Joint Distributions

Def: Let X and Y be two discrete random variables defined on the same sample space. The function

$$p(x, y) = P(X = x, Y = y)$$

means: probability $X = x$ and $Y = y$ is called the joint probability function of X and Y.

Let A be the possible values of X and B be the possible values of Y.

Ex. (Using a table)

In a certain suburban area, each household reported the number of cars and TV sets owned. Let X be the number of cars owned by a randomly selected household, let Y be the number of TV sets owned by a randomly selected household.

Suppose we have the following data which makes our joint p.f.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The functions $p_x(x) = \sum_{y \in B} p(x, y)$ and $p_y(y) = \sum_{x \in A} p(x, y)$ are called, respectively, the marginal probability functions of X and Y.

[Table and graph are hand-drawn with various values and functions indicated.]
So for example
\[p(Z=1) = P(X=2, Y=1) = 0.3 \]

What's the probability that a randomly chosen household owns exactly 1 can?
\[P(X=1) = \sum_{y=1}^{4} f(1, y) = f(1, 1) + f(1, 2) + f(1, 3) + f(1, 4) \]
\[= 0.1 + 0 + 0.1 + 0 = 0.2 \]

Ex. Roll a 6-sided die and let the outcome be \(X \). Then toss a fair coin \(X \) times and let \(Y \) denote the number of tails, and let \(Z \) denote the number of heads. Find the joint p.f. of \(X \) and \(Y \) and the marginal probability functions of \(X \) and \(Y \).

Solution: Note that \(X \) can lie in \(A = \{1, 2, 3, 4, 5, 6\} \) and \(Y \) can lie in \(B = \{0, 1, 2, 3, 4, 5, 6\} \).
Case 1: \(\overline{X} = 1 \)

If \(\overline{X} = 1 \), then \(X = 0 \) or \(X = 1 \).

And

\[
P(1,0) = P(X=1, \overline{X}=0) = P(X=1) \cdot P(\overline{X}=0 | X=1)
\]

\[
= \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}
\]

\[
P(1,1) = P(X=1, X=1) = P(X=1) \cdot P(X=1 | X=1)
\]

\[
= \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}.
\]

Case 2: \(\overline{X} = 2 \)

If \(\overline{X} = 2 \), then \(X = 0 \), \(X = 1 \), or \(X = 2 \).

\[
P(2,0) = P(X=2, \overline{X}=0) = P(X=2)P(\overline{X}=0 | X=2)
\]

\[
= \frac{1}{6} \cdot \left(\frac{3}{4} \right) \cdot \left(\frac{1}{2} \right)^0 \left(\frac{1}{2} \right)^3 = \frac{1}{48}
\]

Similarly \(P(2,1) = \frac{1}{12} \) and \(P(2,2) = \frac{1}{24} \).

Case 3: \(\overline{X} = 3 \)

If \(\overline{X} = 3 \), then \(X = 0 \), \(X = 1 \), \(X = 2 \), or \(X = 3 \).

\[
P(3,0) = P(X=3, \overline{X}=0) = P(X=3)P(\overline{X}=0 | X=3)
\]

\[
= \frac{1}{6} \cdot \left(\frac{3}{4} \right) \cdot \left(\frac{1}{2} \right)^0 \left(\frac{1}{2} \right)^3 = \frac{1}{48}
\]

\[
P(3,1) = P(X=3, X=1) = P(X=3)P(X=1 | X=3)
\]

\[
= \frac{1}{6} \cdot \left(\frac{3}{4} \right) \cdot \left(\frac{1}{2} \right)^1 = \frac{3}{48}
\]
Similar calculations yield the following table for $p(x,y)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>$p_x(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1/6$</td>
</tr>
<tr>
<td>2</td>
<td>$1/2$</td>
<td>$2/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1/6$</td>
</tr>
<tr>
<td>3</td>
<td>$1/4$</td>
<td>$3/4$</td>
<td>$3/4$</td>
<td>$3/4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$1/6$</td>
</tr>
<tr>
<td>4</td>
<td>$1/9$</td>
<td>$4/9$</td>
<td>$6/9$</td>
<td>$4/9$</td>
<td>$4/9$</td>
<td>0</td>
<td>0</td>
<td>$1/6$</td>
</tr>
<tr>
<td>5</td>
<td>$1/92$</td>
<td>$5/92$</td>
<td>$10/92$</td>
<td>$10/92$</td>
<td>$5/92$</td>
<td>$1/92$</td>
<td>0</td>
<td>$1/6$</td>
</tr>
<tr>
<td>6</td>
<td>$1/384$</td>
<td>$6/384$</td>
<td>$15/384$</td>
<td>$20/384$</td>
<td>$15/384$</td>
<td>$6/384$</td>
<td>$1/384$</td>
<td>$1/6$</td>
</tr>
</tbody>
</table>

$p_x(x)$ and $p_y(y)$ are gotten by summing the rows and columns of this table, respectively,
Def: Two random variables X and Y, defined on the same sample space, have a continuous joint distribution if there exists a non-negative function $f(x,y)$ on the xy-plane, such that for any region R of the xy-plane that can be formed from rectangles by a countable number of set operations,

$$ P((X,Y) \in R) = \iiint_{R} f(x,y) \, dx \, dy $$

The function $f(x,y)$ is called the joint probability density function of X and Y, if this is the case then the functions

$$ f_{X}(x) = \int_{-\infty}^{\infty} f(x,y) \, dy $$

and

$$ f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) \, dx $$

are called the marginal density functions of X and Y.
Note: The marginal p.d.f.'s are explained as follows.

Let B be a subset of \mathbb{R}.

Then

$$P(Y \in B) = P(-\infty \leq X \leq \infty, Y \in B)$$

$$= \int_B \left(\int_{-\infty}^{\infty} f(x,y) \, dx \right) \, dy$$

$f_{X}(y) \rightarrow$ distribution function for Y
Ex: The joint p.d.f. of \(X \) and \(Y \) is given by
\[
f(x,y) = \begin{cases}
\lambda x y^2 & 0 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

(a) Determine the value of \(\lambda \).
(b) Find the marginal probability density functions of \(X \) and \(Y \).

(a) To find \(\lambda \) we use \(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1 \).

So,
\[
1 = \int_{0}^{1} \int_{x}^{1} \lambda x y^2 \, dy \, dx = \lambda \int_{0}^{1} \left[\frac{1}{3} y^3 \right]_{x}^{1} x \, dx
\]
\[
= \lambda \int_{0}^{1} \left(\frac{1}{3} - \frac{1}{3} x^3 \right) x \, dx = \frac{\lambda}{10}
\]

So, \(\lambda = 10 \).

(b) \(f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy = \int_{x}^{1} 10x y^2 \, dy \)
\[
= \frac{10}{3} x (1-x^3) \quad 0 \leq x \leq 1
\]
\[f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx = \int_{0}^{y} 10x y^2 \, dx = 5y^4, \quad 0 \leq y \leq 1\]