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Abstract 
In this paper we consider tilings of 

! 

2" n  and 

! 

3" n   rectangles using trominoes 
of which there are two basic shapes, namely a 

! 

1" 3 rectangle and an L-shaped 
figure. We will count how many ways the trominoes can be used to tile

! 

2" n  
and

! 

3" n  rectangles and how many of each shape are used among all the tilings 
of a particular size rectangle.  
 
 
1.  Introduction 
Solomon Golomb, in a 1953 talk at the Harvard Math Club, defined a class of 
geometric figures called polyominoes, namely, connected figures formed of 
congruent squares placed so each square shares one side with at least one other 
square. Dominoes, which use two squares, and tetrominoes  (the Tetris pieces), 
which use four squares, are well known to game players. Golomb first published 
a paper about polyominoes in The American Mathematical Monthly [4].  Later, 
Martin Gardner popularized polyominoes in his Scientific American columns 
called “Mathematical Games”  (see, for example, [2, 3]).  
 
Many of the initial questions asked about polyominoes concern the number of n-
ominoes (those formed from n squares), and what shapes can be tiled using just 
one of the polyominoes, possibly leaving one or two squares uncovered. In this 
paper we consider tilings using the 3-ominoes, or trominoes. We call the two 
types of trominoes straights and Ls, respectively, although others have named 
them as straight and right trominoes, respectively. Since there are only two 
trominoes, we count how many ways they can be used to tile 

! 

2" n  and 

! 

3" n  
rectangles and how many of each shape are used among all the tilings of a 
particular size rectangle.  Similar questions regarding Ls and squares are 
explored in [1].  Two books on polyominoes ([5, 6]) mention some results on 
tilings with trominoes. Both deal mainly with the questions of which figures can 
be covered with trominoes, or for which rectangles all but one or two squares 
can be so covered and where the missing squares can be located. Most recently, 
Jaime Rangel-Mondragón [8] used the computer algebra system Mathematica to 
create all polyominoes (as well as more general shapes) of a given size, and to 



create all tilings of a rectangular board with a given set of polyomino tiles. For 
example, he displays all the 41 tromino tilings of the 

! 

2" 9  board.  There is also 
a web site, The Poly Pages [7], which gives many examples of polyominoes and 
related shapes, as well as links to other pages studying these figures.  
 
 
2. Notation and Basic Results 
We will count the number of tilings, as well as the number of Ls and straights 
used in all the tilings of a given size.  In order to do this, we will think of a tiling 
of size 

! 

m " n  as composed of a basic block (a tiling that cannot be split 
vertically into smaller rectangular tilings) of size 

! 

m " k , followed by a tiling of 
size 

! 

m " (n # k) .  Note that m indicates the vertical size of the board, and that the 
second value (n, k or n-k) refers to the horizontal dimension.  We will use the 
following notation: 
 

! 

T (m,n)    = number of tilings of size 

! 

m " nwith Ls and straights 

! 

TL (m,n)   = number of Ls in all tilings of size 

! 

m " n  

! 

TS (m,n)   = number of straights in all tilings of size 

! 

m " n  

! 

B(m,n)   = number of basic blocks of size 

! 

m " n  

! 

BL (m,n)  = number of Ls in all basic blocks of size 

! 

m " n  

! 

BS (m,n)  = number of straights in all basic blocks of size 

! 

m " n . 
 

We also denote the generating function 

! 

a(m,n)
n=0
"# x

n  for a sequence 

! 

{a(m,n)}0
"  by Ga(m ) (x) .  Since we can decompose any tiling into a basic block 

of some size on the left and a smaller tiling following it, we get this recursion: 
 

 (2.1)  

! 

T (m,n) =  B(m,n)
k=1

n

" #T (m,n $ k) for n %  1,  

 
where we define 

! 

T (m,0) =  1 for any m 

! 

"  1, in order to include the basic block 
of size 

! 

m " n  in the count. 
 
Since the recursion for 

! 

T (m,n)  is a convolution, the respective generating 
functions multiply  (see, for example, [10], Section 2.2, Rule 3).  Multiplying 
Equation (2.1) by 

! 

x
n , summing over 

! 

n "  1 and using the definition of the 
generating function, we obtain 
 

(2.2)          

! 

GT(m ) (x) "1 =  GB(m ) (x)GT(m ) (x) #GT(m ) (x) =
1

GB(m ) (x)
. 

 
We will also count the number of straights and Ls in all the tilings of an 

! 

m " n  
board.  Looking at the total area covered by all such tilings and splitting it up 



according to the areas covered by each type of tromino, we have the following 
equation: 
 
(2.3)  

! 

m "n "T (m,n) =  3 TL (m,n) + 3 TS (m,n). 
 
Therefore, we only have to count one of the two types of tiles.  If we first look at 
counting straights, we get a recursion by creating the tilings from a basic block 
and a smaller tiling.  For each such basic block, we get all the straights in the 
tilings of the smaller size, and then we get the number of straights in the basic 
block for each such smaller tiling.  Thus, for m ≥ 2 and n ≥ 1, 

(2.4)  

! 

TS (m,n) =  B(m,k)
k=1

n

" #TS (m,n $ k) +  BS (m,k)
k=1

n

" #T (m,n $ k). 

 
Again we encounter a convolution, and we obtain the results of Equation (2.5). 
 

(2.5)  

! 

GTS (m,n ) (x) =  GB(m ) (x) "GTS (m ) (x) +  GBS (m ) (x) "GT(m ) (x) 

#  GTS (m ) (x) =  
GBS (m ) (x) "GT(m ) (x)

1 $  GB(m ) (x)
 .

 

 
The analogous formulas for the number of Ls are given by the following two 
equations. 

(2.6)  

! 

TL (m,n) =  B(m,k)
k=1

n

" #TL (m,n $ k) +  BL (m,k)
k=1

n

" #T (m,n $ k)  

and 

(2.7)   

! 

 GTL (m ) (x) =  
GBL (m ) (x) "GT(m ) (x)

1 #  GB(m ) (x)
. 

 
These formulas allow us to reduce the counting of tilings to that of counting 
basic blocks. 
 
3. Tiling 

! 

2" n  Boards 
Note that since both types of tiles cover an area of three units, it is only possible 
to tile 

! 

2" n  boards when n is a multiple of 3, i.e., 

! 

T (2,n) =  B(2,n) =  0  unless 

! 

n " 0(mod3) . 
 
For 

! 

2" n  basic blocks, the answer is rather simple. We start by looking at the 
number of basic blocks of size 

! 

2" n . For n = 3, we obtain the basic block 
consisting of  two straights and the two blocks that  consist  of two Ls each. For  
n = 3k, k ≥ 2, we obtain two basic blocks, each with Ls at the end, and straights 
in between. The basic blocks for n = 3 and n = 6, as well as the general 
extension to sizes that are larger multiples of 3, are shown in Figure 1. To 
summarize, 

! 

B(2,3) = 3,  B(2,3k) = 2 for k > 1 and B(2,n) =  0  otherwise.  



 
 

Figure 1.  The basic blocks for tromino tilings of 

! 

2" n  rectangles 
 
The generating function for the number of basic blocks follows easily from the 
definition of the generating function and we obtain the following equation.  
 

(3.1)    

! 

GB(2) (x) = 2 x
3i

i=1

"
# + x

3
=
x
3
(3$ x3)

1$ x3
 

 
Using the general form in Equation (2.2) and the generating function for the 
number of basic blocks, we get the generating function for the number of tilings: 
 

(3.2)  

! 

GT(2) (x) =
1

1"GB(2) (x)
=

1" x
3

1" 4x
3

+ x
6

. 

 
Table 1 below gives the number of tilings for 

! 

2" n  rectangles. 
 

n 0 3 6 9 12 15 18 21 24 

! 

T (2,n)  1 3 11 41 153 571 2131 7953 29681 
 

Table 1:  The number of tromino tilings of 

! 

2" n  rectangles 
 
This sequence appears in Sloane [9] as A001835, the number of ways of packing 
a 

! 

3" 2(n #1)  rectangle with dominoes.  This domino tiling is also discussed in 
[6, 8].  We can see the connection by noting that there are the same number of 
basic blocks for tiling a 

! 

3" 2n  rectangle with dominoes as there are basic 
blocks for tiling a 

! 

2" 3n  rectangle with trominoes, as shown in Figure 2. 
 

 
 

 
 

Figure 2.  The correspondence between basic blocks for  
tromino and domino tilings 



It is also possible to write recursive equations to generate the number of tilings 
of  

! 

2" 3k  rectangles.  In particular, using Equation (2.1), we find that   
 

(3.3)  

! 

T (2,3k) = B(2,3i)

i=1

n

" #T (2,3(k $ i))

= T (2,3(k $1)) +2 T (2,3(k $ i))

i=1

n

" .

 

 
Substituting this equation into 

! 

T (2,3k) "T (2,3(k "1)) and simplifying gives rise 
to the following recursive formula.   
 
(3.4)   

! 

T (2,3k) =  4T (2,3(k "1)) "  T (2,3(k - 2)) , 
 
with initial conditions T(2,0) =1, T(2,3) = 3.   
 
The corresponding characteristic equation is given by 

! 

x
2
" 4x +1= 0,  and the 

characteristic roots are 

! 

2+ 3  and 

! 

2" 3 .  Consequently, we find that 

! 

T (2,3n) =  c1(2 + 3)
n

+ c2 (2" 3)
n  and, using the initial conditions, we 

obtain 

! 

c1 = 1
6
(3+ 3)  and 

! 

c2 =  1
6

(3- 3) .  Since the resulting formula also 
gives the correct values for n = 1 and n = 2, we have proved the following 
theorem. 
 
Theorem 3.1.  The number of tilings of 

! 

2" 3k  rectangles with trominoes for 

! 

k " 0  is given by  
 

(3.5)  

! 

T (2,3k) =  1
6

(3+ 3) " (2 + 3)
k

 +  1
6

(3# 3) " (2# 3)
k , 

 
with generating function    

(3.6)   

! 

GT(2) (x) = g(x
3
) , where 

! 

g(x) =
1" x

1" 4 x + x
2

. 

 
 
We next count the number of Ls and straights among all tromino tilings of 

! 

2" 3k  rectangles, and derive explicit formulas as well as generating functions 
for both counts. 
 
Theorem 3.2.  The number of Ls and straights in all tilings of 

! 

2" 3k  rectangles 
with trominoes for 

! 

k " 0  are given by  
 



(3.7)  

! 

TL (2,3k) =  1

3 3
(2 + 3 )

k
-  (2" 3 )

k( ) 

                          +  k

3
(1+ 3 ) # (2 + 3 )

k + (1" 3 ) # (2" 3 )
k( )

 

and 
 

(3.8)  

! 

TS (2,3k) =  1

3 3
(2" 3 )

k
-  (2 + 3 )

k( ) +  2k

3
(2 + 3 )

k + (2" 3 )
k( ), 

 
with generating functions  
 

(3.9)  

! 

GT
L
(2) (x) =

4x
3
(1" x

3
)

(1" 4 x
3

+ x
6
)
2

  and   

! 

GT
S
(2) (x) =

2x
3
(1+ x

6
)

(1" 4 x
3

+ x
6
)
2

. 

 
 
Proof: From Figure 1 we notice that each set of basic blocks of size 

! 

2" 3k  
contains four Ls.   Thus, 

(3.10)  

! 

BL (2,3k) = 4   for k " 1 #       GBL (2) (x) =
4x

3

1$ x
3

, 

 
and the generating function for the number of Ls in Equation (3.9) follows from 
Equation (2.7), together with Equations (3.1) and (3.2). To derive the explicit 
formula for the number of Ls, we use Equation (2.6) to obtain the following 
recurrence for the number of Ls, taking into account that the number of basic 
blocks and tilings is zero unless n is a multiple of 3: 
 

(3.11)    

! 

TL (2,3k) = B(2,3i) "TL (2,3(k # i))

i=1

k

$  + BL (2,3i) "T (2,3(k # i))

i=1

k

$  

                =TL (2,3(k #1)) + 2 TL (2,3(k # i))

i=1

k

$  + 4 T (2,3(k # i))

i=1

k

$ . 

 

 
Substituting Equation (3.11) into 

! 

TL (2,3k) "TL (2,3(k "1))  and simplifying 
yields 
 
(3.12)  

! 

TL (2,3k) = 4 "TL (2,3(k #1)) -TL (2,3(k # 2)) + 4 "T (2,3(k # i)), 
 
a nonhomogeneous second order recurrence relation. The characteristic equation 
for the associated homogeneous relation is 

! 

x
2
" 4x +1= 0,  with roots 

! 

r1 = 2 + 3  and 

! 

r2 = 2" 3 . Thus,  the homogeneous and particular solutions are 
of the form 

! 

a
(h)

= c1 " r1
k

+ c2 " r2
k  and 

! 

a
( p)

= A " k " r1
k

+ B " k " r2
k , respectively. 

Substituting the particular solution into the recurrence relation (3.12), collecting 



terms with respect to the two roots and solving for A and B gives 

! 

A = (1+ 3) /3 
and 

! 

B = (1" 3) /3 . Since 

! 

TL (2,3k) = a
(h)

+ a
( p) , we use the initial conditions 

! 

TL (2,0) = 0 and TL (2,3) = 4  to obtain 

! 

c1 = 1/(1+ 3)  and 

! 

c2 = "1/(1+ 3) , 
which gives Equation (3.7). 
 
To obtain the generating function for the number of straights, we observe that 
the number of straights in small basic blocks is given by 

! 

BS (2,3) = 2, 

! 

BS (2,6) = 4,  BS (2,9) = 8,  ...and that the number of straights increases by 4 for 
each increase by 3 in the length of the rectangles being tiled. Therefore, 

! 

BS (2,3k) = (k "1) # 4  for 

! 

k > 1 and the generating function is given by 
 

(3.13)   

! 

GBS (2)
(x) =

2x
3
(1+ x

6
)

(1" x
3
)
2

. 

 
The generating function for the number of straights in Equation (3.9) now 
follows from Equation (2.5), together with Equations (3.1) and (3.2). To derive 
the explicit formula for the number of straights we use Equation  (2.3), which 
relates the total area to the areas covered by Ls and straights, and obtain, after 
simplification, 
 
(3.14)    

! 

TS (2,3k) = 2 " k "T (2,3k) #TL (2,3k) , 
 
from which Equation (3.8) follows.                                                                     
 
 
Table 2 gives the first few values for the number of Ls and straights in all tilings 
of size 

! 

2" n .  
 

n 3 6 9 12 15 18 21 24 

! 

TL (2,n)  4 28 152 744 3436 15284 66224 281424 

! 

TS (2,n)  2 16 94 480 2274 10288 193472 815682 
 

Table 2. The number of Ls and straight in all tromino tilings of 

! 

2" n rectangles 
 

 
Except as mentioned for the sequence in Table 1, none of the sequences in 
Section 3 are found in Sloane [9]. 
 
 
4.  Tiling

! 

3" n  Boards 
Counting the number of tilings of the 

! 

2" 3k  rectangles with trominoes was 
relatively straightforward, since there are exactly two basic blocks of size

! 

2" 3k  



 

for 

! 

k > 1. This resulted in a linear recursion of order two that could be solved 
explicitly and easily.  Unlike the case for the 

! 

2" n  rectangles, there is no 
restriction of the value of n when tiling 

! 

3" n  rectangles, since all the areas are 
automatically divisible by 3.  There are basic blocks of all sizes as before, but 
not a constant number of them. In particular, there is one basic block for n = 1, 
two for n = 2, five for n = 3; for n > 3, there are four basic blocks for 

! 

n " 0 (mod  3)  and two basic blocks for all other values of n.  Note that for each 
basic block of length 4 or more, a block that is three units longer can be 
constructed by inserting a diagonal of straights through the middle of the given 
block, as shown in the transition from n = 4 to n = 7 in Figure 3. The basic 
blocks of length up to 7 are shown in Figure 3, where the missing blocks are 
created by reflecting the given ones through the horizontal mid-line. 
 

n 1 2 3 4 
 

  

 

 
B(3,n) 1 2 5 2 

 
n 5 6 7 
 

   
B(3,n) 2 4 2 

 
Figure 3. The basic blocks for tiling 

! 

3" n  rectangles with trominoes 
 
Since there is a regular pattern for the number of basic blocks, we are able to 
obtain a recurrence equation of order six, as well as the generating function for 
the number of tromino tilings. 
 
 
Theorem 4.1.  The number of tilings of 

! 

3" n  rectangles with trominoes is given 
by the following recursive formula  
 
(4.1)    

! 

T (3,n) =T (3,n "1) + 2T (3,n " 2) + 6T (3,n " 3) +T (3,n " 4) "T (3,n " 6) , 
 
with 

! 

T (3,0) =T (3,1) = 1,

! 

T (3,2) = 3,  T (3,3) = 10,  

! 

T (3,4) = 23, and 

! 

T (3,5) = 62,  
and generating function 

(4.2)  

! 

GT(3) (x) =
1

1"GB(3) (x)
=

x
3
"1

"1+ x + 2x
2

+ 6x
3

+ x
4
" x

6
. 

 

 
 

 
 

 



Proof: We use Figure 3 and the discussion preceding it to express T(3, n) 
recursively using Equation (2.1). 
  
                

! 

T (3,n) =T (3,n "1) + 2 #T (3,n " 2) + 5 #T (3,n " 3)  

(4.3)                       

! 

+ 2 " T (3,n # (3i +1))
i=1

(n#1) /3$ %
&  

                              

! 

+ 2 " T (3,n # (3i + 2))
i=1

(n#2) /3$ %
&

! 

+ 4 " T (3,n # 3i)
i=1

n /3$ %
& . 

 
Since the sums in Equation (4.3) each contain summands referring to tilings 
whose widths are congruent modulo 3, we can cancel out all but the first terms 
in each of the sums by computing the difference 

! 

T (3,n) "T (3,n " 3),  and then 
solve for 

! 

T (3,n). This results in the recurrence of order six given in Equation 
(4.1). Unlike the case of the 

! 

2" n  tromino tilings, this recurrence cannot be 
factored. The initial conditions for the recurrence follow from Equation (4.3) for 
n = 1,…,5. 
 
The generating function for the basic blocks is derived as follows. All terms 
show up twice, the multiples of three show up twice more (for a total of 4), and 
the initial terms for n = 1 and n = 3 are “manually” adjusted. 
 

(4.4)   

! 

GB(3) (x) = 2 x
i

i=1

"
# + 2 x

3i

i=1

"
# $ x + x

3
=
x(1+ 2x + 5x

2
+ x

3 $ x5)

1$ x3
. 

 
Then the generating function for the number of tilings follows from Equation 
(2.2) as before.                  
 
 
Table 3 gives the first few values for the number of tilings of 

! 

3" n  rectangles 
with trominoes. 
 

n 0 1 2 3 4 5 6 7 8 9 10 

! 

T (3,n)  1 1 3 10 23 62 170 441 1173 3127 8266 
 

Table 3. The number of tilings of 

! 

3" n rectangles with trominoes 
 
 

We next count the number of Ls and straights among all the tilings of 

! 

3" n  
rectangles with trominoes and obtain the following result. 
 
Theorem 4.2.  The generating functions for the number of Ls and straights in all 
tilings of 

! 

3" n  rectangles with trominoes are given by  
 



(4.5)    

! 

G
T
L
(3) (x) =

4 x
2
(1+ x)

2
(1" x

3
)

("1+ x + 2x
2

+ 6x
3

+ x
4
" x
6
)
2

 

and 

(4.6)   

! 

GTS (3)
(x) =

x + 7x
3

+ 2x
4

+ 6x
5

+ 2x
6

+ 3x
7

+ 3x
9

("1+ x + 2x
2

+ 6x
3

+ x
4
" x

6
)
2

. 

 
 
Proof:  We begin by considering the number of Ls in basic blocks. For n = 2 and 
n > 3, the number of Ls is just twice the number of basic blocks. Thus, the 
generating function for the number of Ls in basic blocks can be obtained from 
the generating function for basic blocks by making the relevant adjustments for 
n = 1 and n = 3, as shown in Equation (4.7). 
 

(4.7)    

! 

G
B
L

(3)(x) = 2G
B(3)(x) " 2x " 2x

3

                  =
x(1+ 2x + 5x

2
+ x

3
" x

5
)

1" x
3

" 2x " 2x
3

=
4x

2
(1+ x)

2

1" x
3

.

  

 
The generating function for the number of Ls in all tilings now follows from 
Equation (2.7), together with Equations (4.2) and (4.4).    
 
Next we obtain the generating function for the number of straights in basic 
blocks, which is a little bit more involved. Table 4 shows the number of straights 
in the basic blocks of size 

! 

3" n   for small values of n .  
 

n 1 2 3 4 5 6 7 8 9 10 11 

! 

BS (3,n)  1 0 7 4 6 16 10 12 28 16 18 
 

Table 4. The number of straights in tromino tilings of 

! 

3" n rectangles 
 
A regular pattern emerges only for 

! 

n " 7, where we find that 

! 

BS (3,n) = BS (3,n " 3) + 3B(3,n " 3) .  The total sequence is a combination of 
three sequences that are all arithmetic. The sequence for multiples of 3 increases 
by 12 each time, the others increase by 6. Therefore, 
 

(4.8)     

! 

B
s
(3,n) =

16 + (k "2) #12 = (k "1) #12 + 4 if n = 3k,k $ 2

 4 + (k "1) #6 = (k "1) #6 + 4 if n = 3k +1,k $1

 6 + (k "1) #6 = k #6 if n = 3k + 2,k $1

% 

& 
' 

( 
' 

  

 
with initial conditions as given in Table 4. The corresponding generating 
function is given by  



(4.9)       

! 

G
B
S

(3) (x) = 7x
3

+ (12(k "1) + 4

k = 2

#
$ )(x

3
)
k

                         + x + (6(k "1) + 4

k = 1

#
$ )(x

3
)
k
x + 6k

k = 1

#
$ (x

3
)
k
x

2
.

 

 
Simplifying this expression and applying Equation (2.5) together with Equations 
(4.2) and (4.4), gives rise to the generating function for the number of straights 
in all 

! 

3" n tromino tilings.                                                                                    
 
 
Table 5 gives the number of Ls and straights in all 

! 

3" n  tromino tilings for the 
first few values of n.  
 

n 1 2 3 4 5 6 7 8 9 

! 

TL (3,n)  0 4 16 48 172 552 1672 5120 15304 

! 

TS (3,n)  1 2 14 44 138 468 1415 12839 37680 
 

Table 5.  The number of Ls and straights in all 

! 

3" n  tromino tilings 
 
None of the sequences in Section 4 are listed in Sloane [9]. 
 
 
5.   Open Questions 
The authors are currently exploring questions regarding how many ways one can 
tile rectangles with tetrominoes.  One can also attempt to extend tromino tilings 
to 

! 

4 " n  or larger rectangles, although the counting problems become much 
more complex. 
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