1. A set S and a relation \sim on S is given. For each example, check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If \sim satisfies the property that you are checking, then prove it. If \sim does not satisfy the property that you are checking, then give an example to show it.

(a) $S = \mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.

Solution:
(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{R}$. Then $a \leq a$. So $a \sim a$.
(ii) No, \sim is not symmetric. Counterexample: $3 \leq 4$, but $4 \not\leq 3$. That is, $3 \sim 4$ but $4 \not\sim 3$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $a \leq b$ and $b \leq c$. So $a \leq c$. Thus $a \sim c$.

(b) $S = \mathbb{R}$ where $a \sim b$ if and only if $|a| = |b|$.

Solution:
(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{R}$. Then $|a| = |a|$. So $a \sim a$.
(ii) Yes, \sim is symmetric. Proof: Let $a, b \in \mathbb{R}$ and suppose that $a \sim b$. Then $|a| = |b|$. So $|b| = |a|$. Thus $b \sim a$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $|a| = |b|$ and $|b| = |c|$. So $|a| = |c|$. Thus $a \sim c$.

(c) $S = \mathbb{Z}$ where $a \sim b$ if and only if $a|b$.

Solution:
(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{Z}$. Then $a(1) = a$. Hence $a|a$. So $a \sim a$.
(ii) No, \sim is not symmetric. Counterexample: $3|6$, but $6 \not| 3$.
(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{Z}$. Suppose that $a \sim b$ and $b \sim c$. Then $a|b$ and $b|c$. Thus there exists $k, m \in \mathbb{Z}$ such that $ak = b$ and $bm = c$. Then $c = bm = (ak)m = a(km)$. So $a|c$. Thus $a \sim c$.

(d) S is the set of subsets of \mathbb{N} where $A \sim B$ if and only if $A \subseteq B$.

Some examples of elements of S are $\{1, 10, 199\}$, $\{2, 7, 10\}$, and $\{2, 10, 3, 7\}$. Note that $\{2, 7, 10\} \sim \{2, 10, 3, 7\}$.
Solution:
(i) Yes, ∼ is reflexive. Proof: \(A \subseteq A \) for all \(A \in S \).
(ii) No, ∼ is not symmetric. Counterexample: \(\{3\} \subseteq \{3, 42\} \), but \(\{3, 42\} \not\subseteq \{3\} \).
(iii) Yes, ∼ is transitive. Proof: Let \(A, B, C \in S \) with \(A \sim B \) and \(B \sim C \). Then \(A \subseteq B \) and \(B \subseteq C \). We want to show that \(A \subseteq C \). Let \(x \in A \). Since \(A \subseteq B \), we have that \(x \in B \). Since \(B \subseteq C \) we have that \(x \in C \). So \(A \subseteq C \) and thus \(A \sim C \).

2. Consider the set \(S = \mathbb{R} \) where \(x \sim y \) if and only if \(x^2 = y^2 \).

(a) Find all the numbers that are related to \(x = 1 \). Repeat this exercise for \(x = \sqrt{2} \) and \(x = 0 \).

Solution:
1 \(\sim \) 1 since \(1^2 = 1^2 \). We also have 1 \(\sim \) \((-1)\) since \(1^2 = (-1)^2 \). There are no other elements related to 1.
\(\sqrt{2} \sim \sqrt{2} \) since \((\sqrt{2})^2 = (\sqrt{2})^2 \). We also have \(\sqrt{2} \sim (-\sqrt{2}) \) since \((\sqrt{2})^2 = (-\sqrt{2})^2 \). There are no other elements related to \(\sqrt{2} \).
0 \(\sim \) 0 since \(0^2 = 0^2 \). There are no other elements related to 0.

(b) Prove that ∼ is an equivalence relation on \(S \).

Solution:
Proof. Reflexive: We know that \(x^2 = x^2 \) for all real numbers \(x \). Therefore \(x \sim x \) for all real numbers \(x \). So ∼ is reflexive.
Symmetric: Let \(x, y \in \mathbb{R} \). Suppose that \(x \sim y \).
Since \(x \sim y \) we have that \(x^2 = y^2 \).
So \(y^2 = x^2 \).
Therefore \(y \sim x \).
Transitive Let \(x, y, z \in \mathbb{R} \). Suppose that \(x \sim y \) and \(y \sim z \).
Since \(x \sim y \) we have that \(x^2 = y^2 \).
Since \(y \sim z \) we have that \(y^2 = z^2 \).
So \(x^2 = y^2 = z^2 \).
Therefore \(x \sim z \).

(c) Draw a number line. Draw a picture of the equivalence class of 1. Repeat this for \(x = 0 \), \(x = \sqrt{6} \), \(x = -3 \).

Solution: Please draw a picture.
(d) Describe the elements of S/\sim.

Solution:

If $x \neq 0$, then the equivalence class of x is $[x] = \{-x, x\}$. The equivalence class of 0 is $[0] = \{0\}$.

3. Consider the set $S = \mathbb{Z}$ where $x \sim y$ if and only if $2|(x+y)$.

(a) List six numbers that are related to $x = 2$.

Solution:

$2 \sim (-4)$ since $2|(2+(-4))$.
$2 \sim (-2)$ since $2|(2+(-2))$.
$2 \sim (0)$ since $2|(2+(0))$.
$2 \sim (2)$ since $2|(2+(2))$.
$2 \sim (4)$ since $2|(2+(4))$.
$2 \sim (6)$ since $2|(2+(6))$.

(b) Prove that \sim is an equivalence relation on S.

Proof. Reflexive: Let $x \in \mathbb{Z}$.

Since $2|2x$ we have that $2|(x+x)$.

So $x \sim x$.

Symmetric: Let $x, y \in \mathbb{Z}$ and suppose that $x \sim y$.

Thus $2|(x+y)$.

So $2|(y+x)$.

So $y \sim x$.

Transitive: Let $x, y, z \in \mathbb{Z}$ and suppose that $x \sim y$ and $y \sim z$.

Therefore $2|(x+y)$ and $2|(y+z)$.

So there exist $k, \ell \in \mathbb{Z}$ such that $2k = x+y$ and $2\ell = y+z$.

Add these equations to get $2k + 2\ell = x + 2y + z$.

Subtract $2y$ from both sides to get $2(k + \ell - y) = x + z$.

Note that $k + \ell - y \in \mathbb{Z}$, because $k, \ell, y \in \mathbb{Z}$ and \mathbb{Z} is closed under addition and subtraction.

So $2|(x+z)$.

So $x \sim z$.

\qed
(c) Draw a picture of the set of integers. Next, circle the numbers
that are in the equivalence class of \(-3\).

Solution: Draw a picture and circle these numbers:
\[\ldots, -7, -5, -3, -1, 1, 3, 5, 7, \ldots \]

(d) Describe the elements of \(S/\sim \). Draw a picture of several equivalence classes.

Solution: Draw a picture of the following:
\[\bar{0} = \{ \ldots, -6, -4, -2, 0, 2, 4, 6, \ldots \} = -2 = \bar{2} = 4 = \bar{-4} = \ldots \\
\bar{1} = \{ \ldots, -7, -5, -3, -1, 1, 3, 5, 7, \ldots \} = -1 = \bar{3} = -3 = \bar{-5} = \ldots \]

So \(S/\sim \) is equal to \(\{\bar{0}, \bar{1}\} \). That is, one equivalence class is the set of all odd numbers; the other equivalence class is the set of all even numbers.

4. Show that the operation \(\bar{a} \oplus \bar{b} = \bar{a}^2 + \bar{b}^2 \) is a well-defined operation for \(\mathbb{Z}_n \). Here \(\bar{a}^2 \) means \(\bar{a} \cdot \bar{a} \). For example, in \(\mathbb{Z}_4 \) we have that
\[\bar{2} \oplus \bar{3} = \bar{2} \cdot \bar{2} + \bar{3} \cdot \bar{3} = \bar{4} + \bar{9} = \bar{1}. \]

Proof.

1) Let \(\bar{a}, \bar{b} \in \mathbb{Z}_n \) where \(a, b \in \mathbb{Z} \).

Then
\[\bar{a} \oplus \bar{b} = \bar{a}^2 + \bar{b}^2 = \bar{a^2 + b^2} = \bar{a}^2 + \bar{b^2}. \]

Since \(a, b \in \mathbb{Z} \) we have that \(a^2 + b^2 \in \mathbb{Z} \).

Therefore, \(\bar{a} \oplus \bar{b} = \bar{a^2 + b^2} \in \mathbb{Z}_n \).

So \(\mathbb{Z}_n \) is closed under the operation \(\oplus \).

2) Suppose that \(a_1, a_2, b_1, b_2 \in \mathbb{Z} \) such that \(\bar{a_1} = \bar{a_2} \) and \(\bar{b_1} = \bar{b_2} \). We need to show that \(\bar{a_1} \oplus \bar{b_1} = \bar{a_2} \oplus \bar{b_2} \).

From class we had a theorem that says that if \(\bar{x} = \bar{y} \) and \(\bar{w} = \bar{z} \), then
\(\bar{x} + \bar{w} = \bar{y} + \bar{z} \) and \(\bar{x} \cdot \bar{w} = \bar{y} \cdot \bar{z} \).

Repeatedly using the above theorem we get the following.

We have that \(\bar{a_1} \cdot \bar{a_1} = \bar{a_2} \cdot \bar{a_2} \) by multiplying the equations \(\bar{a_1} = \bar{a_2} \) and \(\bar{a_1} = \bar{a_2} \).

Similarly, \(\bar{b_1} \cdot \bar{b_1} = \bar{b_2} \cdot \bar{b_2} \) by multiplying the equations \(\bar{b_1} = \bar{b_2} \) and \(\bar{b_1} = \bar{b_2} \).
Adding the two equations above we get that \(\overline{a_1 \cdot a_1} + \overline{b_1 \cdot b_1} = \overline{a_2 \cdot a_2} + \overline{b_2 \cdot b_2} \).

Therefore, \(\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2} \).

Thus \(\oplus \) is a well-defined operation on \(\mathbb{Z}_n \).

5. Given two integers \(a \) and \(b \), let \(\min(a, b) \) denote the minimum (smaller) of \(a \) and \(b \). Let \(n \) be an integer with \(n \geq 2 \). Is the operation \(a \oplus b = \min(a, b) \) a well-defined operation on \(\mathbb{Z}_n \)?

Solution: This operation is not well-defined. For example, consider \(n = 4 \). In \(\mathbb{Z}_4 \) we have that \(\overline{0} = \overline{8} \) and \(\overline{1} = \overline{5} \). Thus, for the operation to be well-defined we would need \(\overline{0} \oplus \overline{1} = \overline{8} \oplus \overline{5} \). However, \(\overline{0} \oplus \overline{1} = \min(0, 1) = \overline{0} \) and \(\overline{8} \oplus \overline{5} = \min(8, 5) = \overline{5} \). But \(\overline{0} \neq \overline{5} \) in \(\mathbb{Z}_4 \).

6. (a) Show that the operation \(\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc} \) is not a well-defined operation on \(\mathbb{Q} \). (b) Is the operation well-defined on \(\mathbb{Q} - \{0\} \)?

(a) Show that the operation \(\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc} \) is not a well-defined operation on \(\mathbb{Q} \).

Solution: We have that \(\frac{5}{2}, \frac{0}{1} \in \mathbb{Q} \) however \(\frac{5}{2} \oplus \frac{0}{1} = \frac{5 \cdot 1}{2 \cdot 0} = \frac{5}{0} \notin \mathbb{Q} \).

Hence \(\mathbb{Q} \) is not closed under \(\oplus \) and the operation is not well-defined.

(b) Is the operation well-defined on \(\mathbb{Q} \setminus \{0\} \)?

Solution: Yes! Here is a proof.

Proof. 1) Let \(a, b, c, d \in \mathbb{Z} \) with \(a \neq 0, b \neq 0, c \neq 0, d \neq 0 \) so that \(\frac{a}{b}, \frac{c}{d} \in \mathbb{Q} - \{0\} \).

Since \(a \neq 0, b \neq 0, c \neq 0, d \neq 0 \) we have that \(ad \neq 0 \) and \(bc \neq 0 \).

Thus \(\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc} \in \mathbb{Q} - \{0\} \).

Therefore \(\mathbb{Q} - \{0\} \) is closed under the operation \(\oplus \).

2) Suppose further that we have \(e, f, g, h \in \mathbb{Z} \) with \(e \neq 0, f \neq 0, g \neq 0, h \neq 0 \) so that \(\frac{e}{f}, \frac{g}{h} \in \mathbb{Q} - \{0\} \).

Also assume that \(\frac{e}{f} = \frac{g}{h} \) and \(\frac{e}{f} = \frac{g}{h} \).

We want to show that \(\frac{e}{f} \oplus \frac{g}{h} = \frac{e}{f} \oplus \frac{g}{h} \).

We have that \(\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc} \) and \(\frac{e}{f} \oplus \frac{g}{h} = \frac{eh}{fg} \).
Since \(\frac{a}{b} = \frac{c}{d} \) we have that \(af = be \).

Since \(\frac{c}{a} = \frac{d}{b} \) we have that \(ch = dg \).

Multiplying \(af = be \) by \(dg = ch \) we get \(afdg = bech \).

Rearranging we get \((ad)(fg) = (bc)(eh) \).

Therefore, \(\frac{ad}{bc} = \frac{eh}{fg} \).

So \(\frac{a}{b} \oplus \frac{c}{d} = \frac{e}{f} \oplus \frac{g}{h} \).

Thus, the operation is well-defined.

\(\square \)

7. Is the operation \(\overline{a} \oplus \overline{b} = \overline{a+b} \) a well-defined operation on \(\mathbb{Z}_n \)?

Solution: There are two issues with this operation.

One issue is as follows. As an example, consider \(n = 4 \). In \(\mathbb{Z}_4 \) we have that \(\overline{1} = \overline{5} \). Thus, for the operation to be well-defined we must have that \(\overline{2} \oplus \overline{1} = \overline{2} \oplus \overline{5} \). However, \(\overline{2} \oplus \overline{1} = \overline{0} = \overline{2} \) and \(\overline{2} \oplus \overline{5} = \overline{32} = \overline{0} \).

And \(\overline{2} \neq \overline{0} \) in \(\mathbb{Z}_4 \).

Another issue is when \(b \) is a negative integer. For example, in \(\mathbb{Z}_4 \) suppose we want to calculate \(\overline{2} \oplus \overline{-1} \). What does this mean? The formula says that it is \(\overline{2-1} \). But what is that in \(\mathbb{Z}_4 \)? In fact there is no way to make sense of \(\overline{2} \cdot \overline{-1} \) in \(\mathbb{Z}_4 \) because there is no multiplicative inverse for \(\overline{2} \) in \(\mathbb{Z}_4 \). (Why?) Because there is no \(\overline{x} \in \mathbb{Z}_4 \) with \(\overline{x} \cdot \overline{2} = \overline{1} \).

We can check:

\begin{align*}
&\overline{0} \cdot \overline{2} = \overline{0} \neq \overline{1} \\
&\overline{1} \cdot \overline{2} = \overline{2} \neq \overline{1} \\
&\overline{2} \cdot \overline{2} = \overline{4} = \overline{0} \neq \overline{1} \\
&\overline{3} \cdot \overline{2} = \overline{6} = \overline{2} \neq \overline{1} \\
\end{align*}

Thus there is no way to define \(\overline{2} \oplus \overline{-1} \) in \(\mathbb{Z}_4 \).

8. (Constructing the integers from the natural numbers) Let \(S = \mathbb{N} \times \mathbb{N} \).

Define the relation \(\sim \) on \(S \) where \((a,b) \sim (c,d) \) if and only if \(a+d = b+c \).

(a) Is \((3,6) \sim (7,10) \)?

Solution: Yes, because \(3 + 10 = 6 + 7 \).

(b) Is \((1,1) \sim (3,5) \)?

Solution: No, because \(1 + 5 \neq 1 + 3 \).
(c) Prove that \sim is an equivalence relation.

\textit{Proof.} \textbf{Reflexive:} Let $(a, b) \in \mathbb{N} \times \mathbb{N}$. Then $a + b = b + a$. So $(a, b) \sim (a, b)$.

\textbf{Symmetric:} Let $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. Suppose $(a, b) \sim (c, d)$. We know that $a + d = b + c$, because $(a, b) \sim (c, d)$. So $c + b = d + a$. So $(c, d) \sim (a, b)$.

\textbf{Transitive:} Let $(a, b), (c, d), (e, f) \in \mathbb{N} \times \mathbb{N}$. Suppose that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. We know that $a + d = b + c$ and $c + f = d + e$, because $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Add these two equations to get $a + c + d + f = b + c + d + e$. Subtract $c + d$ from both sides to get $a + f = b + e$. So $(a, b) \sim (e, f)$.

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

\hfill \square

(d) List five elements from each of the following equivalence classes: $(1, 1), (1, 2), (5, 12)$.

\textbf{Solution:} Some possible answers:

$(2, 2), (3, 3), (4, 4), (5, 5), (47, 47) \in (1, 1)$.
$(2, 3), (3, 4), (4, 5), (5, 6), (47, 48) \in (1, 2)$.
$(2, 9), (3, 10), (4, 11), (5, 12), (47, 56) \in (5, 12)$.

(e) Define the operation $(a, b) \oplus (c, d) = (a + c, b + d)$. Prove that \oplus is well-defined on the set of equivalence classes.

\textit{Proof.} 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. Then $a + c$ and $b + d$ are both in \mathbb{N} because \mathbb{N} is closed under addition.
Thus, \((a, b) \oplus (c, d) = (a + c, b + d)\) is a valid equivalence class in \(\mathbb{N} \times \mathbb{N} / \sim\).

2) Now suppose that \((a, b), (c, d), (e, f),\) and \((g, h)\) are equivalence classes of \(\mathbb{N} \times \mathbb{N} / \sim\).

Further suppose that \((a, b) = (e, f)\) and \((c, d) = (g, h)\).

We need to show that \((a, b) \oplus (c, d) = (e, f) \oplus (g, h)\).

We have that \(a + f = b + e\) since \((a, b) = (e, f)\).

We also have that \(c + h = d + g\) since \((c, d) = (g, h)\).

Adding these two equations gives \(a + f + c + h = b + e + d + g\).

Rearranging gives \((a + c) + (f + h) = (b + d) + (e + g)\).

Therefore, \((a + c, b + d) = (e + g, f + h)\).

Hence \((a, b) \oplus (c, d) = (e, f) \oplus (g, h)\).

The above arguments show that \(\oplus\) is a well-defined operation on the equivalence classes of \(\mathbb{N} \times \mathbb{N} / \sim\).

9. (Constructing the rational numbers from the integers) Let \(S = \mathbb{Z} \times (\mathbb{Z} - \{0\})\). Define the relation \(\sim\) on \(S\) where \((a, b) \sim (c, d)\) if and only if \(ad = bc\).

(a) Is \((1, 5) \sim (-3, -15)\) ?

Solution: Yes, because \(1(-15) = 5(-3)\).

(b) Is \((-1, 1) \sim (2, 3)\) ?

Solution: No, because \((-1)(3) \neq 1(2)\).

(c) Prove that \(\sim\) is an equivalence relation.

Proof.

Reflexive: Let \((a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})\).

Then \(ab = ba\).

So \((a, b) \sim (a, b)\).

Symmetric: Let \((a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})\).

Suppose \((a, b) \sim (c, d)\).

We know that \(ad = bc\), because \((a, b) \sim (c, d)\).

So \(cb = da\).
Hence $(c, d) \sim (a, b)$.

Transitive: Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$.
Suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$.
We know that $ad = bc$ and $cf = de$, because $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$.
Multiply these two equations to get $adcf = bcde$.
Divide both sides by c and then by d to get $af = be$. (Note that $c, d \neq 0$ because $c, d \in \mathbb{Z} - \{0\}$, so it’s okay to divide by c and by d.)
So $(a, b) \sim (e, f)$ since $af = be$.
Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

(d) List five elements from each of the following equivalence classes: $(1,1), (0,2), (2,3)$.

Solution: Some possible answers:
$(2,2), (3,3), (4,4), (5,5), (47,47) \in (1,1)$.
$(0,1), (0,2), (0,-1), (0,-2), (0,-47) \in (0,2)$.
$(2,3), (4,6), (6,9), (-2,-3), (-4,-6) \in (2,3)$.

(e) Define the operation $(a, b) \oplus (c, d) = (ad + bc, bd)$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$.
Then $ad + bc \in \mathbb{Z}$ because $a, b, c, d \in \mathbb{Z}$ and the integers are closed under addition and multiplication.
Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$.
Thus $(ad + bc, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $(a, b) \oplus (c, d) = (ad + bc, bd)$ is a valid equivalence class.

2) Now suppose that $(a, b), (c, d), (x, y), (w, z)$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\})/ \sim$.
Further suppose that $(a, b) = (x, y)$ and $(c, d) = (w, z)$.
We need to show that \((a, b) \oplus (c, d) = (x, y) \oplus (w, z)\).
That is, we need to show that \([(ad + bc, bd)] = [(xz + yw, yz)]\).
The above is equivalent to showing that \((ad + bc)yz = bd(xz + yw)\).
Let’s do this.

Since \((a, b) = (x, y)\) we have that \(ay = bx\).
Since \((c, d) = (w, z)\) we have that \(cz = dw\).
Therefore, using the equations \(ay = bx\) and \(cz = dw\) we get that
\[
(ad + bc)yz = adyz + bcyz = (ay)(dz) + (cz)(by) = (bx)(dz) + (dw)(by) = bd(xz + yw).
\]

Thus, \([(ad + bc, bd)] = [(xz + yw, yz)]\).
Thus, the operation \(\oplus\) is well-defined on the equivalence classes of \(\mathbb{Z} \times (\mathbb{Z} - \{0\})/\sim\).

(f) Define the operation \((a, b) \odot (c, d) = (ac, bd)\). Prove that \(\odot\) is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes \((a, b)\) and \((c, d)\) where \((a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})\).
Then \(ac \in \mathbb{Z}\) because \(a, c \in \mathbb{Z}\) and the integers are closed under multiplication.
Also, since \(b, d \in \mathbb{Z} - \{0\}\) we have that \(bd \neq 0\) and so \(bd \in \mathbb{Z} - \{0\}\).
Thus \((ac, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})\) and \((a, b) \odot (c, d) = (ac, bd)\) is a valid equivalence class.

2) Now suppose that \((a, b),(c, d),(x, y)\),and \((w, z)\) are equivalence classes in \(\mathbb{Z} \times (\mathbb{Z} - \{0\})/\sim\).
Further suppose that \((a, b) = (x, y)\) and \((c, d) = (w, z)\).
We need to show that \((a, b) \odot (c, d) = (x, y) \odot (w, z)\).
That is, we need to show that \([(ac, bd)] = [(xw, yz)]\).
The above is equivalent to showing that \((ac)(yz) = (bd)(xw)\).
Let’s do this.

Since \((a, b) = (x, y)\) we have that \(ay = bx\).

Since \((c, d) = (w, z)\) we have that \(cz = dw\).

Therefore, using the equations \(ay = bx\) and \(cz = dw\) we get that

\[(ac)(yz) = (ay)(cz) = (bx)(dw) = (bd)(xw).\]

Thus, \([\{(ac, bd)\}] = [(xw, yz)]\).

Therefore, the operation \(\odot\) is well-defined on the equivalence classes of \(\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim\).