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Abstract

Let D be a set of positive integers. The kappa value of D, denoted
by k(D), is the parameter involved in the so called “lonely runner
conjecture.” Let x,y be positive integers, we investigate the kappa
values for the family of sets D = {2,3,z,y}. For a fixed positive
integer x > 3, the exact values of k(D) are determined for y = z + ¢,
1 <4 < 6. These results lead to some asymptotic behavior of k(D)
for D ={2,3,z,y}.

1 Introduction

Let D be a set of positive integers. For any real number x, let ||z|| denote the
minimum distance from x to an integer, that is, ||z|| = min{[z] —x,z— [z]}.
For any real ¢, denote |[tD|| the smallest value ||td|| among all d € D. The
kappa value of D, denoted by (D), is the supremum of ||tD|| among all real
t. That is,

k(D) := sup{a: ||[tD|| > «a for some t € R}.

Wills [20] conjectured that k(D) > 1/(]D|+1) is true for all finite sets D.
This conjecture is also known as the lonely runner conjecture by Bienia et al.
[2]. Suppose m runners run laps on a circular track of unit circumference.
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Each runner maintains a constant speed, and the speeds of all the runners
are distinct. A runner is called lonely if the distance on the circular track
between him or her and every other runner is at least 1/m. Equivalently,
the conjecture asserts that for each runner, there is some time ¢t when he or
she becomes lonely. The conjecture has been proved true for |D| < 6 (cf.
[1, 3, 6, 7]), and remains open for |D| > 7.

The parameter (D) is closely related to another parameter of D called
the “density of integral sequences with missing differences.” For a set D of
positive integers, a sequence S of non-negative integers is called a D-sequence
if |z —y| € D for any z,y € S. Denote S(n) as |[SN{0,1,2,--- ,n—1}|. The
upper density §(5) and the lower density 6(S) of S are defined, respectively,
by 0(S) = lim,, .o S(n)/n and §(S) = lim, ,__S(n)/n. We say S has density
§(9) if 6(S) = §(S) = §(S). The parameter of interest is the density of D,
w(D), defined by

w(D) :=sup { 6(5) : S is a D-sequence}.
It is known that for any set D (cf. [4]):
(D) = k(D). (1)

For two-element sets D = {a,b}, Cantor and Gordon [4] proved that

k(D) = u(D) = % For 3-element sets D, if D = {a,b,a + b} it was
proved that k(D) = u(D) and the exact values were determined (see Theorem
2 below). For the general case D = {i,j, k}, various lower bounds of k(D)
were given by Gupta [11], in which the values of u(D) were also studied. In
addition, among other results it was shown in [11] that if D is an arithmetic
sequence then k(D) = p(D) and the value was determined.

The parameters k(D) and p(D) are closely related to coloring parameters
of distance graphs. Let D be a set of positive integers. The distance graph
generated by D, denoted as G(Z, D), has all integers Z as the vertex set. Two
vertices are adjacent whenever their absolute value difference falls in D. The
chromatic number (minimum number of colors in a proper vertex-coloring)
of the distance graph generated by D is denoted by (D). It is known that
X(D) < [1/k(D)] for any set D (cf. [21]).

The fractional chromatic number of a graph G, denoted by x;(G), is the
minimum ratio m/n (m,n € Z%) of an (m/n)-coloring, where an (m/n)-
coloring is a function on V(G) to n-element subsets of [m] = {1,2,--- ,;m}



such that if uv € E(G) then f(u)N f(v) = . It is known that for any graph
G, xs(G) < x(G) (ct. [21]).

Denote the fractional chromatic number of G(Z, D) by x (D). Chang et
al. [b] proved that for any set of positive integers D, it holds that x (D) =
1/u(D). Together with (1) we obtain

1 1
D) xf(D) < x(D) < [/@(D)W' (2)

The chromatic number of distance graphs G(Z, D) with D = {2,3,z,y}
was studied by several authors. For prime numbers = and y, the values of
X(D) for this family were first studied by Eggleton, Erdés and Skilton [10]
and later on completely solved by Voigt and Walther [18]. For general values
of z and y, Kemnitz and Kolberg [13] and Voigt and Walther [19] determined
X(D) for some values of = and y. This problem was completely solved for all
values of x and y by Liu and Setudja [15], in which x(D) was utilized as one
of the main tools. In particular, it was proved in [15] that (D) > 1/3 for
many sets in the form D = {2,3,z,y}. By (2), for those sets it holds that
x(D) = 3.

In this article we further investigate those previously established lower
bounds of k(D) for the family of sets D = {2,3,z,y}. In particular, we
determine the exact values of k(D) for D = {2,3,z,y} with |z —y| < 6.
Furthermore, for some cases it holds that x(D) = u(D). Our results also
lead to asymptotic behavior of k(D).

2 Preliminaries

We introduce terminologies and known results that will be used to determine
the exact values of k(D). It is easy to see that if the elements of D have a
common factor r, then (D) = k(D') and u(D) = u(D"), where D' = D/r =
{d/r : d € D}. Thus, throughout the article we assume that ged(D) = 1,
unless it is indicated otherwise.

The following proposition is derived directly from definitions.

Proposition 1. If D C D' then k(D) > k(D') and u(D) > u(D").

The next result was established by Liu and Zhu [16], after confirming a
conjecture of Rabinowitz and Proulx [17].



Theorem 2. [16] Suppose M = {a,b,a+ b} for some positive integers a and
b with gcd(a,b) = 1. Then

w(M) = k(M) :max{éﬁi, éii}

By Proposition 1, if {a,b,a+b} C D for some a and b, then Theorem 2 gives
an upper bound for (D).

For a D-sequence S, denote S[n| = |{0,1,2,...,n} NS|. The next result
was proved by Haralambis [12].

Lemma 3. [12] Let D be a set of positive integers, and let o € (0,1]. If
for every D-sequence S with 0 € S there exists a positive integer n such that

S[n
n[—JJ < a, then u(D) < a.

For a given D-sequence S, we shall write elements of S in an increasing
order, S = {sq, s1, S2,...} with sy < s; < s9 < ..., and denote its difference

sequence by
A(S) = {50,51,52, .. } where 5@ = Sj+1 — Si-

We call a subsequence of consecutive terms in A(S), da, 0441 -+, Oats—1,
generates a periodic interval of k copies, k > 1, if 0jaqp)+i = Oai for all
0<i<b-—1,1<j<k—1. Wedenote such a periodic subsequence of A(S)
by (04,0011, - - -, 0ass-1)*. If the periodic interval repeats infinitely, then we
simply denote it by (dq4, dat1, - - -, darb—1). If A(S) is infinite periodic, except
the first finite number of terms, with the periodic interval (t1, o, ..., tx), then

k
the density of S is k/(>_ t;).
i=1

Proposition 4. A sequence of non-negative integers S is a D-sequence if

b
and only if Z 0; & D for every a < b.

Proposition 5. Assume 2,3 € D. If S is a D-sequence, then §; + d;41 > 5
for all i. The equality holds only when {6;, 6,41} = {1,4}. Consequently,
(D) <2/5.

Lemma 6. Let D = {2,3} UA. Then x(D) = 2/5 if and only if A C {x :
x=2,3 (mod 5)}. Furthermore, if k(D) = 2/5, then u(D) = 2/5.



Proof. Let D = {2,3}UA. Assume A C {z:x=2,3 (mod 5)}. Let t = 1/5.
Then |[td|| > 2/5 for all d € D. Hence k(D) > 2/5. On the other hand, the
density of the infinite periodic D-sequence S with A(S) = (1,4) is 2/5. By
Proposition 5, this is an optimal D-sequence. Hence, p(D) = 2/5, implying
k(D) = 2/5.

Conversely, assume k(D) = 2/5. Then pu(D) > 2/5. By Proposition 5,
w(D) = 2/5. By Proposition 4, this implies that if d € D, then d # 0,1,4
(mod 5). Thus the result follows. O O

Note, in D = {2,3,z,y}, if z = 1, then it is known [16] and easy to
see that u(D) = k(D) = 1/4 if y is not a multiple of 4 (with A(S) = (4));
otherwise y = 4k and u(D) = k(D) = k/(4k + 1) (with A(S) = ((4)*715)).
Hence throughout the article we assume x > 3.

Another method we will utilize is an alternative definition of (D). In
this definition, for a projected lower bound « of k(D), for each element z in D
the valid time t for 2z to achieve « is expressed as a union of disjoint intervals.
Let a € (0, 3). For positive integer ¢, define I;(a) = {t € (0,1) : || ti || > a}.
Equivalently,

Lo)={t:n+a<ti<n+1—a0<n<i-—1}

That is, I; consists of intervals of reals with length (1 — 2«)/i and centered
at (2n +1)/(2i), n =0,1,...,i — 1. By definition, k(D) > « if and only if
Nicp Li(a) # O. Thus,

k(D) = sup {a € (0, %) : ﬂ Ii(a) # @} .

i€D

Observe that if () I;(«) consists of only isolated points, then x(D) < a.
ieD
Hence, we have the following:

Proposition 7. For a set D, k(D) < d/cif () L is a set of isolated points,
i€D
where

1—1
I — U {d%—.cn c—d.+cn

)
1 1

n=0



3 D={23,z,ytfory=a+1,x+2,2+3

Theorem 8. Let D ={2,3,z,x + 1}, © > 4. Then

il ST S
2 =1 N
w(D) = u(D) { Yy if x (mod 5);

EE: .
(9}
e otherwise.

Proof. We prove the following cases.
Case 1. * = 5k 4+ 2. The result follows by Lemma 6.

Case 2. * = 5k+3. Lett = (k+1)/(5k+6). Then ||dt|| > (2k+2)/(5k+6)
for every d € D. Hence k(D) > (2k +2)/(5k + 6).

By (1) it remains to show that u(D) < (2k + 2)/(5k + 6). Assume to
the contrary that p(D) > (2k + 2)/(5k 4+ 6). By Lemma 3, there exists a
D-sequence S with S[n|/(n + 1) > (2k + 2)/(5k + 6) for all n > 0. This
implies, for instance, S[0] > 1, so sp = 0; S[2] > 2, 50 51 =1 (as 2,3 € D);
S[5] > 3, so s3 = 5. Moreover, S[5k + 5] > 2k + 3. By Proposition 5, it
must be (Jg, 01,02, ...,006+1) = (1,4,1,4,...,1,4). This implies 5k +5 € .5,
which is impossible since 1 € S and 5k + 4 € D. Therefore, (D) = k(D) =
(2k + 2)/(5k + 6).

Case 3. * = 5k+4. Lett = (k+1)/(5k+T7). Then ||dt|| > (2k+2)/(5k+T)
for all d € D. Hence k(D) > (2k + 2)/(5k + 7).

By (1) it remains to show that u(D) < (2k + 2)/(5k + 7). Assume to
the contrary that p(D) > (2k + 2)/(5k + 7). By Lemma 3, there exists a
D-sequence S with S[n|/(n+ 1) > (2k + 2)/(5k + 7) for all n > 0. This
implies, for instance, S[0] > 1, so sp = 0; S[3] > 2, s0 s1 =1 (as 2,3 € D);
and S[bk + 6] > 2k + 3. By Proposition 5, either 5k + 5 or 5k + 6 is an
element in S. This is impossible since 0,1 € S and 5k + 4,5k +5 € D. Thus
w(D) = k(D) = (2k + 2)/(5k + 7).

Case 4. * = 5k+5. Lett = (k+1)/(5k+8). Then ||dt|| > (2k+2)/(5k+8)
for all d € D. Hence k(D) > (2k + 2)/(5k + 8).

It remains to show u(D) < (2k 4+ 2)/(5k + 8). Assume to the contrary
that u(D) > (2k + 2)/(5k + 8). By Lemma 3, there exists a D-sequence S
with S[n|/(n+ 1) > (2k 4+ 2)/(5k + 8) for all n > 0. Similar to the above,
one has 0,1 € S and S[bk + 7] > 2k 4 3. This implies that one of 5k + 5,
5k 4+ 6, or bk + 7 is an element in S, which is again impossible. Therefore,
w(D) = k(D) = (2k + 2)/(5k + 8).



Case 5. * = 5k+1. Lett = (k+1)/(5k+4). Then ||dt|| > (2k+1)/(5k+4)
for all d € D. Hence k(D) > (2k + 1)/(5k + 4).

Now we show pu(D) < (2k + 1)/(5k 4+ 4). Assume to the contrary that
w(D) > (2k +1)/(5k +4). By Lemma 3, (so,s1) = (0,1), and S[5k + 3] >
2k + 2. Because S[bk] <2k + 1, so SN {5k + 1,5k + 2,5k + 3} # O, which
is impossible. Therefore, (D) = k(D) = (2k + 1)/(5k + 4). O O

By the above proofs, one can extend the family of sets D to the following:

Corollary 9. Let D = {2,3,z,x + 1} U D', where D' C {y : y = +2,43
(mod (x +3))}. Then p(D) = k(D) = u({2,3,z,x + 1}).

Corollary 10. Let D = {2,3,z,x + 1}. Then

lim k(D) = %

r—00

Theorem 11. Let D = {2,3,z,x + 2}, v > 4. Assume x +4 = 60 + r with
0<r<5. Then

ifO<r<2
k(D) =
L213+1J
2x4-2

Furthermore, k(D) = p(D) if r # 3.

if3<r<5.

Proof. We prove the following cases.

Case 1. © = 6k + 2. Thenr =0. Let t = 1/6. Then ||dt|| > 1/3 for all
d € D. Hence k(D) > 1/3.

Now we prove u(D) < 1/3. Let M' = {2, z,x + 2} = {2,6k + 2,6k + 4}.
By Theorem 2 with M = {1,3k+1,3k+2} , we obtain u(M') = (M) = 1/3.
Because M’ C D, so u(D) < u(M') =1/3.

Case 2. ¢ = 6k +3. Thenr =1. Lett = (k+1)/(6k + 7). Then
||dt|| > (2k + 2)/(6k + 7) for all d € D. Hence k(D) > (2k + 2)/(6k + 7).

By Theorem 2 with M = {2, z, 242} = {2,6k+3,6k+5}, we get u(M) =
(2k + 2)/(6k + 7). Because M C D, so u(D) < p(M) = (2k +2)/(6k + 7).
Thus, the result follows.

Case 3. ¢ = 6k + 4. Thenr = 2. Let t = (k+ 1)/(6k + 8). Then
||dt|| > (2k + 2)/(6k + 8) for all d € D. Hence k(D) > (2k + 2)/(6k + 8).



By Theorem 2 with M = {2,z,z + 2} = {2,6k + 4,6k + 6} which can
be reduced to M’ = {1, 3k + 2,3k + 3}, we obtain pu(M) = (k+1)/(3k + 4).
Therefore, u(D) < u(M) = (2k + 2)/(6k + 8). So the result follows.

Case 4. * = 6k + 5. Then r = 3. Let t = (2k + 3)/(12k + 12). Then
||dt|| > (4k+3)/(12k + 12) for all d € D. Hence k(D) > (4k+3)/(12k +12).

By Proposition 7, it remains to show that (\  1; is a set of isolated
1=2,3,z,x+2
points, where

Y

L‘J 4k + 3+ n( 12k:+12) 8k + 9 + n(12k + 12)
= i
Let I = (1. By symmetry it is enough to consider the interval
1=2,3,z,x+2

IN|0,(12k + 12)/2]. In the following we claim I N [0, 6k + 6] = {2k + 3}.
(Indeed, this single point is the numerator of the ¢ value at the beginning of
the proof.)

Note that IoNI3N[0,6k+6] = [(4k+3)/2, (8k+9)/3]. Denote this interval
by

4k +3 8k+9
I2 3 — 3 .
2 3
We then begin to investigate possible values of n for I, and I,2, respectively,
that will fall within I5 3. First, we compare the I, intervals with I 3. Recall

I 344k + n(12 + 12k) 8k + 9 + n(12 + 12k)
T 6k +5 ' 6k +5

} , 0<n<6k+4.
By calculation, the intervals of I, that intersect with I3 are those with
n > k. Similarly, we compare I, intervals with I 3. Recall

3+ 4k 4+ n(12 + 12k) 8k + 9+ n(12 + 12k)
6k + 7 ’ 6k + 7

Im+2:{ },0§n§6k‘+6.
By calculation, the intervals of I, that intersect with /53 are those with
n>k+1.

Next, we consider the intersection between intervals of I, and I,,o. Let
n = k + a for some a > 0 for the I, interval, and let n = k + @’ for some
a’ > 1 for the I, interval. By taking the common denominator of the I,
and I, intervals we obtain the following numerators of those intervals:

for I, : [21 + 84a + 130k + 156ak + 180k* + T2ak® + T2k,
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63 + 84a + 194k + 156ak + 204k* + T2ak* + T2k?);
for I,yo : [15 4 60a’ + 98k + 132a'k + 156k* + 72a’k* + 72k>,
45 + 60a’ + 154k + 132a’k + 180k* + 72a'k* + T2K7].

Using a = a’ = 1, we get
for I, : [105 + 286k + 252k* + 72k* 147 + 350k + 276k? 4 72k°]

for I,y : [75 + 230k + 228K* + 72k%, 105 + 286k + 252k2 4 T2K3].

Thus, there is a single point intersection for I, and I,. when a = o’ = 1,
which is {2k+3}. This single point intersection is also within the I5 3 interval.
Hence, {2k + 3} € 1N [0, 6k + 6].

In addition, through inspection it is clear that making n = k (i.e. a = 0)
for the I, interval and n > k+1 (@’ > 1) for the I, interval removes I, and
I, 5 from intersecting one another. For all other cases, a = 1 and a’ > 2,
a>2and a’ =1, or a,a’ > 2, there will never be an intersection of intervals
for all elements in D, either because the I5 3 interval is too small or because
the I,1o elements become too big. Thus, I N[0, 6k + 6] = {2k + 3}.

Case 5. * = 6k + 6. Then r =4. Let t = (2k 4+ 3)/(12k + 14). Then
||dt|| > (4k+4)/(12k + 14) for all d € D. Hence k(D) > (4k+4)/(12k + 14).

By Theorem 2 with M = {2, x, 2 + 2} = {2,6k + 6,6k + 8} which can be
reduced to M" = {1,3k+3,3k+4}, we get p(M) = k(M) = (2k+2)/(6k+7).
Hence, (D) < u(M) = (2k + 2)/(6k + 7).

Case 6. © = 6k + 7. Then r =5. Let t = (2k 4+ 3)/(12k + 16). Then
||dt|| > (4k+5)/(12k + 16) for all d € D. Hence k(D) > (4k+5)/(12k + 16).

By Theorem 2 with M = {2,z,x 4+ 2} = {2,6k + 7,6k + 9}, we obtain
w(M) = k(M) = (4k +5)/(12k + 16). Therefore, u(D) < (4k + 5)/(12k +
16). O O

Theorem 12. Let D = {2,3,z,2 4+ 3}, x > 4. Assume 2z +3) =968+
with 0 < r < 8. Then

2z+3 — —

k(D) =
" 52 ire<r <8
z+6 Zf ST =0

Furthermore, if r = 0,1,3,6,8 then (D) = u(D).



Proof. We prove the following cases:

Case 1. © = 9k 4+ 3. Then r = 0. Let t = 2/9. Then ||dt|| > 1/3 for all
d € D. Hence k(D) > (6k +3)/(18k +9) = 1/3.

By Theorem 2 with M = {3,z,x + 3} = {3,9k + 3,9k + 6}, which can
be reduced to M’ = {1,3k + 1,3k + 2}, resulting in u(M) = (M) = 1/3.
Because M C D, so u(D) = u(M) =1/3.

Case 2. * = 9k + 8. Thenr =1. Let t = (4k +4)/(18k +19). Then
||dt|| > (6k+6)/(18k +19) for all d € D. Hence k(D) > (6k+6)/(18k +19).

By Theorem 2 with M = {3, x,x+3}, we get k(M) = (6k+6)/(18k+19).
Hence, u(D) < k(M) = (6k + 6)/(18k + 19).

Case 3. ¢ = 9k + 4. Then r = 2. Let t = (4k +2)/(18k + 11). Then
||dt|| > (6k+3)/(18k +11) for all d € D. Thus, k(D) > (6k+3)/(18k 4+ 11).
The proof for the other direction is similar to the proof of Case 4 in

Theorem 11. Let I = ()  I,. By calculation we have IN[0, 9k+(11/2)] =
1=2,3,z,x+3
{4k + 2}. This single point of intersection occurs when n = 2k in the I,

interval, and n = 2k 4+ 1 in the I, 3 interval.

Case 4. © = 9k. Then r = 3. Let t = 4k/(18k + 3). Then ||dt|| >
(6k)/(18k + 3) for all d € D. Thus k(D) > (2k)/(6k + 1).

By Theorem 2 with M = {3,z,2+ 3} = {3,9k,9k + 3}, u(M) = v(M) =
(2k)/(6k + 1). Hence, the result follows.

Case 5. © = 9k + 5. Then r =4. Let t = (4k 4+ 2)/(18k + 13). Then
||dt|| > (6k+3)/(18k + 13) for all d € D. Thus k(D) > (6k + 3)/(18k + 13).
The proof for the other direction is similar to the proof of Case 4 in

Theorem 11. Let I = ()  I;. By calculation we have IN[0, 9k+(13/2)] =
1=2,3,z,x+3
{4k 4 2}. This single point of intersection occurs when n = 2k in the I,

interval, and n = 2k 4+ 1 in the I, 3 interval.

Case 6. * = 9k + 1. Then r = 5. Let t = (4k)/(18k + 5). Then
||dt|| > (6k)/(18k + 5) for all d € D. Thus k(D) > (6k)/(18k + 5).
The proof for k(D) < (6k)/(18k + 5) is similar to the proof of Case 4 in

Theorem 11. Let I = [  I;. By calculation we have N[0, 9k+(5/2)] =
i=2,3,z,x+3
{4k}. This single point of intersection occurs when n = 2k — 1 in the I,

interval, and n = 2k in the I, 3 interval.

Case 7. * = 9k + 6. Then r = 6. Let t = (2k + 3)/(9%k + 12). Then
||dt|| > (3k + 3)/(9k + 12) for all d € D. Thus (D) > (k+1)/(3k + 4).

10



By Theorem 2 with M = {3, x, 2 + 3} with M = {3, 2,2+ 3} = {3,9t +
6,9t + 9}, which can be reduced to M’ = {1,3t + 2,3t 4 3}, we get u(M) =
k(M) = (k+1)/(3k + 4). Because M C D, so k(D) < u(D) < pu(M) <
k(M) = (k+1)/(3k +4).

Case 8. * = 9k + 11. Then r = 7. Let t = (2k +4)/(9% + 17). Then
||dt|| > (3k +5)/(9k + 17) for all d € D. Thus (D) > (3k +5)/(9% + 17).
The proof for the other direction is similar to the proof of Case 4 in

Theorem 11. Let I = ()  I,. By calculation we have IN[0, 9k+(17/2)] =
1=2,3,z,x+3
{2k + 4}. This single point of intersection occurs when n = 2k + 2 in the I,

interval, and n = 2k 4 3 in the I, 3 interval.

Case 9. * =9k + 7. Then r =8. Let t = (2k + 3)/(9%k + 13). Then
||dt|| > (3k +4)/(9k + 13) for all d € D. Thus k(D) > (3k +4)/(9k + 13).
By Theorem 2 with M = {3,z,z + 3} = {3,9t + 7,9t + 10}, we get
k(M) = (3k +4)/(9k + 13). Because M C D, so k(D) < u(D) < p(M) =
k(M) = (3k+4)/(9k + 13). O O

Corollary 13. Let D = {2,3,x,y} where y € {x + 2,2+ 3}. Then

1
lim k(D) = 3

r—00

4 D={23,z,y} fory=x+4,x+5x+6
By similar proofs to the previous section, we obtain the following results.

Theorem 14. Let D ={2,3,z,x + 4}, x > 4. Assume (x +4) = 50 +r
with 0 < r < 4. Then

26+r . .

m ZfO S T S 1,
k(D) =< wuD)= % ifr=2;

253 .

42 Zf3 S T S 4.

Proof. The case for r = 2 is from Lemma 6. The following table gives the
corresponding ¢, k(D), and the n values of I, and I,,4 where the single
intersection point occurs.

11



T r t ninl, |nin I,y k(D)
Sk+4 | 3| (k+1)/(5k+6) k k+1 (2k 4+ 2)/(5k + 6)
Sk+5 | 4| (k+1)/(Bk+T7) k E+1 (2k +2)/(5k 4+ 7)
5k+6 | 0| (k+3)/(5k+13) | k+1 | k+2 | (2k+4)/(5k + 13)
Bk+7 | 1| (k+3)/(k+14) | k+1 | k+2 | (2k+5)/(5k + 14)

Bk+8 | 2 1/5 2/5
[ O
Theorem 15. Let D = {2,3,x,2 + 5}, © > 4. Assume (x +3) = 55 +r

with 0 < r < 4. Then

wD)=2 if0<r<1,;
k(D) =4 2% if2<r<3;
2541 if r=4.

z+3

Proof. The cases for r = 0,1 are by Lemma 6. The following table gives
the corresponding ¢, k(D), and the n values of I, and I,,5 where the single
intersection point occurs.

x r t ninl, |nin I45 k(D)
Bk+4 | 2| (k+t1)/Gk+6) | k+1 | k+1 | (2k+2)/(5k+06)
Sk+5 | 3| (k+1)/(bk+T7) | k+1 E+1 (2k +2)/(5k 4+ 7)
Bk+6 | 4| (k+2)/Gk+9) | k+1 | k+2 | (2k+3)/(5k+09)
5k+7 |0 1/5 2/5
5k+8 | 1 1/5 2/5
U U

Theorem 16. Let D = {2,3,x,2 + 6}, © > 4. Assume (r +8) =
with 0 < r < 4. Then

560 +r
if x =5;
ifr=0;

if 1 <r<3andx #b5;

if r =4.
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Proof. Assume x = 5. That is D = {2,3,5,11}. Letting ¢t = 1/7 we get
||td|| > 2/7 for every d € D. Hence, k(D) > 2/7. On the other hand, by
Theorem 2, ({2,3,5}) = 2/7. Therefore, by (2), we have k(D) < u(D) <
2/7.

The case for » = 0 is from Lemma 6. The following table gives the
corresponding ¢, k(D), and the n values of I, and I,,s where the single
intersection point occurs.

x r t nin I, |nin Iy k(D)
Sk+4 | 2 | (k+2)/(5k +12) k E+1 (2k +4)/(5k + 12)
5k+5 | 3 | (k+2)/(5k + 13) k k+1 | (2k+4)/(5k + 13)
5k+6 | 4| (k+2)/6k+9) | k+1 | k+2 | (2k+3)/(5k +9)

5k+7 | 0 1/5 2/5
5k+8 | 1| (k+3)/(5k+16) | k+1 | k+2 | (2k+6)/(5k + 16)
U U

Corollary 17. Let D = {2,3,xz,y} where y € {x + 4,2+ 5,2+ 6}. Then

lim k(D) = %

r—00

Concluding remark and future study. Similar to Corollary 9, one can
obtain sets D’ that are extensions of the sets D studied in this article, D C D/,
such that k(D) = k(D'). In addition, the methods used in this article can
be applied to other sets D = {2,3,x,z + ¢} with ¢ > 7. For a fixed c,
preliminary results we obtained thus far indicate that the values of k(D)
might be inconsistent for the first finite terms, while after a certain threshold,
they seem to be more consistent (that is, most likely it can be described by
a single formula). Thus, we would like to investigate whether the conclusion
of Corollary 17 holds for all D = {2,3,z,y}, * <y, where y # x + 2, x + 37
In a broader sense, it is interesting to further study the asymptotic behavior
of k(D) for sets D containing 2 and 3, and identify any dominating factors
for such behavior.
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