1. Consider the experiment where you flip a coin 3 times. Let X denote the number of tails that occur. Draw a picture of the probability function p of X. Calculate $E[X]$ and $\text{Var}[X]$.

2. Consider the experiment where you roll two 4-sided dice. Let X be the sum of the two dice.

 (a) Draw a picture of the probability function p of X.

 (b) Draw a picture of the cumulative distribution function F of X.

 (c) Calculate $E[X]$ and $\text{Var}[X]$ and $\sigma = \sigma_X$.

3. Consider the experiment where you roll two 4-sided dice. Let X be the maximum of the two dice.

 (a) Draw a picture of the probability function p of X.

 (b) Draw a picture of the cumulative distribution function F of X.

 (c) Calculate $E[X]$ and $\text{Var}[X]$ and $\sigma = \sigma_X$.

4. You are interested in two games: game A and game B.

 - In game A, you pick a number between 1 and 100. A ball is drawn randomly from a box with balls that are numbered between 1 and 100. If the ball with your number is drawn then you win $74. Otherwise you lose $1.

 - In game B, there are four numbers to choose from. They are 1, 2, 3, and 4. You pick a number. Then a ball is drawn from a bag containing balls numbered 1, 2, 3, and 4. If your number is selected, then you win $2. Otherwise you lose $1.

Answer the following questions.

 (a) For each game let X be the amount of money won or lost. Graph the probability function for X.

 (b) What is the expected value and variance of game A?
(c) What is the expected value and variance of game B?
(d) What game should you play?

5. Let X be a discrete random variable. Let $\mu = E[X]$ and $\sigma^2 = \text{Var}[X]$.

 (a) Let k be a positive real number. Use Chebyshev’s inequality to show that $P(|X \mu| \geq k\sigma) \leq \frac{1}{k^2}$.

 (b) Show that $P(|X \mu| \geq 2\sigma) \leq \frac{1}{4}$. [Note: This says that the probability that a data point is at least 2 standard deviations away from the mean (on either side) is at most 25%.

6. The binomial distribution applies when we are interested in the number of successes in a fixed number of Bernoulli trials. What if instead we studied how long it takes to get the first success in a series of Bernoulli trials. That is we look at the probability of having a string of failures (that is, multiple failures in a row) and then a success. More specifically, let $0 < p < 1$ and $q = 1 - p$. Consider the experiment where we do consecutive independent Bernoulli trials with probability p of success and q of failure. We repeat the experiment until we get the first success and then we stop.

 (a) What is a sample space S for this experiment? Let X be the number of trials until the first success occurs. Find a formula for $P(X = k)$. Note: X is called a Geometric random variable.

 (b) Sketch the probability function $p(k) = P(X = k)$ when the probability of success is $\frac{1}{2}$.

 (c) Show that $E[X] = \frac{1}{p}$ and $\text{Var}[X] = \frac{1-p}{p^2} = \frac{q}{p^2}$.