
Math 446 - Homework # 5

1. List the elements of Z×7 . For each element find it’s multiplicative in-
verse.

Solution: Z×7 = {1, 2, 3, 4, 5, 6}

We have that 1
−1

= 1.

2
−1

= 4 since 2 · 4 = 8 = 1.

3
−1

= 5 since 3 · 5 = 15 = 1.

4
−1

= 2 since 2 · 4 = 8 = 1.

5
−1

= 3 since 3 · 5 = 15 = 1.

6
−1

= 6 since 6 · 6 = 36 = 1.

2. List the elements of Z×8 . For each element find it’s multiplicative in-
verse.

Solution: Z×8 = {1, 3, 5, 7}

We have that 1
−1

= 1.

3
−1

= 3 since 3 · 3 = 9 = 1.

5
−1

= 5 since 5 · 5 = 25 = 1.

7
−1

= 7 since 7 · 7 = 49 = 1.

3. List the elements of Z×15. For each element find it’s multiplicative in-
verse.

Solution: Z×15 = {1, 2, 4, 7, 8, 11, 13, 14}

We have that 1
−1

= 1.

2
−1

= 8 since 2 · 8 = 16 = 1.

4
−1

= 4 since 4 · 4 = 16 = 1.

7
−1

= 13 since 7 · 13 = 91 = 1.

8
−1

= 2 since 2 · 8 = 16 = 1.

11
−1

= 11 since 11 · 11 = 121 = 1.

13
−1

= 7 since 7 · 13 = 91 = 1.

14
−1

= 14 since 14 · 14 = 196 = 1.



4. Find all of the primitive roots for Z×7 . How many are there?

Solution: Z×7 = {1, 2, 3, 4, 5, 6}.
2 is not a primitive root because the positive powers of 2 do not give
us all of Z×7 . Here are the first few positive powers of 2:

2
1

= 2

2
2

= 4

2
3

= 1

2
4

= 2

2
5

= 4

2
6

= 1
...

...

Note how the powers keep repeating 2, 4, and 1 forever.

On the other hand, 3 is a primitive root because we get all of the
elements of Z×7 from the positive powers of 3 as we see below:

3
1

= 3

3
2

= 2

3
3

= 6

3
4

= 4

3
5

= 5

3
6

= 1

4 is not a primitive root because the positive powers of 4 do not give
us all of Z×7 . Here are the first few positive powers of 4:

4
1

= 4

4
2

= 2

4
3

= 1

4
4

= 4

4
5

= 2

4
6

= 1
...

...



Note how the powers keep repeating 4, 2, and 1 forever.

5 is a primitive root because we get all of the elements of Z×7 from the
positive powers of 5 as we see below:

5
1

= 5

5
2

= 4

5
3

= 6

5
4

= 2

5
5

= 3

5
6

= 1

6 is not a primitive root because the positive powers of 6 do not give
us all of Z×7 . Here are the first few positive powers of 6:

6
1

= 6

6
2

= 1

6
3

= 6

6
4

= 1

6
5

= 6

6
6

= 1
...

...

Note how the powers keep repeating 6, 1 forever.

Therefore, the only primitive roots in Z×7 are 3 and 5.

5. Find all of the primitive roots for Z×14. How many are there?

Solution: Z×14 = {1, 3, 5, 9, 11, 13}.
The primitive roots are 3 and 5.

6. Find all of the primitive roots for Z×9 . How many are there?

Solution: Z×9 = {1, 2, 4, 5, 7, 8}.
The primitive roots are 2 and 5.

7. Find all of the primitive roots for Z×20. How many are there?



Solution: Recall that there exists a primitive root of Z×n if and only if
n is of the form n = 2, 4, pk, or 2pl where p is an odd prime. Here we
have that n = 20 = 22 · 5. Therefore, Z×20 has no primitive roots.

8. Reduce 7
103

in Z13.

Solution: Note that 13 is prime. Therefore, by Fermat’s theorem,
since gcd(7, 13) = 1 we have that 7

12
= 7

13−1
= 1 in Z13. Dividing 12

into 103 gives 103 = 8 · 12 + 7. Hence

7
103

= 7
8·12+7

= (7
12

)8 · 72+2+2+1

= 1 · 49 · 49 · 49 · 7
= 10 · 10 · 10 · 7
= 7000

Note that 7000 = 538 · 13 + 6. Hence

7
103

= 7000 = 538 · 13 + 6 = 538 · 0 + 6 = 6

9. Reduce 5
127

in Z12.

Solution: Note that

φ(12) = |Z×12| = |{1, 5, 7, 11}| = 4.

By Euler’s theorem, since gcd(5, 12) = 1, we have that 5
φ(12)

= 5
4

= 1
in Z12. Dividing 4 into 127 gives 127 = 31 · 4 + 3. Hence

5
127

= 5
31·4+3

= (5
4
)31 · 53

= 1 · 125

= 125

Note that 125 = 10 · 12 + 5. Hence

5
127

= 125 = 10 · 12 + 5 = 10 · 0 + 5 = 5



10. (a) Let p be a prime and let x ∈ Z×p . Prove that xp−2 is the multi-
plicative inverse of x in Z×p .

Solution: Suppose that x ∈ Z×p . By Fermat’s theorem, we have

that xp−1 = 1. Hence x · xp−2 = 1. Therefore, the multiplicative
inverse of x is xp−2.

(b) Use (10a) to find the multiplicative inverse of 2 in Z7.

Solution: By (10a), the multiplicative inverse of 2 is

2
7−2

= 2
5

= 32 = 4 · 7 + 4 = 4 · 0 + 4 = 4.

(c) Use (10a) to find the multiplicative inverse of 3 in Z11.

Solution: By (10a), the multiplicative inverse of 3 is

3
11−2

= 3
9

= 3
3 · 33 · 33

= 27 · 27 · 27 = 5 · 5 · 5
= 125 = 11 · 11 + 4 = 0 · 0 + 4 = 4

11. Let p be a prime and let m and n be positive integers. Let a ∈ Z×p .
Prove that if m ≡ n(mod p− 1), then am = an in Z×p .

Solution: Let a ∈ Z×p . By Fermat’s theorem, ap−1 = 1 in Z×p . Since
m ≡ n(mod p− 1) we have that m = n + (p− 1)k for some integer k.
Therefore

am = an+(p−1)k = an · (ap−1)k = an · 1k = an.

Hence am = an.

12. Prove that a6k − 1 is divisible by 7 for any positive integer a with
gcd(a, 7) = 1.

Solution: Let a be an integer with gcd(a, 7) = 1. Since 7 is prime, by
Fermat, we have that 1 = a7−1 = a6. Hence

a6k − 1 = (a6)k +−1 = 1 +−1 = 0.

Thus a6k − 1 = 0 in Z×7 . Therefore, 7 divides a6k − 1.

13. Prove that 19 is not a divisor of 4n2 + 4 for any integer n.



Solution: Suppose that 19 is a divisor of 4n2 + 4. We will show that
this leads to a contradiction. Since 19 divides 4n2 + 4 we have that
4n2 + 4 ≡ 0(mod 19). In Z19 this gives us that

4n2 + 4 = 0.

Hence
4 · n2 + 4 = 0.

Adding 15 to both sides we have that

4 · n2 = 15.

Multiplying both sides by 4
−1

= 5 we have that

5 · 4 · n2 = 5 · 15.

So
20 · n2 = 75.

Thus
n2 = 3 · 19 + 18.

So
n2 = 3 · 19 + 18 = 3 · 0 + 18 = 18.



We now show that n2 = 18 has no solutions in Z19. Here is the check:

1
2

= 1

2
2

= 4

3
2

= 9

4
2

= 16

5
2

= 6

6
2

= 17

7
2

= 11

8
2

= 7

9
2

= 5

10
2

= 5

11
2

= 7

12
2

= 11

13
2

= 17

14
2

= 6

15
2

= 16

16
2

= 9

17
2

= 4

18
2

= 1

Thus we have a contradiction.

14. Let n be an integer with n ≥ 2.

(a) Let a be an integer with gcd(a, n) = 1. Suppose that a · b = a · c
in Zn. Prove that b = c.

Solution: Suppose that gcd(a, n) = 1 and a · b = a · c. Since
gcd(a, n) = 1 we know that a ∈ Z×n . Therefore, a−1 exists. So,
a−1 · a · b = a−1 · a · c. Thus, b = c.

(b) Let a be an integer with gcd(a, n) = 1. Prove that

a · Zn = {a · 0, a · 1, a · 2, · · · , a · (n− 1)}

is equal to Zn.



Solution: Since gcd(a, n) = 1 we know that a−1 exists in Zn. We
now show that a·Zn = Zn. We do this by showing that a·Zn ⊆ Zn
and Zn ⊆ a · Zn.

Let x ∈ a ·Zn. Then x = a · y where y ∈ Zn. Then x = a · y ∈ Zn.
Hence a · Zn ⊆ Zn.

Let s ∈ Zn. Since s = a · (a−1 · s) and a−1 · s ∈ Zn we have that
s ∈ a · Zn. Hence Zn ⊆ a · Zn.

(c) Give an example showing that if gcd(a, n) 6= 1 then one can have
a · b = a · c in Zn, but b 6= c.

Solution: 2 · 4 = 2 · 1 in Z6.

15. Prove that if a ≡ b(mod n) then gcd(a, n) = gcd(b, n).

Solution: Since a ≡ b(mod n) we have that a = b+qn for some integer
q. Let d = gcd(a, n) and d′ = gcd(b, n).

Since d′ = gcd(b, n) we have that d′|b and d′|n. Hence d′k1 = b and
d′k2 = n for some integers k1, k2. Thus a = b + qn = d′k1 + qd′k2 =
d′(k1 + qk2). So d′|a. So d′ is a common divisor of a and n. Since
gcd(a, n) = d we must have that d′ ≤ d.

Since d = gcd(a, n) we have that d|a and d|n. Hence dt1 = a and dt2 =
n for some integers t1, t2. Thus b = a− qn = dt1 − qdt2 = d(t1 − qt2).
So d|b. So d is a common divisor of b and n. Since gcd(b, n) = d′ we
must have that d ≤ d′.

Since d′ ≤ d and d ≤ d′ we have that d = d′.


