The title to my talk is: Novel therapeutic targets in Acute Myeloid Leukemia.
A brief paragraph about my research:

The revolution in sequencing technologies has given the momentum for the emerging genomics and personalized medicine era that led to great discoveries, particularly in cancer research. Translating these findings into the clinic, however, has moved at a much slower pace. It is evident that cancer pharmacogenomic variation, the somatic changes in cancer cells and germline variants in normal cells, influence the disease outcome and response to treatment. The Alachkar lab focuses on applying genomic information to the identification and functional characterization of cancer targets, and in the preclinical and clinical developments of potential targeted therapeutic approaches with particular interest in acute myeloid leukemia (AML). AML remains the most common acute leukemia associated with poor outcome. With current treatment, less than 30% of patients achieve 5-year overall survival (OS). Among patients with AML, those that carry FLT3-ITD mutations particularly have worse clinical outcome and higher incidence of relapse compared with patients that carry the FLT3 wild type (-WT). FLT3-ITD mutation occur in roughly 30% of patients with cytogenetic normal AML. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment options for high-risk patients with AML such as patients with FLT3-ITD mutations. We identify novel targets in AML, and investigate their potential for development into therapeutic approaches that would improve patient’s clinical outcome.