

Note that the results shown in Fig. 8 are calculated by
the mean values of the weight distribution (Fig. 7).
Therefore, it cannot be concluded this result will have
a best statistical index for each region individually.
Nevertheless, the ensemble result derived with the pro-
posed MOSPD-UCI algorithm will be superior to any
single model output, as well as the SMA when simulta-
neously considering all statistical measures (Fig. 6).
Furthermore, it can be inferred from Figs. 5 and 8 that
the ensemble result using the optimized weights from
MOSPD will be closer to the realities in future than the
SMA, given the fact that the results from MOSPD con-
sistently perform better than the SMA during the histor-
ical period (1900–2005).

5 Conclusion

In this paper, a newly developed multi-objective optimi-
zation algorithm, termed MOSPD-UCI algorithm, is ap-
plied to derive optimal GCM ensembles with the consid-
eration of many evaluation criterion. A case study over
seven geographical regions over China is carried out
using the proposed multi-objective ensemble framework.
The advantage of using multi-objective optimization al-
gorithm in GCMs multi-model ensemble is that multiple
independent aspects of the statistical performances of
GCMs, such as the RMSE, CC, and uncertainty, can
be simultaneously evaluated. Theoretically, other aspects
of GCMs’ performances beyond RMSE, CC, and uncer-
tainty, can also be included and tested with the pro-
posed multi-objective optimization scheme. The compar-
ison study during the historical period (1990–2005)
shows that the optimized model weights are able to give
better model ensemble single model, as well as the
SMA method. The ensemble solutions derived with

Fig. 9 Future model ensembles for different regions under RCP 2.6, RCP 4.5, and RCP 8.5 CO2 emission scenarios. aRegion 1. bRegion 2. cRegion 3.
d Region 4. e Region 5. f Region 6. g Region 7
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MOSPD-UCI algorithm have significantly lower RMSE
and uncertainty values, and consistently higher CC
values, than that with SMA approach in all of our case
studies. In details, several conclusions can be drawn as
follows:

1. The use of the proposed multi-objective optimization
framework to ensemble multiple GCMs’ outputs is ca-
pable of comprehensively comparing various indepen-
dent aspects of different behaviors of model. The clas-
sical Taylor diagram essentially evaluates only two in-
dependent variables among the RMSE, CC, and Std.
The third metric is subject to a geometric relationship
on the RMSE and CC. This is the reason that visually,
only a 2-D plot can be made. In the multi-objective
framework, more aspects of GCMs can be compared
with the concept of non-dominated solutions and a
Pareto front. The 3-D visualization could further help
policy makers to better understand the trade-off among
different ensembles. From the user’s perspective, mul-
tiple solutions (weight combinations) enable the user
to flexibly select preferred ensemble solution that tai-
lored to their local hydrology.

2. According to the historical simulation (Fig. 8), large
biases are associated with GCMs over the entire China.
Note that in Fig. 7, the observations do not fall in the
envelope of the ensemble uncertainties. This indicates
that huge differences still exist between ensemble results
and observations. Though the optimized weights with
MOSPD tend to produce ensembles with lower RMSE
than SMA, the improvements of statistical indices are still
limited, especially for the case of region 7. Therefore, it
can be concluded that ensemble techniques’ major capa-
bility is to reduce bias, rather than CC or uncertainty.

3. For the prediction period (2006–2100), the use of
MOSPD-UCI algorithm enables an ensemble with more
confidence of a less bias, a higher CC value, and a smaller
uncertainty range than those produced by the SMAmeth-
od. This conclusion is made based on the superior perfor-
mances ofMOSPD-UCI algorithm over the SMAmethod
during the historical simulation period (1900–2005).
According to Fig. 9, the largest increases and lowest in-
creases under different CO2 emission scenarios can be
found for each region. One interesting finding is that re-
gion 2 (South and Central China) is associated with both
the largest temperature increases under RCP 2.6 scenario
and the smallest increases under the RCP 8.5 scenario. In
addition, we calculate the differences of temperature in-
creases between RCP 2.6 and RCP 8.5 scenarios by
subtracting the largest temperature increase under RCP
2.6 from that under RCP 8.5 scenarios. Given the fact that
future emission scenarios are not certain, our results show
that the variations of temperature increases are 3.73, 3.18,

4.75, 4.63, 4.73, 4.53, and 4.73 °C/100 years for regions
1, 2, 3…, and 7, respectively. Note that region 1 (North
Central China) and region 2 (South Central China) are the
two most populated and developed regions in China.
These two regions are associated with the two lowest
temperature changes between the Boptimistic^ (RCP
2.6) and Bpessimistic^ (RCP 8.5) scenarios. This finding
suggests that these two regions have less resilience in
response to the increasing CO2 emissions due to the
heavy economic and urbanization development. Human-
induced CO2 emissions in these two regions are already
tremendous and relatively higher than other regions. The
existing of high-level CO2 emissions results in less vari-
ation of temperature increases under the projection sce-
narios in IPCC reports.

6 Limitation and future works

The limitations of this study lie in the analysis of finding the
extreme solutions among the objective functions. As men-
tioned in the discussion, the capabilities of GCMs in simulat-
ing and projecting temperature over China are limited. The
discovery of the extreme weight combination is of great im-
portance in better evaluating the performances of GCMS.
Nevertheless, the use of the proposedMOSPD-UCI algorithm
is a move towards providing decision makers with a more
comprehensive trade-off information for evaluating GCMs’
ensemble. Future works are suggested to apply proper tech-
niques with the intention of finding extreme ensemble solu-
tions and to carry out studies on discovering the realistic glob-
al Pareto fronts of the model ensembles, as well as adding
more evaluation criterion to the multi-objective optimization
framework.

Acknowledgements This research was supported by the National
Natural Science Foundation of China (No. 41622101), the NASA
MIRO grant (NNX15AQ06A) program, and the DOE (Prime Award
No. DE-IA0000018). The authors would like to thank anonymous re-
viewers for their valuable suggestions and comments.

References

Allan C, Xia J, Pahl-Wostl C (2013) Climate change and water security:
challenges for adaptive water management. Curr Opin Environ
Sustain 5(6):625–632

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N,
Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E
(2010) A global overview of drought and heat-induced tree mortal-
ity reveals emerging climate change risks for forests. For Ecol
Manag 259(4):660–684

1070 T. Yang et al.



Buser CM, Künsch H, Lüthi D, Wild M, Schär C (2009) Bayesian multi-
model projection of climate: bias assumptions and interannual var-
iability. Clim Dyn 33(6):849–868

Coquard J, Duffy P, Taylor K, Iorio J (2004) Present and future surface
climate in the western USA as simulated by 15 global climate
models. Clim Dyn 23(5):455–472

Deb K (2001) Multi-objective optimization using evolutionary algo-
rithms. Wiley, Hoboken

de Oliveira JAP, Doll CN, Moreno-Peñaranda R, Balaban O (2014)
Global environmental change. Springer, Berlin, pp 461–468

Duan Q, Phillips TJ (2010) Bayesian estimation of local signal and noise
in multimodel simulations of climate change. J Geophys Res 115:
D18123. doi:10.1029/2009JD013654

Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global
optimization for conceptual rainfall-runoff models. Water Resour
Res 28(4):1015–1031

Feng J, Lee D-K, Fu C, Tang J, Sato Y, Kato H, Mcgregor JL, Mabuchi K
(2011) Comparison of four ensemble methods combining regional
climate simulations over Asia. Meteorog Atmos Phys 111(1–2):41–
53

Fischer A, Weigel A, Buser C, Knutti R, Künsch H, Liniger M, Schär C,
Appenzeller C (2012) Climate change projections for Switzerland
based on a Bayesian multi-model approach. Int J Climatol 32(15):
2348–2371

Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of
future monsoon precipitation over China: comparison between a
high resolution RCM simulation and the driving GCM. Meteorog
Atmos Phys 100(1–4):73–86

Giorgi F, Coppola E (2010) Does the model regional bias affect the
projected regional climate change? An analysis of global model
projections. Clim Chang 100(3–4):787–795

Giorgi F, Francisco R (2000a) Evaluating uncertainties in the prediction
of regional climate change. Geophys Res Lett 27(9):1295–1298

Giorgi F, Francisco R (2000b) Uncertainties in regional climate change
prediction: a regional analysis of ensemble simulations with the
HADCM2 coupled AOGCM. Clim Dyn 16(2–3):169–182

Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range,
and reliability of regional climate changes from AOGCM simula-
tions via the Breliability ensemble averaging^ (REA)method. J Clim
15(10):1141–1158

Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for
climate models. J Geophys Res 113:D06104. doi:10.1029/
2007JD008972

Goldberg DE, Holland JH (1988) Genetic algorithms and machine learn-
ing. Mach Learn 3(2):95–99

Gosling S, Lowe J, McGregor G, Pelling M, Malamud B (2009)
Associations between elevated atmospheric temperature and human
mortality: a critical review of the literature. Clim Chang 92(3–4):
299–341

Gosling SN,Warren R, Arnell NW,Good P, Caesar J, Bernie D, Lowe JA,
van der Linden P, O’Hanley JR, Smith SM (2011) A review of
recent developments in climate change science. Part II: the global-
scale impacts of climate change. Prog Phys Geogr 35(4):443–464

Hagedorn R, DOBLAS-REYES FJ, Palmer T (2005) The rationale be-
hind the success of multi-model ensembles in seasonal forecast-
ing—I. Basic concept. Tellus Series a-Dynamic Meteorology and
Oceanography 57(3):219–233

Hotelling H (1933) Analysis of a complex of statistical variables into
principal components. J Educ Psychol 24:417–441

Hotelling H (1936) Relations between two sets of variables. Biometrika
28(3–4):321–377

IPCC (2007) Climate change 2007: the physical science basis.
Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge

IPCC (2013) Climate change 2013: the physical science basis.
Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge

Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of
coupled climate models. Clim Dyn 17(2–3):83–106

Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor
RL (2008) Prioritizing climate change adaptation needs for food
security in 2030. Science 319(5863):607–610

Miao C-Y, Ni J-R (2009) Variation of natural streamflow since 1470 in
the Middle Yellow River, China. Int J Environ Res Public Health
6(11):2849–2864

Miao C, Ni J, Borthwick AG (2010) Recent changes of water discharge
and sediment load in the Yellow River basin, China. Prog Phys
Geogr 34(4):541–561

Miao C, Duan Q, Sun Q, Li J (2013) Evaluation and application of
Bayesian multi-model estimation in temperature simulations. Prog
Phys Geogr 37(6):727–744

Miao C, Duan Q, Sun Q, HuangY, KongD, Yang T, Ye A, Di Z, GongW
(2014) Assessment of CMIP5 climate models and projected temper-
ature changes over Northern Eurasia. Environ Res Lett 9(5):055007

Min S-K, Hense A (2006) A Bayesian assessment of climate change
using multimodel ensembles. Part I: global mean surface tempera-
ture. J Clim 19(13):3237–3256

Min S-K, Hense A (2007) A Bayesian assessment of climate change
using multimodel ensembles. Part II: regional and seasonal mean
surface temperatures. J Clim 20(12):2769–2790

Nelder JA, Mead R (1965) A simplex method for function minimization.
Comput J 7(4):308–313

Phillips, T.J. and Gleckler, P.J. (2006) Evaluation of continental precipi-
tation in 20th century climate simulations: the utility of multimodel
statistics. Water Resour Res 42(3).

Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle
S (2007) Changes in climate and land use have a larger direct impact
than rising CO2 on global river runoff trends. Proc Natl Acad Sci
104(39):15242–15247

Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y,
Ding Y (2010) The impacts of climate change on water resources
and agriculture in China. Nature 467(7311):43–51

Räisänen J (2007) How reliable are climate models? Tellus Series a-
Dynamic Meteorology and Oceanography 59(1):2–29

Reichler T, Kim J (2008) How well do coupled models simulate today’s
climate? Bull Am Meteorol Soc 89(3):303–311

Robertson AW, Lall U, Zebiak SE, Goddard L (2004) Improved combi-
nation of multiple atmospheric GCM ensembles for seasonal predic-
tion. Mon Weather Rev 132(12):2732–2744

Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-
P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe dur-
ing the summer of 2003. Comptes Rendus Biologies 331(2):171–
178

Sheffield J, Wood EF, Roderick ML (2012) Little change in global
drought over the past 60 years. Nature 491(7424):435–438

Sun Q, Miao C, Duan Q, Kong D, Ye A, Di Z, Gong W (2014a) Would
the ‘real’observed dataset stand up? A critical examination of eight
observed gridded climate datasets for China. Environ Res Lett 9(1):
015001

Sun Q, Kong D, Miao C, Duan Q, Yang T, Ye A, Di Z, Gong W (2014b)
Variations in global temperature and precipitation for the period of
1948 to 2010. Environ Monit Assess 186(9):5663–5679

Sun Q, Miao C, Duan Q (2015) Projected changes in temperature and
precipitation in ten river basins over China in 21st century. Int J
Climatol 35:1125–1141. doi:10.1002/joc.4043

Tabari H, Hosseinzadeh Talaee P (2013) Moisture index for Iran: spatial
and temporal analyses. Glob Planet Chang 100:11–19

Multi-criterion model ensemble of CMIP5 surface air temperature 1071

http://dx.doi.org/10.1029/2009JD013654
http://dx.doi.org/10.1029/2007JD008972
http://dx.doi.org/10.1029/2007JD008972
http://dx.doi.org/10.1002/joc.4043


Taylor KE (2001) Summarizingmultiple aspects ofmodel performance in
a single diagram. Journal of Geophysical Research: Atmospheres
(1984–2012) 106(D7):7183–7192

Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in
probabilistic climate projections. Philos Trans A Math Phys Eng
Sci 365(1857):2053–2075

Torres RR, Marengo JA (2013) Uncertainty assessments of climate
change projections over South America. Theor Appl Climatol
112(1–2):253–272

Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture
response to climate change. Proc Natl Acad Sci 104(50):
19686–19690

Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass
extinction? A view from the world of amphibians. Proc Natl Acad
Sci 105(Supplement 1):11466–11473

Weigel A, Liniger M, Appenzeller C (2008) Can multi-model combina-
tion really enhance the prediction skill of probabilistic ensemble
forecasts? Q J R Meteorol Soc 134(630):241–260

Wu J, Miao C, Zhang X, Yang T, Duan Q (2017a) Detecting the quanti-
tative hydrological response to changes in climate and human activ-
ities. Sci Total Environ 586:328–337

Wu J, Miao C, Yang T, Duan Q, Zhang X (2017b) Modeling streamflow
and sediment responses to climate change and human activities in
the Yanhe River, China. Hydrol Res. doi:10.2166/nh.2017.168

Yang T, Gao X, Sellars SL, Sorooshian S (2015) Improving the multi-
objective evolutionary optimization algorithm for hydropower res-
ervoir operations in the California Oroville–Thermalito complex.
Environ Model Softw 69:262–279

Yang T, Gao X, Sorooshian S, Li X (2016) Simulating California reser-
voir operation using the classification and regression-tree algorithm
combined with a shuffled cross-validation scheme. Water Resour
Res 52(3):1626–1651

Yang T, Asanjan AA, Welles E, Gao X, Sorooshian S, Liu
X (2017) Developing reservoir monthly inflow forecasts using arti-
ficial intelligence and climate phenomenon information. Water
Resour Res 53. doi:10.1002/2017WR020482

Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimi-
zation for hydrologic models. J Hydrol 204(1):83–97

Zanis P, Kapsomenakis I, Philandras C, Douvis K, Nikolakis D,
Kanellopoulou E, Zerefos C, Repapis C (2009) Analysis of an en-
semble of present day and future regional climate simulations for
Greece. Int J Climatol 29(11):1614–1633

1072 T. Yang et al.

http://dx.doi.org/10.2166/nh.2017.168
http://dx.doi.org/10.1002/2017WR020482

	Multi-criterion model ensemble of CMIP5 surface air temperature over China
	Abstract
	Introduction
	Study region and data
	Optimization model and algorithm
	Optimization model
	Searching algorithm

	Results and discussion
	Historical simulation
	Future projection

	Conclusion
	Limitation and future works
	References


