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Abstract: Understanding the evolution of wildfire regimes throughout the United States (US) is
crucial in the preparation, mitigation, and planning for national wildfires. Recent wildfire trajectories
demonstrating an increase in both frequency and size across the US have made documenting the
changes in wildfire regimes a topic of growing importance. While previous studies have examined
wildfire regimes using ecoregions, this study analyzes wildfire regimes through the Geographic
Area Coordination Center (GACC) regions across the Contiguous US over 34 years, 1984–2017.
GACCs are geopolitical boundaries designed by wildfire agencies to promote an efficient way to
distribute resources during emergencies such as wildfires. Wildfire observations originate from the
Monitoring Trends in Burn Severity (MTBS) database which records large fire events that are 1000(500)
acres or greater in the Western (Eastern) US. Using GACCs and MTBS data, this study examines
wildfire regimes across the Contiguous US through the following three parameters: total burned
area, frequency, and average burned area. This study characterizes the trend direction of the wildfire
parameters and which are statistically significant. Results demonstrate that most GACC regions
display statistically significant trends, including wildfire regimes that are beyond the Western US
(e.g., Southern GACC). The Northwest and Southwest GACCs demonstrate statistically significant
positive trends in every parameter observed. The California and Great Basin GACCs demonstrate
statistically significant positive trends in the average burned area. The Eastern GACC is the only
region to not display any significant trends. Determining significant wildfire regimes and their trend
direction can help wildfire agencies to minimize the negative impacts on the environment, society,
and economy.
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1. Introduction

Record-breaking fire seasons across the United States (US) have motivated policymakers, managers,
and communities to develop new systems to better mitigate wildfires; a result of the expeditiously
changing role of wildfires in social-ecological systems [1]. There is a growing awareness of the
detrimental effects of wildfires on biodiversity, human health, and the economy [2]. The US Department
of Agriculture-Forest Service has predicted that the economic cost of fire suppression would reach
heights of nearly USD 1.8 billion per year [3]. The rising costs of fire suppression are making
understanding wildfire regimes imperative. Additionally, changes in wildfire regimes are key to
understand because wildfires are an integral part of Earth System processes that link and affect
biogeochemical cycles, human activities, and vegetation patterns [4]. Ultimately, there is a growing
need to comprehend the evolution of wildfires in the US at timescales of natural resources management.
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This study quantifies historical fire trends across the Contiguous US (CONUS) in the context
of Geographic Area Coordination Centers (GACC). GACCs are geopolitical boundaries with similar
fire-weather types that have been outlined by a series of fire management organizations [5]. There are
nine GACC regions across CONUS that define our wildfire regimes (see Section 2.2). Using this level
of aggregation defined by fire management organizations is crucial for risk management because
fire managers need to understand where wildfire hotspots exist, so fire suppression is implemented
appropriately to protect resource values (e.g., infrastructure) and enhance ecosystem values [6].
In addition, this study uses GACC regions because climate–wildfire relationships at the GACC level is
how climate information is expounded by fire management operations for seasonal planning, resource
allocation (e.g., people, aircraft, equipment), financial support requests from Congress, and suppression
activity [7]. Understanding wildfire regimes at the GACC level provides the necessary information for
decision-makers at the national level where fiduciary planning and suppression resource allocation
occurs [7]. In addition, as a result of the interagency collaboration within each GACC region, some
GACCs have support programs in place for predictive services which is primarily monitoring weather
and fuel conditions, and producing fire-weather related products [8]. One study used GACCs as a
framework to assess the effectiveness of prescribed fires in the US [9]. Another study focused on
four GACC regions in the Western US to analyze the fire frequency, burned area, and burn severity
trends using Monitoring Trends in Burn Severity (MTBS) data [5]. Another study developed regression
models specific to a GACC with the incorporation of input data such as vapor pressure deficit, soil
moisture, other remote sensing fire data (e.g., Global Fire Emissions Database), and land cover data [10].
Results show how dynamic wildfire regimes are in relevance to one another, and regression models
specific to a GACC can be used to predict area burned [10]. Therefore, GACCs is a useful tool for
wildfire research.

The recent metamorphic changes in wildfires across the US have both natural and anthropogenic
drivers. A study mentions that natural drivers such as temperature, precipitation, wind, and atmospheric
moisture, are important factors in wildfire activity [11]. According to [11], temperature is the most
essential element in increasing fire activity due to increasing evapotranspiration rates, increasing
lighting activity (a type of ignition source), and lengthening the fire season. Another study demonstrated
the effects of atmospheric rivers (a meteorological phenomenon for water transport from the tropics
to midlatitude) in the enhancement of vegetation productivity and fuel loading—a critical aspect
for moisture limited wildfire regimes [12]. Other studies have also demonstrated the connection
between hydrological indicators and fire activity [13,14]. At a regional scale, the Western US deserts
are projected to have conditions that increase the potential for wildfires because of increased invasive
grass species in the region; this is likely facilitated by natural cycles of climate variability but can
also be an influence from anthropogenic climate change [15]. Furthermore, nonnative grass species
in the Southwestern US would make it more conducive for wildfires to occur in desert ecosystems
which have been historically low [16]. Whereas in the Eastern US, defined as east of 100◦W in CONUS,
the probability for large wildfires increase when long-term drought, low fuel moisture, and elevated
fire-weather align [17]. The aspect of climate–wildfire relationships has also been explored which
depict that area burned and frequency in the Western US have increased over time [18,19]. Soil moisture
conditions that are an antecedent to a fire-season also impact the frequency of large wildfire events
depending on the land cover type [20]. A study assessed regional wildfire trends in the Western US
and with additional analyses using climate information (e.g., temperature, precipitation), suggested
that climate is a dominant driver for wildfire activity in the area [21].

Natural drivers of wildfire activity are an important facet, but anthropogenic drivers have also
played a significant role. Human-caused large fire season is vastly longer than the lighting-caused large
fire season in both the Eastern and Western portions of the US [22]. Human-ignited wildfires affect
regions seasonally, most notably in the spring in the Eastern US and the fall and winter in Texas and
Gulf states [23]. According to [24], large wildfires across the US are projected to increase and would
likely be exacerbated by anthropogenic climate change. Hence, it is important to note that alterations
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of wildfire regimes have been dominantly driven by human influences through lengthening the fire
season, increasing ignitions, and changing fuel availability throughout the US [23]. Anthropogenic
climate change has also influenced fuel aridity (increasing flammability) in the Western US through
increases in temperature and vapor pressure deficit trends [25]. Additionally, areas dominated by
human ignitions exemplify fires that are two times more frequent and occur over fire season lengths that
are 2.4 times longer [26]. However, areas dominated by lighting ignitions experience average fires that
are increasing 23 times faster in size over time than areas dominated by anthropogenic activities [26].
In addition, the highest absolute gains in the wildland–urban interface (a region where housing and
wildland vegetation interact) area occurred in the east; whereas, high gains in houses and people in
the wildland–urban interface were most common in the South and Southwest portion of the US [27].
This is an important realization because humans are a crucial ignition source for wildfire activity.

Recognizing the formative influences of natural and anthropogenic drivers in wildfire activity
this study conducts a statistical analysis on the total burned area, frequency, and average burned
area trends across CONUS from 1984–2017. Statistical analysis of wildfire regimes has been a crucial
element of national wildfire planning, operations, and research in the US. Historical analysis of
wildfire activity contributes to many realms of research whether it be national fire danger rating
applications, fire-potential forecast models, and geospatial fire modeling systems [28]. More importantly,
spatiotemporal analyses of US wildfire regimes have gradually become intrinsic in the characterization
of local, regional, and national patterns and trends since it can be related to a myriad of factors such
as climate, population, land use, fire policy, and to predict how wildfire activity may be affected by
such factors [28]. There is much value in understanding historical wildfire trends to characterize
wildfire regimes. For example, the total burned area parameter provides an important aspect of
the evolution of the GACC wildfire regimes. Understanding the frequency of large wildfires is also
crucial because the relationship between frequency and time can serve as a good metric for predicting
wildfires [29]. Furthermore, the average burned area trend is key to understand and can prove to be
useful in developing better fire spread and behavior models.

This study uses wildfire data derived from remote sensing observations. Remote sensing
observations, available since the 1980s, have revealed the global scope of wildfires and their
impact; making it a valuable tool in gaining a better understanding of wildfire trends and regimes.
Remote sensing techniques are capable of producing biophysical measurements of ground conditions
both pre- and post-fire, which have been used to assist in fire risk mapping, fuel mapping, active
fire detection, burned area estimates, assessments of burn severity, and for monitoring vegetation
recovery [30]. For example, monitoring vegetation recovery using satellite observations aided in
understanding the timing of vegetation greenness patterns during the first year after wildfires
occurred [31], providing the approximate timing for ecological or geomorphic processes to return
to pre-disturbance conditions in the rangelands of the Western US [31]. Another application of
satellite observation has been used in conjunction with wildland fire models to simulate the growth of
large wildfires [32]. Essentially for fire ecology research, remote sensing systems have been largely
implemented because of their ability to provide images of the Earth at regular intervals and information
on the amount of energy reflected in multiple regions of the electromagnetic spectrum [30].

MTBS data used in this study is one of the longest remote sensing observational records available,
currently from 1984 to 2017, containing information on fire occurrences, burn severity, burn acreage,
other geospatial information, and various other reports designed for use at local, state, and national
levels [33]. The MTBS database is a well-established source for wildfire research. Various studies have
implemented MTBS data with varying periods and study regions, to understand climate–wildfire
relationships [7,17,24,34–37], analyze human influences on wildfire regimes [23,26,27,38], large wildfire
trend identification within ecoregions [21,39], analyze the repercussions US wildfire management had
on wildfire regimes [40], understand the role of how fuel treatments affect wildfire size and risk [41],
and for the development of wildfire models to better predict large wildfire occurrences across the
US [42]. However, some notable limitations of the MTBS database are that there is a ~2-year lag in
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the inclusion of data (limiting this study to 2017), islands of no detectable change are included in
the derived fire perimeters, phenology offsets are not automatically applied to some spectral indices,
and the existence of highly variable classification thresholds for mapping burn severity [43]. This study
does not focus on the burn severity aspect of the MTBS database, but rather the perimeter data and
associated trends (e.g., frequency). Despite limitations, these observations exist over a significant
period which better accounts for variability in factors that can influence fire severity such as climate [33].

The importance of our study is that we disentangle which wildfire regimes are significant under
the GACC premise across CONUS using the MTBS data. This would provide key information to fire
managers, so they can better adapt, mitigate, and plan for national wildfires. This study characterizes
wildfire regimes through the following three parameters from 1984 to 2017: total burned area, frequency,
and average burned area. Each parameter per GACC has a corresponding linear regression (least-square
method) and is tested for trend significance through the Mann–Kendall test to determine statistically
significant wildfire parameters.

2. Materials and Methods

2.1. Wildfire Data

The MTBS project is a Wildland Fire Leadership Council, a national-level interagency body in
charge of the National Fire Plan, sponsored project that incorporates the services of the US Geological
Survey (USGS) and the US Department of Agriculture (USDA)-Forest Service [33]. The MTBS database
provides data for this study which is designed to assess the environmental impacts of large wildland
fires and pinpoint trends of fire severity on all lands across the US [33]. The USGS and USDA-Forest
Service are the agencies responsible for setting the lower limit for what is classified as a large wildfire.
The lower limits are a function of geographic location, all fires 1000 acres or greater in the continental
US west of the 97◦ longitude, and 500 acres or greater east of the 97◦ longitude are incorporated in the
MTBS database as large wildfires [21]. As previously mentioned, the strength of this database is the
longevity which is an important factor to develop climate–fire relationships [33]. Another important
advantage is that geospatial products, such as burn area boundaries, are derived under the same
methodology that incorporates the Normalized Burn Ratio (NBR), which lessens the vulnerability of
the data due to temporal and spatial variability in the fire reporting method [21].

The source of the MTBS data originates from Landsat imagery [43]. Landsat images are suitable
for estimating fire severity because of a well-established spectral index that incorporates the moderate
spatial resolution data of Landsat (30 m) in the near (0.76–0.90 µm) and shortwave (2.08–2.35 µm)
infrared regions [44]. As seen in Table 1, these are the Landsat missions that have been currently
incorporated for usage in the development of the MTBS database with their corresponding mission
time frame, instrumentation, and spectral band information [33,45,46].

Table 1. Landsat missions incorporated for the development of the Monitoring Trends in Burn Severity
(MTBS) database.

Satellite Mission 1 Sensor Type Electromagnetic
Spectrum Region 2

Wavelength
Range (µm) Band Position

Landsat 4
(1982–1993)

Thematic Mapper NIR 0.76–0.90 4
SWIR 2.08–2.35 7

Landsat 5
(1984–2013)

Thematic Mapper NIR 0.76–0.90 4
SWIR 2.08–2.35 7

Landsat 7
(1999–Present)

Enhanced Thematic Mapper +
NIR 0.77–0.90 4

SWIR 2.08–2.35 7

Landsat 8
(2013–Present)

Operational Land Imager NIR 0.85–0.88 5
SWIR2 2.11–2.29 7

1 The time period listed is the corresponding mission time frame; not the satellite usage by the MTBS database.
2 NIR = Near-Infrared, SWIR = Shortwave Infrared, SWIR2 = Shortwave Infrared region used by the MTBS database
that exists in Landsat 8.
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The NBR spectral index is designed to enhance the spectral response of fire-affected vegetation of
which the MTBS database takes ascendancy when using the Landsat imagery to record information
about large wildfires in the US [33]. NBR is responsive to moisture, char, or ash in the soil, and more
importantly the amount of chlorophyll content in plants [47]. NBR is calculated from the following
equation [33]:

NBR =
(Near− Infrared − Shortwave− Infrared)
(Near− Infrared + Shortwave− Infrared)

(1)

The ability to develop NBR values for both pre-fire and post-fire images allows for the derivation
of another spectral index called the differenced NBR (dNBR). dNBR provides the means to characterize
fire severity and to delineate fire perimeters [33]. dNBR is calculated as follows [33]:

dNBR = PreNBR− PostNBR (2)

The dNBR spectral index is the foundation to characterize fire severity and to outline fire perimeters
for the MTBS database [33]. This study only incorporates the geospatial product known as the burn
area boundary; a polygon layer derived from the fire perimeter Landsat imagery that is produced via
the dNBR approach. To ensure consistent and high spatial precision in the development of the fire
perimeter data, MTBS analyst delineate the perimeter by on-screen interpretation of the reflectance
imagery and the NBR, dNBR, and relativized dNBR imagery [45]. The digitization of the imagery
to develop the burn area boundary is conducted at on-screen display scales between 1:24,000 and
1:50,000 [45]. In addition, this study uses the corresponding tabular data that are associated with the
burn area boundary products. However, as mentioned these polygon perimeters contain an inherent
overestimation of the true area burned because the perimeters often include unburned patches [43].
The islands of unburned area are quantified in the unburned to low severity class (areas that are
either unburned or visible fire effects that affect a small part of the site, less than 5%) and varies
fire-by-fire [7,45]. Yet, the longevity of the database and the consistent derivation of data make MTBS
useful in comparison to longer and less complete fire databases [21].

2.2. Methods

This study uses the current entirety of the MTBS record (1984–2017) for CONUS under the premise
of GACCs. Again, GACCs are geopolitical boundaries with similar fire-weather types, defined by
an interagency fire management organization made up of Federal and state wildland fire directors,
that are useful in mitigating, planning, and allocating resources [5]. CONUS encompasses nine GACC
regions which are the following: Northwest (NW), Northern California (NCA), Southern California
(SCA), Great Basin (GB), Northern Rockies (NR), Rocky Mountain (RM), Southwest (SW), Eastern (E),
and Southern (S). As seen in Figure 1, the MTBS data (represented as black incident points in the
figure) are overlaid across the nine GACC regions. Then, using the methods further described in this
section, these fire incidents are classified to a particular GACC. These nine GACC regions serve as
the framework to characterize the wildfire regimes of CONUS concerning the three parameters (total
burned area, frequency, average burned area) from 1984 to 2017 (seen in Figure 2).

MTBS data (available at www.mtbs.gov) was accessed through the interactive viewer.
The interactive viewer allows for filtering of the wildfire archive to meet research needs. The chosen
selection produced data packages at the state and yearly level; each with corresponding geospatial
layers and maps, remotely sensed imagery, and summary analysis products. Aggregation of forty-three
state datasets was conducted to encompass the study region from 1984 to 2017. Only forty-three
state datasets were used rather than forty-eight because the following states did not have wildfires
meeting the 500 acres or greater requirement to be included in the MTBS archive: Connecticut, Illinois,
New Hampshire, Rhode Island, and Vermont. Using MATLAB scripts to evaluate every fire incident
within the forty-three-state dataset, the following information was extracted: Fire ID, date, burned area
(measured in acres), and the GACC region. It should be noted that the aforementioned information

www.mtbs.gov
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was obtained from the reporting data that is associated with every wildfire incident because of the
feasibility to extract the total burned area value and GACC identification. Then, the selected wildfire
information was organized at both monthly and yearly scales. This setup allowed for the development
of the three parameters analyzed in this study per GACC which are total burned area, frequency,
and average burned area per year over the 34-year record. The formulation of the average burned area
per year parameter is a result of dividing the total burned area per year by the frequency per year.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 17 
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However, when necessary ArcGIS Pro was used to correct any duplication of fire records that
existed in various state datasets and to assign wildfires that crossed country borders to a GACC
region. The origin of the duplication of fire records result from fire incidents crossing state lines; hence,
corresponding fire records being introduced into the appropriate state datasets. To bypass this issue,
a GACC shapefile, provided by the National Fire Interagency Fire Center on ArcGIS Hub (available at
https://hub.arcgis.com/datasets/nifc::national-gacc-boundaries), was used to determine if a fire incident
crossed a GACC boundary rather than a state boundary. This method allowed to readjust and reassign
wildfires to match the study’s GACC masking. If the fire incident crossed a GACC boundary then GIS
techniques were used to determine how much burned area belonged to a certain GACC region which
also affects the fire frequency of a GACC region. If a fire incident did not cross a GACC boundary
then the duplicate fire incident data would be removed from the state dataset containing the duplicate
information. Any recalculation of the fire incident data would be used to update both the monthly and
yearly data. In regard to wildfires that crossed into another country’s border (e.g., Canada, Mexico),
the ArcGIS hub GACC shapefile was used to determine which GACC region these wildfires pertain.
A visual assessment of the origin of the wildfire is the primary mechanism in assigning these wildfires
to a GACC region. After processing and correcting the MTBS data to fit the study’s analysis, the data
underwent linear regression analyses and was tested for significance under the Mann–Kendall test.

Previous studies have used regression analyses, both bivariate and multiple, to determine
relationships between anthropogenic-wildfire relationships, and climate–wildfire relationships
at different levels and types of aggregation (e.g., state, national, ecoregions) [21,25,26,36,48].
Linear regression analyses have also been used to evaluate the wildfire frequency and burned
area by vegetation type to determine changes in fire regimes over time [49]. In this study, the annual
total burned area, frequency, and average burned area time series were plotted for all nine GACC
regions over the period and fitted with a trend line using linear regression techniques in MATLAB.
In using linear regression techniques, it is assumed there is a linear relationship between time and one
of the three parameters analyzed for each of the nine GACC regions. The linear regression equation is
defined as:

ŷ = a + bx (3)

where ŷ is the predicted value of the dependent variable, x is the observed value of the independent
variable, a is the intercept and b is the slope [50]. In regard to the linear regression techniques,
the least-squares method is used because it minimizes the distance from the observed response to
the predicted values [50]. Additionally, the coefficient of determination (R2) is used to interpret the
proportion of the total variation in the remote sensing observations that can be accounted for by its
linear regression over time [50].

To assess the significance of the monotonic trends of the total burned area, frequency, and average
burned area time series within the nine GACC regions, a two-sided Mann–Kendall test was used [51,52].
The Mann–Kendall test is one of the primarily used non-parametric tests for determining significant
trends in a given time series [53]. The crucial reasoning for using a non-parametric statistical test
rather than a parametric test is that a non-parametric test is more suitable for non-normal distributed
data [54]. The null hypothesis of the Mann–Kendall test is that no monotonic trend is present within
the given data, whereas, the alternative hypothesis is the contrary [51,52]. The equation for the original
Mann–Kendall test for two sets of observations (X and Y) and to calculate the necessary statistic S is
the following [53]:

S = Σi< jai jbi j (4)

where

ai j = sgn
(
x j − xi

)
=


1 xi < x j
0 xi = x j
−1 xi > x j

(5)

and bi j is defined similarly for the observations in Y. However, this study uses the values in Y as a

https://hub.arcgis.com/datasets/nifc::national-gacc-boundaries
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time order of the time series X which makes the original Mann–Kendall a trend test and the statistic S
becomes the following equation [53]:

S = Σi< jai j = Σi< jsgn
(
x j − xi

)
(6)

along with the corresponding standard deviation, variance, and the standardized test statistic
Z equations that are provided with the Mann–Kendall script found on the file exchange MathWorks
site (available at https://www.mathworks.com/matlabcentral/fileexchange/25531-mann-kendall-test).
Ultimately, the trends are tested for significance by using the standardized test statistic Z (which
uses the calculated statistic S) and comparing it with the standard normal variate at the desired
significance level (α) [53]. The significance level for this study is at α = 0.05. In using the Mann–Kendall
test MATLAB script, the output results in a value of 1 indicating a rejection of the null hypothesis
(a significant trend is present) and a 0 for insufficient evidence to accept the alternative hypothesis
(no significant trend is present). The usage of the Mann–Kendall test for trend significance has been
used in other wildfire studies [21,23].

It should be noted that the linear regressions and Mann–Kendall tests were conducted on large
wildfire data as classified by the MTBS database. An important understanding is that the MTBS
database uses the 97◦ longitude as the means to define the threshold for large wildfires within a region
(see Section 2.1). The western GACCs (i.e., NW, NCA, SCA, NR, GB, and SW GACCs) have the large
wildfires that are 1000 acres or greater, while the eastern GACCs (i.e., E GACC) have large wildfires
that are 500 acres or greater. S and RM GACCs intersect with the 97◦ longitude; however, most of
the S GACC is on the east of the 97◦ longitude and most of the RM GACC is on the west of the 97◦

longitude. It is worth mentioning that the MTBS database does not have data available to access
wildfires incidents below the 1000-acre threshold in the west. Not being able to understand wildfire
trends in the west that incorporates 500 acres or greater wildfire data is a limitation, but it does not take
away the importance of our study in better understanding wildfire trends across CONUS. Our study
focused on using on remote sensing observations that were consistently derived and over a relatively
long period. Lastly, in the following sections, the nine GACC regions will be referred to by their
acronyms as seen earlier in this section (Section 2.2).

3. Results

3.1. Total Burned Area Trends of the Nine GACC Regions

The Mann–Kendall test (p < 0.05) determined that out of the nine GACC regions, only five regions
show statistically significant trends in the total burned area parameter and all demonstrate increasing
trends over time (seen in Figure 3). These regions are the following: NW, NR, RM, SW, and S. The linear
regression results depict that the GACC wildfire regime that has the strongest positive trend over time
is the SW GACC, the slope is 120.48 km2/year. Interestingly, the SW GACC has an anomaly in its
record, occurring in 2011 (seen in Figure 3), which accounts for approximately 27% of the 34-year total
burned area record. Other regions displaying noteworthy positive trends over time are the NW, and GB
GACCs (seen in Table 2 and Figure 3); Table 2 summarizes the results of the linear regression, coefficient
of determination (R2), and Mann–Kendall test for the three parameters within their respective GACC
regions. Whereas, both California GACCs do not demonstrate significant positive trends in the total
burned area; however, it should be noted that both regions are experiencing greater variability in more
recent years. In regard to which region has the “best” linear fit to our linear model is the NW GACC
(R2 = 0.30). Whereas, the GB GACC displays a much weaker linear fit (R2 = 0.06). The E and S GACC
exemplify opposing trend directions over the 34-year record (Figure 3h,i) and notable differences in their
slope (seen in Table 2). The E GACC is the only region with a negative trend (slope = −12.27 km2/year)
in the total burned area parameter and has experienced a fairly stable wildfire regime since the 1990s.
Whereas, the S GACC is a region experiencing a gradual rise in the amount of total burned area over

https://www.mathworks.com/matlabcentral/fileexchange/25531-mann-kendall-test
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time (slope = 57.04 km2/year). Essentially all GACC regions, except for the E GACC, displayed positive
trends in the total burned area.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17 
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Figure 3. (a–i) Time series of the nine GACC regions (1984–2017) for the parameter of total burned
area per year. Each time series is fitted with a trend line, in red, using linear regression techniques
(least-squares method).

Table 2. Characterization of the nine GACC regions based on the metrics of the three
parameters analyzed.

GACC Region Parameter Slope 1 R2 Trend Direction Significance 2

(p < 0.05)

Total Burned Area 99.85 0.30 ↑ *
Northwest Frequency 0.99 0.24 ↑ *

Avg. Burned Area 1.11 0.22 ↑ *

Total Burned Area 37.78 0.15 ↑

N. California Frequency 0.29 0.03 ↑

Avg. Burned Area 1.32 0.24 ↑ *

Total Burned Area 28.50 0.11 ↑

S. California Frequency −0.16 0.02 ↓

Avg. Burned Area 1.25 0.24 ↑ *

Total Burned Area 90.17 0.07 ↑

Great Basin Frequency 0.46 0.009 ↑

Avg. Burned Area 0.84 0.19 ↑ *

Total Burned Area 53.59 0.09 ↑ *
N. Rockies Frequency 1.27 0.19 ↑ *

Avg. Burned Area 0.19 0.008 ↑

Total Burned Area 48 0.20 ↑ *
Rocky Mtn Frequency 0.68 0.1 ↑ *

Avg. Burned Area 0.84 0.21 ↑

Total Burned Area 120.48 0.15 ↑ *
Southwest Frequency 1.87 0.14 ↑ *

Avg. Burned Area 1.12 0.32 ↑ *

Total Burned Area −12.27 0.08 ↓

Eastern Frequency −0.48 0.05 ↓

Avg. Burned Area −0.24 0.07 ↓

Total Burned Area 57.04 0.19 ↑ *
Southern Frequency 3.13 0.28 ↑ *

Avg. Burned Area 0.04 0.003 ↑

1 The unit of the slope for both Total Burned Area and Average Burned Area parameters is km2/year, while the
unit of the slope for the Frequency parameter is counts/year. 2 Trend significance at a 95% confidence interval was
conducted using the Mann–Kendall test. The significant trend is marked with an asterisk (*) for the parameter.
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3.2. Frequency Trends of the Nine GACC Regions

The Mann–Kendall test (p < 0.05) determined that out of the nine GACC regions, only five regions
display significant frequency trends over time and all demonstrate positive trajectories. These regions
are the following GACCs: NW, NR, RM, SW, and S. The linear regression results (seen in Table 2)
depict that the GACC wildfire regime that shows the strongest positive trend over time is the S GACC,
the slope is 3.13 counts/year. However, the S GACC exemplifies much variability in the occurrence of
large wildfires (defined in this region as 500 (2.02 km2) acres or greater) since 1997. The GACCs in
the Western US that are experiencing a relatively “strong” positive frequency trend (large wildfires
defined as 1000 (4.05 km2) acres or greater) are the NR GACC (slope is 1.27 counts/year) and the SW
GACC (slope is 1.87 counts/year). The linear regression results also determined that the S GACC has
the best linear fit over time (R2 = 0.28), with the NW GACC closely following it (R2 = 0.24). As seen
in Figure 4, the E GACC is no longer the only GACC region defined by a negative trend over time;
the SCA GACC is also framed by a negative trend. It is clear that with a declining total burned area
trend for the E GACC, there is a corresponding negative frequency trend. However, the SCA GACC
shows a positive total burned area trend. These opposing trends suggest that larger wildfires over
time are occurring at a less frequent rate in the region. The remaining GACCs (NCA, GB, and NR)
all demonstrate gradual positive trends over time. It appears that most of the GACC regions that
presented positive trends in the total burned area are also displaying positive trends in the frequency
trends, except for the SCA GACC.
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3.3. Average Burned Area of the Nine GACC Regions

The results from the third analyzed parameter, average burned area per year, gives another view
on how total burned area and frequency are interconnected. This allows for some understanding of
how fire size is changing over time within the confines of CONUS. The NCA, SCA, and GB GACCs did
not show any statistically significant trends under the Mann–Kendall test for the total burned area and
frequency parameters. However, the average burned area parameter for all of the three aforementioned
GACCs shows significant positive trends as indicated in Figure 5 and Table 2. In addition to the
previously mentioned GACCs, the SW (R2 = 0.32), and NW (R2 = 0.22) GACCs also demonstrate
significant trends in regard to the average burned area parameter. The NW and SW GACC regions
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showed statistically significant trends in every parameter analyzed. It implies that the NW and SW
GACCs encompass wildfire regimes that have shown the greatest changes within the period in a
positive trajectory. The NR, RM, and S GACCs all have slight gradual positive trends, with the RM
GACC having the best linear fit (R2 = 0.21) out of the three. As seen in Figure 5, the E GACC displayed
a negative trend and could not be characterized as having a significant trend. Hence, the E GACC is
the region which is experiencing a relatively gradual decline in the total burned area, frequency, and
average burned area trends. It is also the only GACC region to exemplify no statistically significant
trends in any of the three observed parameters. However, these results imply that the E GACC is
showing a decrease in frequency and burned area in regard to large wildfires, but does not incorporate
the effect of smaller wildfires in the region. The NR and S GACCs are defined by average burned area
trends that are relatively flat (seen in Figure 5), which is a characterization that was not seen in the
total burned area and frequency parameters. Therefore, the average burned area parameter allows for
another view on how to understand the increasing changes of fire regimes which would be limited if
the scope of the analysis only incorporated the total burned area and frequency trends.
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4. Discussion

Most of the GACC regions exhibit positive trends in the observed wildfire parameters (total
burned area, frequency, average burned area). Lightning-caused wildfires were most prominent
in the Northwest forested mountains ecoregion [23] which could have played a large role in the
significant wildfire trends observed in the NW GACC. The NCA GACC is a fire regime that exemplifies
energy-limited characteristics [55]. This is because large fires can occur with temperatures rising
to a limit that dries out the plethora of fuel that exists in the region because it is a relatively dense
forested ecosystem [55]. In addition, within the Mediterranean California and Marine West Coast
Forests ecoregions it was demonstrated that as biomass increased, large fire size increased, a possible
by-product of fuel continuity [22]. The aforementioned phenomenon could be a factor that could
explain the significant average burned area trend not only seen in the NCA GACC but also the SCA
GACC. The SCA GACC demonstrates a moisture-limited regime where large fires can occur because of
successful rain events that lead to fuel accumulation [55]. Hence, when this increased fuel load is dried
out it can exacerbate the occurrence of large fires [55]. Now, a possible explanation for the decreasing
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trend in the frequency of the SCA GACC region can be related to the most recent drought years in the
region (2011–2015) because it is a region that largely relies on fuel accumulation. It has been projected
that the area burned by Southern California wildfires in May-September, which are not driven by the
Santa winds, would increase by 77% because of the warmer and drier climate under the representative
concentration pathway 8.5 scenario [56]. The GB GACC is a region with increases in fire frequency
and area burned in recent years which have been in connection with the invasion of nonnative annual
grasses across large portions of the region [21]. The aforementioned factor is a possible explanation in
the observed significant average burned area parameter.

The NR and RM GACCs demonstrate an increase in wildfire activity, especially during the
last decade. This is a possible response to climate change, and the gradual accumulation of fuel
because of the fire management practice of fire suppression within the Rocky Mountain forests [57].
Fire suppression is more relevant to the current increase in fire activity in the NR and RM GACCs
because fire suppression efforts lead to increasing fuel loading and continuity on most forested
landscapes in the Western US [40]. The SW GACC presents an interesting case regarding the total
burned area and frequency parameters. In 2011, the SW GACC experienced the largest total burned
area and the greatest count of fire frequency. The observed record-breaking burned area, during
2011, is interesting because drought conditions did exist in the area, but it was not exceptionally
warm throughout Arizona and New Mexico, where record-breaking forest fires occurred [58]. Hence,
the total burned area in the SW GACC, in 2011, was very likely promoted by record-low precipitation
and record-high vapor-pressure deficit (VPD) [58]. More importantly, the SW GACC is a region
with significant trends in every observed wildfire parameter. This could be because of increasing
temperature, and vapor pressure deficit trends and decreasing precipitation trends since 1984 [37].

On the other hand, the E GACC exemplifies a decreasing trend in every parameter analyzed;
however, no statistically significant trends were observed. However, a study has suggested that the
very large fires that occur in the Eastern US are largely related to long-term droughts, especially
under sub-seasonal drought and fire-weather conditions [17]. It is also noteworthy that the E GACC
encompasses a region that is dominated by human-started wildfires, predominantly in the Spring [23].
The E GACC is projected to have a slight increase in the potential for very large wildfires which could
prove to be detrimental on private property and air quality in the more densely populated regions of the
Eastern US [24]. As for the S GACC, in recent years, it has shown an increase in total burned area and
frequency, which was in agreement with predictions on fire season extension of two to three months for
the entire Southern US that will have repercussions on fire management in the future [59]. The S GACC
is a region that is also dominated by human-ignited wildfires, primarily in the fall and winter in Texas
and the Gulf States [23]. In addition, the S GACC has a noteworthy dissociation between hydrologic
variables and burned area because it is a region dominated by human-ignited wildfires [10]. Further,
the total burned area of large human-caused wildfires was highest in the Southern Florida region [22].
Moreover, the potential for very large wildfires is projected to increase in the Southern Coastal Plain
and most of Florida [24]. Thus, the S GACC is an important region to continue monitoring because of
the aforementioned projections and is already exhibiting significant total burned area and frequency
trends. The wildfire behavior in the S GACC demonstrates the importance of studying wildfire regimes
across CONUS to identify all significant wildfire regimes.

The weighing damage caused by current wildfire trends and the estimated potential damage
has motivated policymakers, managers, and communities to develop new systems to better mitigate
the changing wildfire regimes across CONUS. This study has identified significant GACC wildfire
regimes which is of importance because GACCs are used to develop National Significant Wildland
Fire Potential Outlook Maps; a service provided by the National Interagency Coordination Center
(NICC) which is part of the National Interagency Fire Center (NIFC) [60]. These maps are designed
to provide outlooks for the current month, the next month, and a seasonal look that is two months
beyond that [60]. These maps reflect the purpose of GACCs, to improve information available to fire
management decision makers. Additionally, when a GACC has depleted its resources it can ask for help
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from NICC in locating additional resources, air tankers, radios, and many other needed tools to fight
wildfires [60]. Furthermore, the usage of GACCs are changing. For example, a study used GACCs to
quantify relationships between monthly Artic sea-ice extent and annual wildfire activity in the Western
US, using GACCs to determine a potential driver of wildfire activity [61]. A better understanding
of how GACC wildfire regimes are evolving over time can improve predictive services (i.e., outlook
maps, other fire-related products), help protect lives and property, and improve firefighting efficiency.

5. Conclusions

The web of natural and anthropogenic influences on wildfire regimes has increased wildfire
activity; hence, altering wildfire regimes across CONUS. Therefore, the importance of our study is to
disentangle which wildfire regimes are exhibiting significant wildfire trends under the GACC premise.
Using the GACC level of aggregation allows for wildfire information to be readily available for local,
state, and national fire management agencies. Furthermore, GACCs can serve as the framework for a
more efficient method of logistical coordination and distribution of resources (e.g., people, aircraft,
equipment) within each GACC region, and other GACC regions. Our study demonstrates that all
GACC regions across CONUS, except the E GACC, demonstrate at least one or more positive trends
in the observed wildfire parameters. Additionally, the NW and SW GACC regions demonstrated
statistically significant trends in every observed parameter. Interestingly, the NCA, SCA, and GB
GACCs show statistically significant trends in the average burned area parameter. The S GACC
is a region that is evolving into a wildfire regime that is largely characterized by the Western US
wildfire regimes. Further exploration is needed to understand and quantify which regions within the
GACCs are attributed to the significant wildfire trends determined in this study. Ultimately, there is
heterogeneity in the observed wildfire trends across CONUS which are mainly increasing over time.
This will require a paradigm shift in wildfire management practices to better respond to the current
wildfire activity and to prepare for the projected increases in wildfire activity across CONUS.
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