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How ELLIE was conceived

◮ P. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and

Squares, Journal of Integer Sequences, Vol 10 (2007)

◮ Phyllis and Silvia talk to Gary - the idea of a game is born

◮ Matthieu joins in and brings background in combinatorial games
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Description of ELLIE

ELLIE is played on a rectangular board of size m-by-n. Two players

alternately place L-shaped tiles of area 3. Last player to move wins

(normal play).

Questions:

◮ For which values of m and n is there a winning strategy for

Player I?

◮ What is the winning strategy?
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Combinatorial Games

Definition

An impartial combinatorial game has the following properties:

◮ no randomness (dice, spinners) is involved, that is, each player

has complete information about the game and the potential

moves

◮ each player has the same moves available at each point in the

game (as opposed to chess, where there are white and black

pieces).
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Working out small examples

Example (The 2 × 2 board)

First player obviously wins, since only one L can be placed. In each

case, the second player only finds one square left, which does not

allow for placement of an L.
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Working out small examples

Example (The 2 × 3 board)

First player’s move is orange, second player’s move is green.

Note that for this board, the outcome (winning or losing) for the first

player depends on that player’s move. If s/he is smart, s/he makes the

first or fourth move. This means that Player I has a winning strategy.
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Game trees

Definition

A position (or game) in Ellie refers to any of the possible boards that

arise in the course of playing the game. A position that arises from a

move in the current position or game is called an option of the game.

The directed graph which has the positions as the nodes and an arrow

between a game and its options is called the game tree.

Options that are symmetric are usually not listed in the game tree.
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Game tree for 2 × 3 board
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Impartial Games

Definition

A position is a P position for the player about to make a move if the

Previous player can force a win (that is, the player about to make a

move is in a losing position). The position is a N position if the Next

player (the player about to make a move) can force a win.

For impartial games, there are only two outcome classes for any

position, namely winning position (N position) or losing position

(P position). There are no ties.
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game tree recursively as follows:

◮ Leafs of the game tree are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position

⇒ winning position and should be labeled N

◮ All options of the position are winning (N ) positions

⇒ losing position and should be labeled P

The label of the empty board then tells whether Player I (N ) or Player

II (P) has a winning strategy.
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Labeling the game tree for 2 × 3 board
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Sums of Games

Definition

If a move splits a game (board) into two smaller sub-boards such that

the next player can play in only one of the two sub-boards, then the

original game is called the sum of the two smaller games.

Example

= +
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The Grundy Function

Theorem

The Grundy-value G(G) of a game G is a measure of the distance to a

losing position. If G(G) = n, then for k ≤ n there is a sequence of

moves that will lead to a losing position in k steps. In particular, G is

in the class P if and only if G(G) = 0.

So how do we compute the Grundy function???
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Digital Sum and Mex

Definition

The digital sum a ⊕ b ⊕ · · · ⊕ k of of integers a, b, . . . , k is obtained

by translating the values into their binary representation and then

adding them without carry-over.

Note that a ⊕ a = 0.

Definition

The minimum excluded value or mex of a set of non-negative integers

is the least non-negative integer which does not occur in the set. It is

denoted by mex{a, b, c, . . . , k}.
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Digital Sum and Mex

Example

The digital sum 12 ⊕ 13 ⊕ 7 equals 6:

12 1 1 0 0

13 1 1 0 1

7 1 1 1

0 1 1 0

Example

mex{1, 4, 5, 7} = 0

mex{0, 1, 2, 6} = 3
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Computation of the Grundy Function

Theorem

For any impartial games G, H, and J,

◮ G(G) = mex{G(H)|H is an option of G}.

◮ G = H + J if and only if G(G) = G(H) ⊕ G(J).
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What does this all mean?

◮ For any given game tree we can recursively label the positions

with their Grundy value, then read off the value for the starting

board.

◮ This procedure is scalable if we can find a general rule

explaining how a game breaks into smaller games so we can

have a computer compute the Grundy function.

◮ We do not get the winning strategy (unless we look at the trace

of the Grundy values), but we can answer the question about

existence of a winning strategy.
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Ellie equivalent

m

2 × n board for Ellie ⇐⇒ 1 × (2n) board with 1 × 3 tile

Only the number of squares matters, not the geometry!
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Recursion for Grundy function

◮ Play at square i splits 1 × n board into two boards of lengths

i − 1 and n − i − 2

1 6 8 16

◮ Gn denotes play on a 1 × n board; G(n, i) denotes the game that

results from placing 1 × 3 tile at square i

◮ G(G0) = G(G1) = G(G2) = 0

◮ G(Gn) = mex{G(G(n, i))|1 ≤ i ≤ ⌊n
2
⌋}

= mex{G(Gi−1) ⊕ G(Gn−i−2)|1 ≤ i ≤ ⌊n
2
⌋}
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Values for Grundy function

Let’s compute the first 10 or so values of the Grundy function

◮ G(G0) = G(G1) = G(G2) = 0

◮ G(Gn) = mex{G(Gi−1) ⊕ G(Gn−i−2)|1 ≤ i ≤ ⌊n
2
⌋}

◮ G(G3) = mex{G(G0) ⊕ G(G0)} = mex{0} = 1

◮ G(G4) = mex{G(G0)⊕G(G1),G(G1)⊕G(G0)} = mex{0} = 1

n 0 1 2 3 4 5 6 7 8 9 10

G(Gn) 0 0 0 1 1 1 2 2 0 3 3
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Structure of Values

Questions to be answered:

1. Is the sequence of Grundy values G(Gn) periodic?

2. Is the sequence of Grundy values G(Gn) ultimately periodic?
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Values of G(n)
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Octal Games

Definition

An octal game is a ‘take-and-break’ game identified by a code of the

form .d1d2d3 . . . with 0 ≤ di ≤ 7. A typical move consists of

choosing one of the heaps and removing i tokens from the heap, then

rearranging the remaining tokens into some allowed number of new

heaps. The code describes the allowed moves in the game:

◮ If di 6= 0, then an allowed move is to take i tokens from a heap.

◮ Writing di 6= 0 in base 2 then shows how the i tokens may be

taken: If di = c2 · 22 + c1 · 21 + c0 · 20, then removal of the i

tokens may (cj = 1) or may not (cj = 0) leave j heaps.
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Octal Games

Example

The octal game .17 allows us to take either 1 or 2 tokens.

◮ d1 = 1 = 0 · 22 + 0 · 21 + 1 · 20 , therefore we are allowed to

leave zero heaps when taking one token, that is, we can take

away a heap that consists of a single token.

◮ d2 = 7 = 1 · 22 + 1 · 21 + 1 · 20 , therefore we are allowed to leave

either two, one or no heaps when taking two tokens, that is, we

can take away a heap that consists of two tokens, we can remove

two tokens from the top of a heap (leaving one heap), or can take

two tokens and split the remaining heap into two non-zero heaps.
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Ellie = ?

Since we can only take three tokens at a time, di = 0 for i 6= 3. When

we place a tile, it can be

◮ at the end (leaving one heap),

◮ in the middle of the board (leaving two heaps), or

◮ covering the last three squares, leaving zero heaps.

⇒ Ellie =.007
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Treblecross = .007

◮ Treblecross is Tic-Tac-Toe played on a 1 × n board in which

both players use the same symbol, X. The first one to get three

X’s in a row wins.

◮ Don’t want to place an X next to or next but one to an existing X,

otherwise opponent wins immediately

◮ If only considering sensible moves, one can think of each X as

also occupying its two neighbors
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What is known about .007

◮ No complete analysis

◮ G(Gn) computed up to n = 221 = 2, 097, 152

◮ Maximum Grundy value in that range is G(1, 683, 655) = 1, 314

◮ Last new Grundy value to occur is G(1, 686, 918) = 1, 237

◮ Most frequent value is 1024, which occurs 63,506 times

◮ Second most frequent value is 1026, which occurs 62,178 times

◮ 37 P positions: 0, 1, 2, 8, 14, 24, 32, 34, 46, 56, 66, 78, 88, 100,

112, 120, 132, 134, 164, 172, 186, 196, 204, 284, 292, 304, 358,

1048, 2504, 2754, 2914, 3054, 3078, 7252, 7358, 7868, 16170
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What now????

◮ Looked at Misère version of the game (last player to move

loses), but that is hopeless....

◮ Tried to see what happens on 3 × n Ellie board - very tough

◮ Decided to leave Ellie and move on to greener (?) pastures
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Circular (n, k) Games

n heaps in a circular arrangement. Select k consecutive heaps and

select at least one token from at least one of the heaps

Circular (6,3) game

Question: What is the structure of the set of losing positions?
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Variations

◮ Select a fixed number a from each of the heaps

◮ Select at least one token from each of the k heaps

◮ Select at least a tokens from each of the k heaps

◮ .....
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Thank You!

S. Heubach, P. Chinn, M. Dufour, G. E. Stevens Analyzing ELLIE - the Story of a Combinatorial Game



Appendix For Further Reading

For Further Reading

Elwyn R. Berlekamp, John H. Conway and Richard K. Guy.

Winning Ways for Your Mathematical Plays, Vol 1 & 2.

Academic Press, London, 1982.

Michael H. Albert, Richard J. Nowakowski, and David Wolfe.

Lessons in Play.

AK Peters, 2007.

I. Caines, C. Gates, R.K. Guy, and R. J. Nowakowski.

Periods in Taking and Splitting Games.

American Mathematical Monthly, April:359–361, 1999.

A. Gangolli and T. Plambeck.

A Note on periodicity in Some Octal Games.

International Journal of Game Theory, 18:311–320, 1989.
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