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ABSTRACT
Modeling and Forecasting Stock Market Prices
with Sigmoidal Curves
By

Daniel Tran
Pricing stock market data is difficult because it is inherently noisy and prone
to unexpected events. However, stock market data generally exhibits trends in the
medium and long term. A typical successful stock index exhibits an initiation phase,
rapid growth, and then saturation whereby the price plateaus. Sigmoidal curves can
effectively model and forecast stock market data because it can represent nonlinear
stock behavior within confidence interval bounds. This thesis surveys various mem-
bers of the sigmoidal family of curves and determines which curves best fit stock
market data. We explore several techniques to filter our data, such as the moving
average, single exponential smoothing, and the Hodrick-Prescott filter. We fit the
sigmoidal curves to raw data using the Levenberg-Marquardt algorithm. This thesis
aggregates these analysis techniques and apply them towards gauging the opportune

time point to sell stocks.
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CHAPTER 1
Introduction to Stock Market Behavior and Sigmoidal Curves

The stock market is a system that connects buyers and sellers of stock. Stock
is partial ownership of a company in exchange for a certain amount of cash. The
owner of stock hopes that the value of stock increases in the future in order to sell
stock for cash profit. One may guess that the value of a stock is directly tied to the
profits a company can generate, but market exchanges announce the price of a stock
through a black box algorithm that depends upon buyer’s and seller’s bids and offers.
This allows for human psychology and market speculation to be priced into stocks.
For instance, suppose there exists stock of a company that sells poultry. If a rumor
of avian flu speculates drop in profits, the panic may cause owners of the stock to
worry and assume a drop in stock price, even though the outbreak may not infect
any chickens. Owners of stock may irrationally sell all their shares before the spread
of avian flu takes place.

This thesis will not attempt to forecast stock prices in the short term because
human psychology and geopolitical events that can affect stock market prices in un-
predictable ways. Stock prices with time frames that are less than a year generally
exhibit a random walk. Professor Jeremy J. Siegel generated stock market data with
a random walk algorithm and asked stock brokers to identify real data mixed with
simulated data. Aside from the October 19th, 1987 crash, none of the brokers could
distinguish which was real data [18].

Instead, this thesis will explore long term trends, or time scales of at least one

year with daily data. Long term prices of stock indices show a positive correlation.



Recall that a stock index is the sum of the price of every unique stock price. The
Dow-Jones Industrial Average (DJIA) is a price-weighted index, meaning the prices
of 30 large major US industries are summed together, then divided by the number of
firms in the index [18]. Siegel fits a best fit line onto 1997 dollars adjusted data and
shows the DJIA increases 1.70% per annum. Notice that this time period covers major
events in US history, including The Great Depression, World War 2, oil shortages,
and many other unpredictable geopolitical events.

Sigmoidal curves were first used for modeling population dynamics. Sigmoidal
curves assume that a population will grow at an increasing rate until it passes an
inflection point, then the curves approaches a certain limit, called the carrying capac-
ity. In terms of demographics, this carrying capacity might be the average mortality
of a species or the maximum population a given ecosystem can sustain.

In a similar vein, the economy has finite resources and labor for goods and
services, so the growth of any particular company will also have a carrying capacity
in an economic environment. This paper will demonstrate that sigmoidal curves may
be utilized as a tool to predict long term stock market prices.

Stock market data is noisy because of market volatility and general uncertainty
about future market conditions. This thesis will follow assumptions outlined by Choliz
(2007). Choliz characterizes stock market values following three phases: emergent,
inflection, and saturation. The emergent phase is when a stock is initially accelerating
in growth, the inflection phase is when the growth rate becomes linear, and the
saturation phase is when growth decelerates. Stocks have a lower bound of zero

because stock prices cannot be negative. Stocks also have a rapid phase of growth



with an inflection point that defines a decrease in the rate of stock market growth.
Stocks also have an upper bound once it saturates the market.

Our sigmoidal growth curve models need to have variable growth rates and
asymmetry [2]. Schumpeter observes in advanced economies over two centuries sug-
gest that periods of expansion are generally longer than periods of decline. In this the-
sis, we will use the Logistic, Gompertz, Weibull, Generalized Logistic, and Chapman-
Richards equations as the models to fit stock market data. All of these curves have
a positive horizontal asymptotes which define the carrying capacity and a horizontal
asymptote that defines a stock market price of minimum of $0. All of these sigmoidal
curves exhibit an emergent, inflection, and saturation phase. The inflection points of
each of these sigmoidal curves can vary, allowing for asymmetric fits. The Logistic
and Gompertz equation have inflection points that are multiplied by a constant. The
Weibull, Generalized Logistic, and Chapman-Richards are multiplied by a variable,
so these three sigmoidal curves provide flexibility when fitting and forecasting stock
market data. This thesis will show that the last three sigmoidal provide better fits

and forecasts than the classical Logistic and Gompertz equations.



CHAPTER 2
Various Members of the Sigmoidal Family of Curves

Sigmoidal curves have initially been used to model the growth of biological
species populating a given ecosystem with limited resources. The economy similarly
has finite resources for goods and services, so the growth of any particular com-
pany must have a carrying capacity in unconstrained economic environment. This
metaphor motivates the use of sigmoidal curves to model stock market prices. We
need to find a function that accelerates initially as it grows, then decelerates as the
size of a stock approaches a limit. The sigmoidal curves exhibit this pattern. The
term ”sigmoidal” literally means s-shaped.

The inflection point is the turning point where the rate of growth starts to
decrease. The Logistic and Gompertz equations are classic examples of sigmoidal
curves. The problem with these functions is that the inflection point, Y, fiection, is a
fixed product between the carrying capacity and a constant. The Generalized Logistic,
Chapman-Richards and Weibull equations have inflection points that are dependent
upon some variables, so the inflection point is adjustable along the z-axis and y-axis.

This chapter will explore the phase diagram and instantaneous growth rate for

each type of curves. The phase diagram is the derivative of the closed form solution,

[amount)]
[unit time] *

aYy

> whose unit is

The inflection point occurs at the maximum value of
the phase diagram. In all of our graphs, when Y; is at the carrying capacity Y.,
the growth rate must necessarily be zero. Growth does not occur past the carrying

capacity for sigmoidal curves.

The instantaneous growth rate divides % with Y;, with units of % This
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can be interpreted as the percentage change of Y; per unit time forward.

2.1 The Logistic Model

Given the closed form of the logistic model:

Yo

Yt) =Y, = ——
®) T4 e st

t>0 (2.1)

where «, [ are constant growth parameters, with g being the maximum growth rate,

and Y, is the carrying capacity. The derivatives for the logistic models are given by

ay, p
— = —Y (Y, — Y, 2.2
iy e =) 22
2y, p dy,
= —(Y, —2Y,)—. 2.
dt2 Yoo( ‘) dt (2.3)
dt
150 - —_—
[ 4 — B=T
100} - - A=
o T p=5
(L] i LS !
B0+ \
|:| i L L L 1 L ! ! ! L ' ' 1 L L ! 1 L L ' "r"‘
0 20 40 60 a0 100

Figure 2.1: Phase diagram of logistic curve with parameters g = 5, 6, 7, Y, = 100.

Due to symmetry, the maximum of % occurs at the midpoint between 0 and

Y., as shown in the phase diagram in Figure 2.1. Even though the height of the
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maximum can change with 3, the inflection point ¢;,fection is fixed. The y-value of

the inflection point occurs at Y; = Y?“, that is when d;tgf = 0. Substituting this

value into the closed form of the logistic equation (2.1) gives t = %ln(oz). Hence, the

inflection point occurs at

1 Yo
(tinflectiona Y;nflection) = (g 111(0[), 7) . (24)
The instantaneous growth rate is
a4 B
A= — (Yo — Y2). 2.5
= (Ve ) (25)

I
1
T T T
il
moom =

0 20 40 60 80 100

Y I Y,

Figure 2.2: Instantaneous growth rate with logistic curve with parameters = 5, 6,

7, Yy, = 100.

Notice that Yiy fiection is dependent only on the carrying capacity Y., sometimes
referred to as the ceiling value. To realistically model stock prices, we need functions
that are more malleable where we can adjust the inflection points, and whose curves

that are not necessarily symmetric.



2.2 The Gompertz Model
The closed form of the Gompertz model is:
Y, = Yoe ™, t>0 (2.6)

where o and [ are constant growth parameters, and Y., > 0.
Manipulation of the closed form solution (2.6) will be useful for understanding

the derivatives of the Gompertz equations. Note that

— e Pt
Y, = Yo e o®
Yy _ e—ae_ﬁt
Yoo
Yoo o aom
Y:

The derivatives of the Gompertz equation are:

dy, Yoo
d_tt = afe Y, = BY,In (Y) (2.7)

2y, )é Y.
ddt; = af?e P (ae™? —1)Y; = f*In <7°:> <1n (70:) - 1>Yt (2.8)




[
n

200

0 20 40 60 a0 100

Figure 2.3: Phase diagram of Gompertz model with parameters § = 5, 6, 7, Y, =

100.

The phase diagram shows that the inflection point occurs at a fixed point on
the z-axis, the same characteristic as the logistic equation.

The instantaneous growth rate is:

ayy

% =afe P = B(InYy — InY,). (2.9)
t



(dYtdi)/ Yt

40
30f
: — g
20 e ol
B=5
10
|:|- T T o e N D s T : j
g0 g0 1|:||:IV’

Figure 2.4: Instantaneous growth rate of Gompertz model with parameters g = 5, 6,

7, Y, = 100.

The instantaneous growth rate has a vertical asymptote at Y; = 0. This is no
matter for applications towards the stock market because a stock price is de-listed at

zero. Our sigmoidal curves assume that stock will always be greater than zero.

To calculate the inflection point:

—ae -1

1=ae?

1

_ = eiﬂt

«

a =

ft = In(a)
In(a)




Substituting this value into the closed form solution (2.6), we obtain

_B In(a)

Y; — Yooe—ae

}/;f o Y e_aefln(a)
- oo

—al
Yt = Y(X)e aa

-1
Y;nflection = Yooe .

So the inflection point occurs at:

In(a _
(tinflectionvnnflection) = ( (B )7Yooe 1) . (210)

2.3 The Generalized Logistic Equation

As derived in Appendix C, the closed form solution of the generalized logistic

equation is given by:

Yo Y
Y;‘/:m, fOI'ZfZO&IldO{I Yo: —1. (211)
+ae ) 0

Note that the derivatives are:
dy; Vi
— =8Y, |1 — | — 2.12
Y gy, [ (Yw) } (2.12)

Sl ()] e
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Figure 2.5: Phase diagram of generalized logistic with parameters § = 7,r =

0.5,1.5,2, Yy, = 100

A

dt

20000 [

15000 |
10000 |

5000

0 20 41 60 al 100
Figure 2.6: Phase diagram of generalized logistic with parameters § = 5,6,7,r =

1.5, Yo = 100.

The phase diagrams for the generalized logistic equation show it is possible to
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shift the maximum along the z-axis. The value of the r» parameter allows for change
of the inflection point to correspond to various values of Y;.

The instantaneous growth rate is:
dY; r
e Y,
dt t
L =011—-|— 2.14
e -oli- () _—

(dYdi)/ Yt
FO00 s

0 20 40 B0 a0 mnv"

Figure 2.7: Instantaneous growth rate of generalized logistic with parameters § =

7.r =0.5,1.5,2, Y, = 100.
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(dYt/dt)/Yt

700

I
|
T T T
1]
~ o n

o 20 40 80 80 100
Figure 2.8: Instantanecous growth rate of generalized logistic with parameters g =

5,6,7,7 = 1.5, Y., = 100.

We can change the concavity of the instantaneous growth rate. When r > 1,
the instantaneous growth rate decreases at an increasing rate. When r < 1, the
instantaneous growth rate decreases at a decreasing rate. When r = 1, we get back
the logistic equation.

To calculate the inflection point:

0=1_(7~+1)<%>T
1=(r+1) (%)T

I A AN
r+1  \Yy
1 Y

(’I" + 1)1/1" - g

Yoo
Y;'nflection = m

13



To calculate ¢, substitute Yj, fiection into the closed form solution (2.11):

Yoo Yoo

(r+ 1Y (1 + aeBrt)l/r

(r+ )Y = (14 ae Ptyl/r

r=oe P

Z — e—ﬂrt
[0
In (Q) = prt
r
1 o
tinflection = E In <?> .

So the inflection point for this curve is:

1 o Y.
tin ec iona}/;n ection) — —1 <_> ;;.O . 2.15
(Linfrect flection) (ﬁ'f’ A (r—i—l)l/") (2.15)

2.4 The Chapman-Richards Equation
The closed form solution of the Chapman-Richards equation is [13]:
Y, = Y[l — ae™M]™,t > 0. (2.16)

Before calculating the derivatives, we will need the following equations from

the closed form solution.
Y,
(Y—t) =[1 —ae M]™ (2.17)

Y, 1/m
(Y—t> =1—ae™ (2.18)

The first and second derivatives are:
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dt
= mae MY, (1 —ae” )"
(1 — ae™™M)
ae—M
= mAY; (1 — ae ™) (2.19)

[ |

[ A=5

i o

3_ ....... F=d

2f

1F e '-_

(] SO R —

0 20 40 60 80 ‘IEIEIY
Figure 2.9: Chapman-Richards phase diagram with m = —.1,A = .01,.1,1,Y, =
100.
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[=1
i

dt
25
200

" m=-.1
1.5

I — = m=-.01
10F ceeees M=—001
0.5f . ST \
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Figure 2.10: Chapman—Richards phase diagram with m = —1,—.1,—.01,\ =
1, Y, = 100.

To calculate the inflection point:



Direct substitution of Y, fiection to the closed form (2.16) gives:

—1\™
Yoo <m—) = Y[l — ae ™™

m
-1
M= _q- ae M
m
1
1——=1—ae™
m
1
oM
am
am = eM
In(am) = Mt
; _In(am)
inflection — \

So the inflection point for this curve is:

In(am m—1\"
(tinflectionayinflection> = ( ()\ )7Yoo <—) ) (221)

m

The instantaneous growth rate from equation (2.19) gives:

% % 1/m
dt el -1 2.22
y, =™ ( % ) (2.22)
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(dYt/dt)/ Yt
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Figure 2.11: Chapman—Richards instantaneous growth rate with m = —.1,\ =

01,.1,1, Y, = 100.
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Figure 2.12: Chapman-Richards instantaneous growth rate with m =

—1,—.1,—.01,\ = .1, Y, = 100.

Since the Chapman-Richards equation is of similar form to the generalized

18



logistic equation, we have the same patterns for parameter adjustments.

2.5 The Weibull Equation
The closed form solution of the Weibull equation is [13]:
Y, =Y —ae ™, t>0 (2.23)

Its first and second derivatives are

dY;

— =yt (Y — Y)) (2.24)
dt
d*Y, dY,
= Byt — It Y Y, - Y — — 2.25
at
5 |
B H
II
i a=.001
— = g=.01
4
ot A . B s
E B
|:| N N N | L 1 1 | L L i |“-.". =-_==-' | Y‘
0 20 40 60 80 100 ¢

Figure 2.13: Weibull phase diagram with parameters a = .1,.01,.001,5 = 7,7 =

1/5, Yo = 100.
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Figure 2.14: Weibull phase diagram with parameters a = .001,8 = 5,6,7,v =

1/5, Y5 = 100.
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Figure 2.15: Weibull phase diagram with parameters a = .001,8 = 7,7 =

1/3,1/5,1/7, Ys = 100.
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To calculate the inflection point:

dY;
0= pyt7" | (v = Dt (Yoo = i) = —-
aY;
= (7= D (Yoo = Y1) = —-
dY;
= (= i (Ve = Y)

B'Yt’y_l(yoo -Y)=(v- 1)t_1(Yoo -Y)

v—1
By

Ein flection = (7__1 "
m ection —
By

By direct substitution of ¢;, fiection into the closed form solution (2.23), we get:

17 =

Y;nflection = Yoo - ae—(’y—l)/’y (226)
So the inflection point for this curve is:

1 1/v
(tinflectiony }/;nflection) = ((/}/‘T) ,Yoo - Oée(’yl)/’y> . (227)

The instantaneous growth rate derived from equation (2.24) is given by

dx Y.
% = Byt ! (?’O - 1) (2.28)

t
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(dYt/dt)/ Yt

250 |
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=
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Figure 2.16: Weibull instantaneous growth rate with parameters o = .1,.01,.001, 8 =

7.y =1/5,Y5 = 100.

(dYt/di)/ Yt
— ,|'3 =
- = f=
...... g=5
Figure 2.17: Weibull instantaneous growth rate with parameters a = .001,8 =

5,6,7,v=1/5,Ys = 100.
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(dY/dt)/Yt

S0k
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40+
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Figure 2.18: Weibull instantaneous growth rate with parameters o = .001,3 = 7,~v =

1/3,1/5,1/7, Ya = 100.
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CHAPTER 3
Filtering Noise
Before attempting to fit our models into the raw data, we need to smooth out
the noise from the data to reduce forecasting error.

3.1 Moving Average Filtering

The simplest smoothing function is the moving average [9]:

1
Ft+1 - E ' Z }/Z (31)

where Y; is raw data point, F},; is the smoothed data, and k is the number of previous
data points to average.

The function takes the arithmetic average of its previous k data points. If we
assume time is initialized at ¢ = 0, the output of the moving average function starts
at t = k. The output needs a minimum of k£ input points. This function places equal
weight for each previous k data point.

3.2 Single Exponential Smoothing
The single exponential smoothing function [9] is:
Ft+1 = E + OC(}/t - Ft>, (32)

where « is constant such that 0 < o < 1, F} is the smoothed data, and Y; is the raw
data. The difference Y; — F; can be regarded as the forecast error for time period
t. In this interpretation, the new forecast Fj,, is the previous forecast F; plus an

adjustment for the error that occurred in the last forecast.
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We initialize the smoothing function by either letting F} = Y5 or taking the
arithmetic average of £ — 1 terms. The constant « applies a weight on the difference
between smoothed data point and raw data at a given time point t. An « close to 0
has a small adjustment from the previous forecast error, while an « close to 1 has a
large adjustment. Here is an graph that illustrates the single exponential smoothing

filter with an arbitrary set of data.

Single Exponential Smoothing of Arbitrary Data owver Time

16 T T T T T T T T T -")
=
#
P
-
14+ —& —Raw Data J@ # =
--------- alpha = 0.1 P
alpha =099
12+
10+
=
8_
E_
4_
.-'-"'-—él

Itz ""_FJ| CEEERE e SRR

1 15 2 2h 3 34 4 45 5 Lafla 5}

Figure 3.1: Example of single exponential smoothing filter.

Notice for this data, a high a looks almost like a transposition of the raw data,
shifted to the right on the z-axis. On the other extreme, the trend line barely increases
relative to the shape of the raw data. Also, low « has very low small fluctuations in
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slope in comparison to high alpha.

3.3 The Hodrick-Prescott Filter

The Hodrick-Prescott filter [6] is a technique for finding correlations in eco-
nomic data by separating raw data into a trend function and a cyclic function.
Kim [7] summarizes the Hodrick-Prescott filter as follows.

Suppose a given set of raw data g, can be decomposed as follows:
yt:Tt—f-Ct,t:l,Q,...,T, (33)

where 7; is the trend component and ¢; is the cyclical component. The Hodrick-

Prescott filter isolates ¢; by minimizing the function

T T-1
f(r, 7o, .., 70) = Z(yt —-7)° + AZ(TtH — 21 +71)? (3.4)

t=1 t=2
where A is called the penalty parameter. We want to minimize changes in the growth
rate, thereby producing a curve with minimal sudden changes in acceleration. This
parameter can be estimated by square rooting the quotient of the percent fluctuation
of the cyclic component with the percentage growth rate of one quarter. Quarterly
data typically assumes A = 1600 because Hodrick and Prescott assumes 5% fluctu-
ation for the cyclical component, and 1/8 % growth for a fiscal quarter. When A
approaches 0, the trend component 7; matches the raw data, and when A\ approaches

infinity, 7 becomes linear, or zero acceleration.

The objective function (3.4) shows two summations. The summation on the
left is the variance between raw data and the trend component. The right summation

is the variance of the acceleration of the trend component.
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To minimize f, we set

of B of B B af B
o, om T om | (3:5)
Note that
0
—f:—2(3/1_7'1)+2)\(7'3—27'2+7'1>:O
8’7'1

This implies
Y1 = (]_ + /\)7'1 — 2)\’7’2 —|— /\7'3
= )\(7'1 — 27’2 +T3) +T1

For 7 :

of _

o= —2(ya — 7o) + 2M\(15 — 275 4+ 1) (=2) + 2\(74 — 275 +75) = 0
2

This implies
Yo = (20711 + (L + 44X+ M) 7o + (—2\ = 20) 73 + A1y
= )\(—27'1 + 57’2 — 47'3 + 7'4) + Ty

In general,

of _

5 = —2(yr — i) + 2M(Tk — 271 + Ti—2) + 2A (Thr1 — 27k + Th—1)(—2)
k

+ 2)\(Tk+2 — 2Tk+1 + Tk) =0
This implies
Y = Mpro + (=2X = 2X) 71 + (L + A+ 4N+ N7 + (=22 = 20) 71 + AT

= )\(Tk+2 _47—k+1 —|—67’k —4Tk_1 +Tk_2) —|—Tk
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We can now rewrite the minimization function in matrix notation as:

Yr = ()\F + IT)TT (36)

)T is a T x 1 vector of the raw data, Iy is T x T identity

where y; = (Y1,%2, .-, Yr

matrix , 77 = (11,72, ...,7r)7 is the T x 1 trend component vector and F is a pen-

tadiagonal symmetric matrix given by

1 -2 1 0o ... 0]
-2 5 —4 1 0 0
1 -4 6 —4 1 0
0 1 -4 6 —4 1 0
0 1 -4 6 -4 1 0
0 1 -4 6 —4 1
0O 1 -4 5 =2
0 1 -2 1

From (3.6), the trend component vector can be isolated

Tr = (AF + I7) ly,. (3.7)

The equation (3.7) has some computational advantages. The only unknown parameter
needed to smooth raw data is a single real number A. Since we are smoothing daily
data, Ravn and Uhlig [16] shows that A = 1600 (¥3)* = 110930628906.250. The
pentadiagonal symmetric matrix F can be easily inverted with fewer flops. The
Hodrick-Prescott filter was implemented with MATLAB code given in the appendix

[5]-

3.4 Comparison of Various Smoothing techniques

To see which smoothing technique is best for sigmoidal curve fitting, this
paper will use the mean square error as a metric for the best fitting technique. The
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following data set is the daily closing price of Chipotle’s stock price from its initial
public offering date, January 26th, 2006, to June 17th, 2016 [30].

The equation for the mean square error [26] is:
1 T
MSE = — > (S — Ry’ (3.8)

t=1

where S; it the smoothed data and R; is the raw data.

Moving Average (300 Days) Filters on Chipotle Stock Price Over Time
800 -

700

[ng]
=
=

[y
]
]

400

300

Chipotle Daily Closing Stock Price

100

0 I I I I I I
0 &00 1000 1500 2000 2500 3000

Number of Business Days Since |[PO

Figure 3.2: Plot of moving average filter with various k& days.
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Table 3.1: MSE of moving average filtering

k

MSE

)
30
100
300

57.796012692925402
480.525902866916
1760.21885253903
4227.2094117137203

“arious Exponential Averaging Filters on Chipotle Stock Price Ower Time

500

-

=

[
T

o
[
]
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]
T

400 -

300 -

200

Chipatle Daily Closing Stock Price

100

1
a 500

1 1 1 1 1
1000 1500 2000 2500 3000

Mumber of Business Days Since IPOD

Figure 3.3: Plot of single exponential filter with various a.

Table 3.2: MSE of single exponential filtering

«Q MSE

0.1 | 2.60E+402
0.2 | 1.33E+02
0.3 | 93.3976601
0.4 | 74.56602442
0.5 | 63.73344863
0.6 | 56.91617951
0.7 | 56.91617951
0.8 | 49.67360402
0.9 | 48.08265613
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Haodrick-Frescott Filter wf VWarious Lambda “alues on Chipotle Stock Price Over Time
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Figure 3.4: Plot of Hodrick-Prescott filter with various A.

Table 3.3: MSE of Hodrick-Prescott filtering

A MSE

160 44.51601627
800 63.33548743
1600 74.14633128
3200 88.30237894
16000 | 1.38E4-02
160000 | 2.52E402

The MSE can only measure the extent to which the smoothed data deviates
from the raw data. After we explore fitting algorithms used in this paper, the MSE
will reveal how well sigmoidal curves fit with the raw data and how well sigmoidal
curves forecast data.

For moving average filtering, the choice of using 5, 30, 100, and 300 days is
used to approximate the average of a fiscal week, fiscal month, fiscal quarter, and
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fiscal year, respectively. The deviation in moving average filtering increases as the
number of days averaged increases. For single exponential smoothing, the smoothing
deviation decreases as « increases. For the Hodrick-Prescott filter, the MSE increases

as )\ increases.
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CHAPTER 4
Fitting Data and The Levenberg-Marquardt Algorithm

This chapter starts with the discussion of polynomial interpolation as one of
the basic techniques for curve fitting. Next we look into nonlinear least squares prob-
lems that arise in the context of fitting a more general parameterized function to a
set of data points by minimizing the sum of the squares of the errors between the
data points and the function. The Levenberg-Marquardt algorithm is a standard
technique for solving nonlinear least squares problems. We present the derivation of
the Levenberg-Marquardt algorithm along with its convergence theorem. A compu-
tational example is also presented to illustrate the algorithm.

4.1 Polynomial Interpolation

One of the most common and simplest ways to fit data is by fitting polynomial
functions into a given data set. Given a data set {(z;,v;), ¢ = 1,2...n}, we aim to

find a k-th order polynomial, where k < n:
y:a0+a1x+~--+akxk. (4-1)

The error r, also called residual, is defined to be the difference between the fitted

function and the data points. The sum of the square error can be written as
n

R(ag,ay,...,a;) =1° = Z[y, — (ap + a1 + . .. + a2 (4.2)

=1
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Note that R is a function of k + 1 variables ag, aq,...,a;. To minimize R, we take

the partial derivative with respect to each a;, and set it equal to zero:

OR
= -2 Z{yl — (ao +aix; + ...+ akxf)] =0

(9_a0 =1
OR &
a_al =9 ;[yl —(ap +ayz; + ...+ akxf)]xi =0
OR -
Sa = 2 > Ty — (a0 + a1z + .. + axaf)Jaf = 0

By dividing both sides by the constants and distributing terms we get:

OR
Dan [?Ji—(ao+a1mi~|—...+akxf)]:0
T
OR &
dar [zyi — (a0 + a1z} + ...+ apzf )] =0
1

=1

OR
2 =Y by — (g + )] = 0,
k -
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We now separate each summation term and move all terms containing y to one side,

we get:

n n n
k
a0n+a1§ xi+...+akE aji:E Ys
i=1 i=1 i=1
n n n n
2 k+1
Gog xﬁ—alg x,;—l—...—l—akg xi+:§ TiY;
i=1 i=1 i=1 i=1

(4.3)

n n n n
k k+1 2k _ k
GOE a:i+a1§ T; +...+ak5 T; —E ;Y
i=1 i=1 i=1 i=1

The above system of equations is called the normal equations and can be written in

the following matrix form

n n n n
Zi:l i Zi:l x? e Zi:l Z; * ap Zi:l TiYi
) ) . ) . i (4.4)

A Vandermonde matriz is a matrix with the terms of a geometric progression in each

row. The matrix

1 x4 x’f
1 29 ... xk

v=|, (4.5)
1z, ... af

is a Vandermonde matrix. Note that (4.4) can be decomposed in terms of Vander-

monde matrix V as shown below:

1 1 ... 1 1 =z ... x’f ag 1 1 ... 1 Y1
T :1:‘2 co. Xy 1 To ... a:é aq _ 1 o ... Tn Y 7 (4.6)
ak xlg zk 1 T, ... %] |ay x’f N A A
that is,
VIva=1VTy, (4.7)
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where a = [ag, ay,...,ax]t and y = [y1,%2, ..., 9n]T. Therefore, the coefficients a can

be written as

a=VIV)vly. (4.8)

Note that the dimension of V' is n x (k 4 1) and it easily becomes very large
as the number of data points is large. Solving for coefficients a from the system (4.7)
takes O((k + 1)?) using Gaussian elimination. Moreover, the behavior of polynomial
functions as t increases approaches +o0o, which is impractical for modeling a carrying
capacity. In the next section, we will look at the least square problems that arise
from fitting parameterized functions, such as the sigmoidal curves, to a set of data
points.

4.2 Nonlinear Least Square Problems

Given a set of data points {(t1,v1), (t2,92), -, (tm, Ym)}, the nonlinear least

square problem is a problem of finding a function p(t,x1,xs,...,x,) of n parame-
ters x1,x,...,x, that best fits the data. We want to find the parameter values
x = (z1,%2,...,%,) through iterative improvement that minimizes the sum of the

squares of the errors between the data points and the function. The problem can be
formulated as follows:

min f(x), (4.9)

xeR”

where

Z r?(x), (4.10)

J=1

N —

f(x) =
r; are residuals, or more specifically r; = |raw data—fitted function| = |y;—p(¢;,x)|,j =
1,...,m. We assume that m > n.
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The minimization function can be rewritten as:

£ = (P = 5r(07r(x), (4.11)

where r(x) = (r1(x), r9(x), ..., 7 (x))T.
Recall that the Jacobian J(x) of r is the m x n matrix of the first partial

derivatives, that is,

orp  Orp Ory
ox ox Tt Oz
o d T Ozn
J= |0 Om T Om (4.12)
Orm  Orm Orm
o0x1 0z CT Oxp

Recall also

[ of
%

Vi) = |7

of

L Oxn,

_%(2T1(X)g—g + 2T2(x)g—g NI 27”m(x)‘g’;”11)

| L2 (%) 22 4 20y (%) 22 4 4 2y (x) 2

. Or1 Ora 4 ., Irm
r1 ox1 + 172 Ox1 + +Tm ox1

i) ol Orm
Mggs +Tages + -+ I
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We can now rewrite V f(x) as

ory  Ory Orm

dry Oxp 0w ™
ory  Org Orm T
o 02 0o e 0o
Vf(X) o : : .. :
ory oro Orm r
or, Oxrn 7 Oxn m
=J'r
Brj
Vry ?
orj
. VTQ h V B D
= [r1,72, ..y ') .| » where Vry = | 77

=rVri+ryVra+---+1r,Vr,
= ZT’jVTj.
j=1

The derivatives of f can be expressed in terms of the Jacobian matrix J(x) = [3—;} ,

1<i<m, 1<j<n, as follows

Vfx) = Z ri(x)Vr;(x) = J(x) r(x) (4.13)
V2f(x) = J(x)"J(x) + Z r;(x)V2r;(x) (4.14)

In the vicinity of a solution, r(x) is usually small, so the summation in the second
term of (4.14) is negligible and J(x)?J(x) can be taken as an approximation for the

Hessian:

Vif(x) = J(x)'J(x). (4.15)
4.3 Line Search Algorithms
A general procedure of line search algorithms for function minimization is as

follows. We start with an initial guess, xg € R", and produce a sequence of points
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X} that, under appropriate conditions, will converge to a minimizer x*. At each
pp g

iteration k, the next iterate x;,; is determined from the current iterate x; as:
Xp+1 = Xp + QPg (4.16)

where px € R" is a suitably chosen direction and a4 is a suitably chosen step size.
In line search algorithms, we first determine the direction pj, then compute
the step size oy to determine how far we need to move along that direction. The

search direction p; can be written in the form
pr = — B, 'V fi, (4.17)

where By, = B(xg) is an n x n matrix and V fi, = V f(x;) is the gradient of f at the
current iterate x;. There are many choices for pg, but in most line search algorithms,

pr is chosen to be a descent direction.

Definition: Let f : R® — R. A vector p € R" is a descent direction for f at x if

p'Vf(x) < 0.

Using Taylor’s theorem one can show that if we move in sufficiently small step along
the descent direction p, then the function value is reduced. Moreover, since p is a

descent direction, we also have from (4.17)

p'Vf(x) <0e (-B7'Vf(x)TVF(x) <0 (4.18)
& -Vix)T'BTVf(x)<0 (4.19)
S Vix)'B TV (x)>0 (4.20)
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which implies that B~7 is a positive definite matrix and so is B.
Two commonly used methods in the family of line search algorithms are the
gradient descent and Gauss-Newton methods, which will be described next.

4.3.1 Gradient descent method

In gradient descent method, the direction py is chosen to obtain the greatest

decrease in f. For any direction p with ||p|| = 1 we have
Vix)"p = IVI)[lp]cos, (4.21)
where 6 is the angle between p and V f(x). Since —1 < cosf < 1, this implies that
“IVI < V)P < IV (4.22)

and hence the greatest decrease of f occurs when

VTP = V)] (4.23)
that is,
Vi)
P = 70 (4:24)

This direction p is known as the steepest descent direction. In the form of equation
(4.17), the matrix B = I, the n x n identity matrix.

In spite of its simplicity, slow convergence of gradient descent method is one
of its major disadvantages, especially for functions with long and narrow valley struc-
tures.

4.3.2 The Gauss-Newton algorithm

In Gauss-Newton algorithm, the sum of the square errors is reduced by as-
suming that the objective function f is locally quadratic and finding the minimum of
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the quadratic approximation.
Let my(px) be the quadratic approximation to f(x; + px) at the point xy.

From Taylor’s theorem we have

mi(pi) = Fx2) + DLV i+ 50E V2 oy (4.25)

We seek to find py that minimizes my. Taking the derivative of (4.25) with respect

to pr and setting it equal to 0, we obtain
Vmg(pr) = Vi + V2 fypr = 0, (4.26)

which gives us the Newton’s direction

pr = —(V2fi) "'V f. (4.27)

Gauss-Newton method takes advantage of the special structure of the least
square problems. Rather than using the complete second-order Hessian matrix for
the quadratic model, the Gauss-Newton method uses an approximation (4.15). Hence,

the search direction for Gauss-Newton method is given by:
pr = —(J{ Je) "'V [, (4.28)

where J;, = J(x;). In the form of equation (4.17), the matrix By = J Jj..

4.4  Trust-Region Methods (TRM)

Another approach for solving minimization problem is by using the trust region
methods. Line search methods calculate a direction towards the minimizer, then figure

out the appropriate step size. Trust region methods take the opposite approach. The
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trust region algorithm defines a region around an iterate and constructs a model
function that approximates the objective function in that region. The algorithm
finds the minimizer of the model function and then takes an iterative step.

In other words, for every k-th iterate, given the model function my of a trust
region within p of the current position xi, the algorithm minimizes my(x; + p) with
respect to p. If sufficient reduction in the function value f is obtained, then my is
accepted to be a good representation of f in that region. Otherwise the trust region
needs to be adjusted accordingly. The goal of the trust region method is to find an
approximate trust region radius to arrive at the minimizer x*.

The algorithm for the trust region method is as follows [12]:

4.4.1 Trust-Region Method Algorithm

Given A >0, Ag € (0,A), and 5 € [0, 1)

for k=0,1,2,...

(1) Approximate py by solving:

min mu(p) = f(xi) + V007D + 50"V bap. [lpll <A (429

(2) Evaluate:

o) = f +pr).

m(0) — 1 (py) (4.30)

P =

(3) Determine how to change trust region radius for the next iteration:

else
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if Pr > % and ||pk|| = Ak

~

Agi1 = min(2A, A)
else
Ap1 = Ay
(4) Determine the next iterate:
if pp >
Xp+1 = Xk + Pk

else

Xk+1 = Xk-
(End of algorithm)
Letting g = V f(x;) and using By as an approximation to V2f(x;), we can
rewrite (4.29) as

1
mi(p) = fi+ g5 P + 5P Bip. (4.31)

The following theorems from [12] will be useful in proving the convergence of
the Levenberg-Marquardt algorithm in later section.

Theorem 4.1. Let m be the quadratic function defined by

1

m(p) = g'p + 5P’ Bp, (4.32)

where B 1s any symmetric matriz. Then
(1) a minimizer of m exists if and only if B is positive semidefinite and g is in the
range of B. If B is positive semidefinite, then every p satisfying Bp = —g is a
global minimizer of m.
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(2) m has a unique minimizer if and only if B is positive definite.

Proof. For statement (1), assuming B is positive semidefinite and ¢ is in the range of
B, we want to show there exists some p* that minimizes m(p).

Since g is in the range of B, there exists some p* such that Bp* = —g. For
any w € R™:

* T * 1 * T *

m(p”+w) =g (p" +w)+o(p"+w) B(p" +w)
1
=g'p +g'w+ S (p" + W) (Bp + Bw)

1 1 1 1
=g'p"+g¢'w+ = (p)'Bp* + =(p*) ' Bw + -w' Bp* + —~w’ Bw

2 2 2 2
(4.33)
Since B is symmetric, BT = B, which implies (p*)? Bw = (Bp*)Tw, and
w'Bp” = w' (Bp") = (Bp")'w = (p*)" Bw (4.34)
Hence, (4.33) becomes:
1 1
m(p* +w) = (g"p" + 5(p7) " Bp") +g'w + (Bp")'w + w' Bw
1
=m(p*) + §WTBW (4.35)

> m(p*).
The last inequality is due to the fact that B is positive semidefinite and thus w? Bw >
0. Hence, p* is a minimizer of m(p).

Now assume p* is a minimizer of m. It follows that Vm(p*) = 0 and V?m(p*)
is positive semidefinite. From (4.32), note that Vm(p*) = Bp*+g = 0, which implies
that ¢ is in the range of B. Moreover, V*m(p*) = B, so B is positive semidefinite.

For statement (2), assume that B is positive definite. Also assume p and q
are both minimizers of m. We want to show that p = q. Using statement (1), since
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p and q are minimizers,

Bp = Bq = —g. (4.36)

Since B is positive definite, B is invertible. So this leads to B~'Bp = B~'Bq and
therefore p = q. Therefore, m has a unique minimizer.

Now assume m has a unique minimizer, call it p*. We want to show that B is
positive definite. Suppose B is not positive definite. Then there exists some w # 0
such that w? Bw = 0. From (4.35), m(p* +w) = m(p*), indicating that both p* and
p* + w are minimizers of m, which is a contradiction. Therefore B must be positive
definite. O

The following theorem [12] gives the conditions to the solution of trust region
problem.

Theorem 4.2. The vector p* is a global solution to the trust region problem

. 1
minm(p) = f +g'p+ 5p' Bp, Ipl <A (4.37)

if and only if p* is feasible and there exists some A > 0 such that the following

conditions are satisfied:
(1) (B+AM)p* = —yg
(2) MA—p7|)) =0

(3) (B + AI) is positive semidefinite.
Proof. (<) Assume there exists A > 0 satisfying the three conditions above. We

want to show that p* is a global minimizer of m(p). By Theorem 4.1, p* is the global
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minimizer of the quadratic function:

) 1 A
m(p) =g"'p+ §pT(B +A)p = m(p) + §pr

Since m(p) > m(p*) for any p,

m(p) > m(p*) + = |(p*) P —p'p

From condition (2), A(A — ||[p*||) = 0 implies

MA = [Ip*[D(A + [[p*[)) = MA* — [[p*[|*) = A(A* — (p")"p") = 0.

Thus,

(A* —p'p)

(4.38)

(4.39)

(4.40)

Since A > 0,m(p) > m(p*) for all p satisfying ||p|| < A. Therefore, p* is a global

minimizer.

(=) Assume p* is a global solution to m(p). We want to show there exists

A > 0 satisfying the three conditions.

Case 1: ||p*|| < A, that is, p* is an unconstrained minimizer of m.

Note that Vm(p*) = Bp* + ¢ = 0. It follows that A\ = 0 satisfies condition (1). Also

V?m(p*) = B, where B is positive semidefinite. The choice A = 0 satisfies condition

(3). Condition (2) is automatically satisfied when A = 0.
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Case 2: [|p*|| = A.
Note that condition (2) is immediately satisfied and the minimizer is within the trust
region radius. Moreover, p* also solves the constraint problem (4.37). Define the

Lagrangian function:

£(p.3) = m(p) + 5 (p"p ~ &%) (1.41)

By the optimality conditions for constrained optimization, there exists some A for
which p* is a stationary point. Setting the partial derivative VL of £ with respect
to p to 0, we obtain

Vol(p,\) =g+ Bp+p=0,

and it follows that
g+ Bp' +Ap" =0 — (B+AD)p’ = —g. (4.42)

So condition (1) is satisfied.

*

Since p* is the minimizer of m(p), m(p) > m(p*) for any p with p’p =

(p*)Tp* = A% and p # p*. We can write

m(p) > m(p*) + %((p*)Tp* -p'p).
From (4.37),
m(p) ~m(p*) = (f +9"p-+ 5p7BB) ~ (f + g0 + (0T BRY) (443
and from (4.42),
g" ==V (B+A)" =—(p")"(B+A), (4.44)
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where (B + M) = (B + M) because it is symmetric. Thus, combining (4.43) and

(4.44),

m(p) — m(p*)
= —(P")" (B+M)p+ %pT(B +M)p + (P (B + AI)(p*) — %(p*)T(B + AI)(p")

=—(p")"'Bp - (p")"\p + §pTBp + §pTAp + (p*)"B(p*) + (p*)"A(p*)
1

1 * * * *
— 5@ B(®") - 5(@) AP")
Collect terms of B and A:

= épTBp — (p")"Bp + 5P )" Bp* + §pTAp — (P " p+ 5P )" Ap

= 37 (B ADP — (0") (B + ADp -+ 5(07)7 (B + AD)p

= %pT(B +A)p — %(p*)T(B +A)p — %(p*)T(B +ADp + %(p*)T(B +A)p*

B %(p —p)(B+ M)p — %(p*)T(B +Ap + %(p*)T(B +Alp
- %(p —p)"(B+)p + %(p*)T(B +A(P" —p)

_ %(p —p)T(B+ \)p+ %(p* —p) (B + AI)(p")

1

= 5P p*)"(B+ A)p — %(p —p") (B+AI)(p*)

= %(p —p*)"(B+ AI)(p - p")
So,

S =) (B+A)B-p) 20 (1.45)

which implies (B + AI) is positive semidefinite.

All three conditions are satisfied when p* is a global minimizer. Now we need
to show that A > 0. We will show this by proof of contradiction. Suppose to the
contrary that A < 0 and satisfies conditions (1) and (2). Since p* minimizes m, by
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Theorem 4.1, B is positive semidefinite and Bp* = —¢g. This implies A\ = 0 in our
theorem. This contradicts our supposition. Hence, A > 0. O

4.5 The Levenberg-Marquardt Algorithm

4.5.1 Motivation behind Levenberg-Marquardt Algorithm

Before delving into the full details of the Levenberg-Marquardt (LM) algo-
rithm, reviewing the motivation behind the algorithm will add clarity to how the
algorithm works. The Gauss-Newton method, just like Newton’s method, has rapid
convergence, but is sensitive to the initial position. On the other hand, the gradient
descent method is not sensitive to initial position even though convergence may be
slow. Levenberg combines the advantages of gradient descent and Gauss-Newton by

taking By in equation (4.17) as:
By =V?fi.+ A (4.46)

where A is a damping factor that is adjusted at each iteration.
As in the Gauss-Newton method, the approximation J! J; is used instead of

the actual Hessian V2 f;, that is,
By = J Jy + I (4.47)

and

Xpa1 = X — (S Ji + M) 7 I 1y (4.48)
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Recall that the Hessian of f is

or o or oy
0x? Ox1 Oxs Ox1 Ox,,
I
Vi - JxeOxy  Ox3 09 Oxy (4.49)
o ey o
| Ox,, 011 Oy, O ox? |

Along with the equation (4.48), Levenburg [10] defined the following rule to

determine the damping factor A at each iteration:
(1) Perform one iteration.
(2) Evaluate error at the given iterate.

(3) If error increases, increase A. If error decreases, decrease .
A more precise algorithm for calculating A in the LM algorithm can be given
in trust-region framework and is often called the trust-region subproblem [12]:

4.5.2 Trust-Region Subproblem Algorithm

Given \; and k-th time step of the LM algorithm.

forn=1,2,3,...
(1) Conduct a Cholesky factorization:
JE e + A I = L, LY, (4.50)

where L, is an n x n lower triangular matrix.

(2) Solve pg) and qE{\) in the following equations in sequence:

LoLTp) = T e (@.51)
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Lnq} = pY (4.52)

(3) Solve the equation:
N A AW -
RN A |

Given A\; = 1 as an initial guess. For k£ > 1, we calculate A\ using the trust-

end

region subproblem algorithm (Algorithm 4.2). For practical purposes, the algorithm
will not be implemented until convergence is obtained because it is computationally
expensive. Most will define a finite number of iterations n for the algorithm, or define
a tolerance for |A,11 — \,| and stop the algorithm.

Marquardt [11] noticed that if A becomes too large, the term JI'J;, becomes
negligible and the algorithm (4.48) behaves similarly to the gradient descent algo-
rithm. The gradient drop towards the minimum becomes very small for a given path
pr. We want movement along smaller gradients to be larger, and vice versa. Mar-
quardt eliminates this issue by replacing the identity matrix with the diagonal of
J,? Ji. as follows

Xpr1 = X, — [JE T+ X diag(JTT)] I e (4.54)

The above equation is the Levenberg-Marquardt algorithm.
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4.5.3 Implementation of Levenberg-Marquardt Algorithm

Using the trust region framework, the goal of the LM algorithm is to solve the

following minimization problem:
.1 9 .
min §|]Jkp+rk|\ , subject to ||p|| < A, (4.55)
P

where Ay > 0 is the trust-region radius. We define the model function m to be:

1 1
my(p) = §||1“k||2 +p' i+ §PTJ/?J1§P- (4.56)
If the Gauss-Newton direction p“Y obtained from solving JI J,p®" = —JIr;, satisfies

the constraint ||[p©V|| < A, then p©" also solves the trust-region subproblem. If this

is not the case, then there exists A > 0 for which p£™ solves
(JE T + XDpM = —Jl'ry, = =V fy, (4.57)

and [[p“M]| = A.

The following lemma [12] gives the conditions for the solution of minimization
problem (4.55).
Lemma 4.3. The vector pt™ is the solution to the minimization problem (4.55) if

and only if p¥™ is feasible and there exists A > 0 such that

(JE T + ADp"M = —Jlry, (4.58)

A = [[p™[)) =0 (4.59)

Proof. Condition (3) in Theorem 4.2 is satisfied automatically since J! Ji is positive
semidefinite and A > 0. Equations (4.58) and (4.59) follow from condition (1) and
condition (2) of Theorem 4.2. O
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4.5.4 The Levenberg-Marquardt Algorithm
Given A >0, A; € (0,A), and 5 € [0, 1)
for k=1,2, ..

(1) If k = 1, calculate p§™:

P = —(J{ Jk) T (4.60)

if pd™v < Ay
Use the Gauss—Newton method to obtain convergence
else
Initiate the LM algorithm.
(2) Calculate Ay using the trust-region subproblem (Algorithm 4.5.2).
(3) Approximate py, by:
piM = —(JL T+ XD Iy (4.61)
(4) Evaluate py using equation (4.56) for my(x):

f(xx) — f(Xk + Pr)
my,(0) — my(Px)

Pr = (4.62)

(5) Determine how to change trust region radius for the next iteration:

else

if p, > 3 and ||px|| = Ay
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~

Ak = min(2Ag, A)
else
Api1 = Ay
(6) Determine if after the step direction pg, py is small enough to reach an accept-
able tolerance 7.
if pp >
Xp+1 = Xk + Pk
else

Xg4+1 = Xk-

4.5.5 Convergence of The Levenberg-Marquardt Algorithm

Before proving the convergence of the LM algorithm, we have to prove the
convergence of the trust region algorithm.
Theorem 4.4. Letn € (0, i) in the trust region algorithm (Algorithm 4.4.1). Suppose
that || Bx|| < B for some constant 3. Let g be bounded below on the set level set S
defined by:
S(Ro) = {x | ||x =yl < Ro, for somey € S}, (4.63)
where Ry > 0. Let g be a Lipschitz continuous function in S(Ry) with Lipschitz

constant By, that is g € LCs, (S(Ry)). Suppose all approximate solution py, in trust-

region algorithm satisfies

m(0) — my(p) > ¢1|gr|| min (Ak, ||g;||> (4.64)

and ||pk|| < vAg for some constant v > 0, ¢; > 0. Then {gr} — 0.
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Proof. We consider a particular positive index m such that g(x,,) # 0. Since g €

LCs,(S), we have:
l9(%) = gxm)|| < Bullx = xml[, VX, xm € S(Ro). (4.65)
We define scalars € = £||g,,,|| and R = min (5%, Ro>. Notice the R-ball around x,,
B(Xm, ) = {x | [[x = xn|| < R} (4.66)
is contained in S(Rp), so Lipschitz continuity of g holds inside B(x,,, R), that is,

19(x) —g(¥)Il < Billx = yll, Vx,y € B(xm, R).

In particular,

lg(x) = g(xm) || < Bullx — x|l

< BiR < Bu(e/n) = e = 3 llglen)l|

From the triangle inequality

gGem)ll = g < [lg(xm) — g(x)]| < %Ilg(xm)H (4.67)

which implies
g = %Hg(xm)l\ =€ (4.68)
Let {xx} be a sequence generated by trust-region algorithm. If {xj}r>m C
B(x, R), then ||g(xg)|| > € for all & > m. Hence, {g(xx)} - 0. Therefore, there

must exist some index [ > m such that {x;,1,X;42, ...} lie outside the ball B(x,,, R),

that is, x;4; is the first iterate that escapes B(x, R). Note that ||g(xx)|| > € for
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k=m,m+1,...,l. Thus,

fxm) = f(xi1) = [(Xm) = f(Xmp1) + [(&Xmg1) — - = f(Xi41) (4.69)
= 5 Fl) — fxuen) (1.70)

If x = X1, then f(xx) — f(xgs1) = 0. If x # X1, then x,17 = X + p for some

px # 0 and this happens when p, > 7, that is,

~ f(xk) = f(xkp1)
Pk = my(0) — mi(pr) 1

= f(xx) = f(Xrt1) > n(mi(0) — mx(pr))

From (4.70), we have

l

f(xe) = f(xi1) = Z n(my,(0) — my(pk))
k=m X #X 41
I
> Z nea | gr || min (Ak, M) (by assumption)
By,
k=m X #Xk 41
I

> Z 7c1€ min (Ak, %)

k=m X #Xk 11

The last inequality comes from the fact that ||gx|| > € for all £ > m and || Bi|| < 5.
We consider two cases:

Case 1: If A, > €/, then

FOn) = f(x051) = ncleg (4.71)

Case 2: If Ay, <¢/pfor k=m,m+1,...,[, then

l

fm) = f(xi01) Zmeae > Ay (4.72)
k=mxp#Xk41

> neieR (4.73)

= nciemin (% R0>~ (4.74)
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Since {f(xx)} is decreasing and bounded below, {f(xx)} — f(x*) and f(x*) > —oc.

Hence, combining both cases we obtain

fxm) = F(X7) 2 f(xm) = f(x141) (since f(x7) < f(x141))

€ €
> cemin(—,—,R)
ney 3B, 0

g Gem) | Hg(Xm)ILRO)‘

1
:_nclug(xm)Hmin( 28 7 283

2

But as m — oo, f(x,) — f(x*) — 0, and this forces ||g(x,,)]| — 0 as well. O

Now we use this theorem to show that the Levenberg-Marquardt algorithm
converges [12].

Theorem 4.5. Let n € (0, }1) in the trust region algorithm. Suppose the set level L

as defined by (4.63) is bounded and the residual functions r;, where j =1,...,m are

Lipschitz continuous and differentiable in neighborhood N of L. Assume that for each

k, the approrimate solution for py in 4.55 satisfies:

mg(0) — mg(pg) > cl||JkTrk|| min (Ak, HJkTrkH) (4.75)
B [T |

for some constant ¢c; > 0. In addition, ||pg|| < vAg for some constant v > 1. Then
lim J{r, =0 (4.76)
k—oo

Proof. From the smoothness of r;, i.e. r; is infinitely differentiable. We can choose
M > 0 such that [|J]J|| < M for all k. f is bounded is bounded below by zero.
Thus, Theorem 4.4 is satisfied. O

4.5.6 Computational Example

This example will illustrate the Levenberg-Marquardt (LM) algorithm 4.5.4.
The following table shows the annual full-time student enrollment data from Califor-
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nia State University, Los Angeles from 2005-2015 [21].

Table 4.1: California State University, Los Angeles full-time student enrollment data

from 2005-2015

Year | Full-Time Student Enrollment
2005 15936
2006 16251
2007 16687
2008 16297
2009 15967
2010 16151
2011 17262
2012 17952
2013 18796
2014 20445
2015 23252

We fit the following nonlinear model function
p(t,x) = xoIn(x1t) + x5 (4.77)

using the LM algorithm 4.5.4.

The parameter vector changes after each k-th iterate:

Our initial guess for x; after a rough estimate will be:
100
x1 = | 50 (4.79)
100

The first step of the LM algorithm is to use the Gauss-Newton method.
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7(x1)

50 In(10
50 In(20
501n(30

(

(200) + 100 — 16251
(

50 In(400

(

(

(

(

+ 100 — 16687
+100 — 16297
+ 100 — 15967
+100 — 16151
50In(700) + 100 — 17262
501n(800) + 100 — 17952
501n(900) + 100 — 18796
501n(1000) + 100 — 20445

o O O

— N N N N N

50 In(500
50 In(600

501n(1100) + 100 — 23252 |
||r(x1)]? = 3.3510 * 10%, so f(x1) = 1.6755 % 103

+ 100 — 15936 |

(15606 |

15886
16302
15897
15556
15731
16834
17518
18356
20000

22802

(4.80)

Recall that the residual is defined as r; = |y; — p(¢;,x)|. Since the absolute

function is not smooth, to ensure positivity by re-writing the residual r; as a square

function:

7‘? = (y; — xo In(z1t;) — 23)

The Jacobian is calculated:
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— |9 Ory Orj
J<X1)'_- Ox1 Oxo Ox3

[Or1  Or1 Ori]]
ox1 i) ox3
Ory  Ora  Ory
Oz Ox2 Ox3
Org  Ory  Ora
8:1?1 89@ 8:23
Ora  Ora  Ora
8:]01 812 awg
Ors  Ors  Ors
8:101 81,2 8:)33
— | 9 9rs  Ore
- 6:)31 61‘2 8:)33
Ory  Org  Orr
o1 Oxo oxs
Org  Org  Org
o1 Oz oxs
Org  Org  Org
o1 Oxo oxs (4.82)
drig  Orio  9Orio
o1 0z oxs
87‘11 67‘11 87‘11
| Oz1 Oxz  Ozz

(326 —185964 —32604]
—318 —190498 —31795
—311 —193352 —31113
—315 —201262 —31462
— | -337 —220568 —33669
—350 —234199 —35036
—367 —249728 —36712
—400 —276305 —39999
| 456 —319366 —45604 ]

Combining equation(4.13) and equation(4.28) from the Gauss-Newton method
(GN), we get:

p = —(JE ) T, (4.83)

Substituting our calculated values we get p;“" = (—36.9018, —2.6100, 0.4891)

Once we go through one step of the GN algorithm, we compare p;“V to A;.
The trust regions acts as an indicator to see if we are within an acceptable range of
the minimum of the minimization function f(x) from equation (4.10). For illustrative
purposes, let A; = 0.1. In this case, ||p1“Y]|| = 36.9972 > 0.1. Because of this, we
switch to the LM algorithm.

We can now initialize the LM algorithm. Going back to our initial guess x;,
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||r(x1)]]* = 3.3510 % 10°, so f(x1) = 1.6755 * 10, same as the initialization step of
GN.

Let Ay = 1 as an initial guess. For the purposes of this illustration, we will use
this algorithm only once.

So using A\; = 1 and equation (4.61), p1“* = (0.0050, —5.5109%1071°,0.5000).

Following the trust region algorithm (4.4.1), we now calculate p;, (4.84).

f(xi) — f(xx + pi)

P my(0) — my(px) (4.84)

(1)
f(x1) = 1.6755 * 10" (4.85)

(2)
F(x14p1) = f(xa) = %\|7’(X2)||2 16754 % 10° (4.86)

(3)
my(0) = %||7’(X1)||2 = f(x1) = 1.6755 * 10*? (4.87)

(4)
my(pk) = 8.7897 % 10%° (4.88)

Combining terms, we end up with:

= Lo =P g (4.89)

my(0) — ma(p1)
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For the purpose of illustration, let A; = 0.1 and = 0.001 From the trust
algorithm (4.4.1), we keep the same trust region value, so Ay = A;. Since p; > 7,
X2 = X1+ P1

We can now update our parameter values:

100 + .0050 100.0050
Xy = X1 + p17M = |50 + (=5.5109 * 10719) | = | 50.0000 (4.90)
100 + .5000 100.5000

For k = 2, we need to calculate A first with the trust region subproblem (4.4.1).
When k£ > 1, X in equation (4.61) is calculated using the trust region subproblem

algorithm (4.5.2):

1340177.876  847098339.3  134024387.8
JL Ty + MI = [847098339.3 5.41941 % 10! 84714069006 (4.91)
134024387.8 84714069006 13403108838

We take the Cholesky Decomposition to get:

1157.6605 0 0 1157.6605 731732.9440 115771.7532

L LT = |731732.9440 80673.0616 0 0 80673.0616  0.7835
115771.7532  0.7835  100.0069 0 0 100.0069

(4.92)

Solving p; ™ from equation (4.51):

3350.1457
p1™ = | -5.5320 % 10~° (4.93)
—32.9994

Solving q; ) from equation (4.52):

2.8939
™ = | —26.2486 (4.94)
—3350.2041

Using the equation (4.53) we get:
M2 M — A
- (||p1m||) <||p1 | >
[la: ] A
(33503 % 10°)* (33503 % 10* — 0.1
B 3.3503 * 104 0.1

(4.95)

> = 3.3503 % 10*
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Using to calculate (4.61) to calculate po™, we end up with:

0.0050
p2 = [1.6264 % 107° (4.96)
0.5000
This implies:
100.0100
X3 = Xz + po™M = 50 (4.97)
100.9998

The following graph provides an illustration of the LM algorithm after a suc-

cessive number of iterations:

LM Algorithm of Cal State L.A. Full-Time Student Enrollment

w10t
25 T T T T T T T T T

data

¥5
: %10
¥15
%20

Number of Full-Time Students Enrolled

0 I I I I I I I I I
1 2 3 4 5 B 7 a] 9 10 11

Year (2005 = 1)

Figure 4.1: LM Algorithm fitting on Annual Cal State LA Full-Time Enrollment Data

from 2005 - 2015
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LNJ Algorithm on Cal State L.A. Full-Time Student Enrollment
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pre
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Figure 4.2: LM Algorithm fitting on Annual Cal State LA Full-Time Enrollment Data

from 2005 - 2015

The LM algorithm ends once pp < 7.
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4.6 Results of Fit

Levenberg-Marquardt Algorithm for Various Sigmoidal Curves on
Daily Closing Chipotle Stock Price

800 T T
700 - =
BO0 F Raw Data -
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=, Gompertz
o p
¢H 500 — Weibull s
""6 Generalized
O Chapman-Richards
L2 400 -
B
o
o
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o J00 —
o
O
200 -
100 -

| | | |
1000 1500 2000 2500 3000
Business Days Since IPO

Figure 4.3: LM Algorithm of various sigmoidal curves and their respective mean

square error (MSE).

Table 4.2: LM algorithm of various sigmoidal curves and their respective MSE

Curve Name MSE

Logistic 4835.38127595731
Gompertz 5409.55782739912
Weibull 4548.42018423027
Generalized 4060.92655664517
Chapman-Richards | 4005.64641784122
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Polynomial Fit for Chipotle Market Data
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Figure 4.4: Polynomial algorithms of various degrees and their respective mean square

error (MSE).
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Table 4.3: Polynomial algorithms of various degrees and their respective mean square

average (MSE)

Polynomial Degree | MSE

1 7362.6697517347902
2 6168.5780648502696
3 4615.8348964957704
4 3407.5441301470801
5 3107.53868716131

6 2235.1476172573798
7 2070.1495434897602
8 1433.1560713026099
9 1257.1509207751301
10 1191.5658148058201
11 1179.1434984611301
12 1178.4457355050699
13 1006.92989762918
14 924.50777729245601
15 868.82744941962801
16 833.82532793095197
17 829.35627632649903
18 823.47416471310203
19 822.90489838668702
20 780.12966874691404
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CHAPTER 5
Forecasting Data

5.1 Methodology

This chapter will demonstrate the use of the Levenberg-Marquardt (LM) algo-
rithm to fit data and forecast stock market prices. We filter the data with the Hodrick—
Prescott (HP), exponential smoothing, and moving average techniques. Data without
a filter applied is our standard of comparison. We will use the Logistic, Gompertz,
Weibull, Chapman-Richards, and the Generalized Logistic equations after application
of each respective filter.

All data fitted starts at the closing price of the initial public offering (IPO) to
variable amounts of days chosen forward in time. The raw data is the daily closing
prices of Vanguard Energy Fund Investor Shares (VGENX) [31]. It starts from May
23rd, 1984 to November 11th, 2016. The fund invests in US energy and foreign
securities. The composition of the fund as of December 31st, 2016 is shown in this

data table:
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Table 5.1: Composition of VGENX Mutual Fund

Energy Fund Investor

as of 12/31/2016

Coal & Consumable Fuels

0.00%

Consumer Discretionary 0.10%
Consumer Staples 0.10%
Financials 0.20%
Health Care 0.10%
Industrials 0.20%
Information Technology 0.20%
Integrated Oil & Gas 36.10%
Oil & Gas Drilling 1.60%
Oil & Gas Equipment & Services 9.00%
Oil & Gas Exploration & Production | 37.90%
Oil & Gas Refining & Marketing 7.20%
Oil & Gas Storage & Transportation | 3.70%
Utilities 3.50%
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From this data set, we start with the IPO to a certain number of days we
assume to be known data. We call this ”prior data.” The prior data consists of 1000,
2000, 3000, 4000, 5000, 6000, and 7000 data points. From the prior data, we attempt
to forecast a set number of days after the last prior data point. We attempt to forecast
stock prices 100, 300, 1000, and 3000 trading days into the future. Prior to fitting
the data with the LM algorithm, we either leave the prior data unfiltered, apply the
Hodrick-Prescott filter, the moving average filter, or the exponential smoothing filter.
The moving average filter is arbitrarily 300 trading days, which approximates one
year’s worth of trading. The weight factor « for the exponential average was chosen
by taking the lowest mean square error value between the prior data and filtered data
set in 0.1 intervals between 0 and 1. The forecast difference is defined as the actual

data at the forecasted time point minus the fitted data at the forecast time point.




Positive values correspond to forecast underestimates, and negative values correspond
to forecast overestimates.

5.2 Results

Since the raw data set is large, only 1000, 5000, and 7000 prior data points
are provided with more detailed analysis. Their respective forecast plots, forecast
difference bar graph, and MSE bar graph are shown in section 5.4. The reason for
these choices is because 1000 prior data points is representative of initial behavior
of a sigmoidal curve, 5000 prior points is representative of behavior immediately
before inflection behavior, and 7000 prior data points is representative of behavior
of a sigmoidal curve inclusive of the inflection point. In other words, these prior
data points are representative of emergent, inflection, and saturation phases. The
inflection point occurs roughly between 5000 - 6000 days after IPO. Histograms of
forecast differences display all prior data sets from 1000 - 7000 prior data points. Data
tables of each forecast differences and their mean square error (MSE) are located in
appendix D.1.

From section 5.4, the data set shows the MSE and forecast difference magni-
tude increases as the number of forecast days increases. For 1000 prior data points,
the all MSE are less than 100 $2, which implies the mean error is within the square
root of the MSE, or $10. But if we look at 1000 forecast days or less, the MSE is
generally less than 10$2, or error that is roughly $3.

For 5000 prior data points, the MSE are generally less than 200 $2 for 100 and

300 forecast days, and range from 800 - 1800 $? for 1000 to 3000 forecast days, which
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implies a mean error of about $10 — $40. Forecasting near or past the inflection point
produces higher uncertainty. The forecast differences 300 and 1000 forecast days were
generally high, with a range of approximately $10 — $50. The HP filter was able to
keep 100 to 1000 forecast days all under $20. But forecasting past the inflection point
at 3000 forecast days, the forecast difference drops, but the MSE remains relatively
high. This suggests there is much more volatility after the inflection point.

For 7000 prior data points, the forecast values are generally negative, meaning
the sigmoidal curves generally overestimates the actual stock value. But once the
maximum value for the stock price is known and the approximate location of the
inflection point, the MSE are all below 1000 $2. The behavior of stock prices near

the carrying capacity is less volatile than it is near the inflection point.
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Difference of Forecast Values of 1000 - 7000 Prior Data Points with No Filter
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Difference of Forecast VValues of 1000-7000 Prior Data Points After Exponential Filter
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When plotting the histogram of forecast differences, positive values correspond
to underestimates, and negative values correspond to overestimates. Ideally, we would
like to have our difference curves skew to the right and be as close to zero as possible.
This translates to accurate forecasts that are slightly underestimated. The standard
deviation is generally within $30 for all filtration techniques and curves. The expo-
nential filter appears to be worse than our control. A filter should provide a greater
contrast in moment values so that it is easier to distinguish how each sigmoidal curve
member is behaving. By inspection of minimums and maximums of teach statistical
moment with each type of filtration and curve, the difference between the minimums
and maximums of the exponential filter is the smallest. The minimum and maximum
differences are smaller than unfiltered data. So the exponential filter performs worse
than the control.

A normal distribution itself still does not demonstrate a particular sigmoidal
curve is better at forecasting than another. A normal distribution near a mean of
zero simply implies that the forecasts have a 50 % chance of forecasting above or
below the actual price. We want the normal distributions to have a mean past zero
and have a positive skew to that the probability of underestimating accurate data is

greater than 50 %.
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Table 5.2: Average of Forecast Differences

Unfiltered | Hodrick-Prescott | Exponential | Moving Average
Logistic 2.966 1.263 1.757 1.508
Gompertz 1.982 1.604 1.931 2.331
Weibull 4.930 1.911 3.468 3.607
Chapman-Richards | 9.161 8.542 5.312 6.072
Generalized 10.406 4.207 5.179 10.163

Note: Red highlighted are the lowest values of a column, and blue values the highest.

Table 5.3: Standard Deviation of Forecast Differences

Unfiltered | Hodrick-Prescott | Exponential | Moving Average
Logistic 22.059 22.832 22.706 22.498
Gompertz 22.837 22.496 22.860 22.020
Weibull 22.313 22.051 22.482 22.102
Chapman-Richards | 19.478 17.899 20.444 19.127
Generalized 19.433 18.358 20.515 20.334

Note: Red highlighted are the lowest values of a column, and blue values the highest.

Table 5.4: Histogram of Skews of Forecast Differences

Unfiltered | Hodrick-Prescott | Exponential | Moving Average
Logistic 0.056 0.035 0.161 0.224
Gompertz 0.036 0.025 0.032 0.181
Weibull 0.247 0.255 0.179 0.296
Chapman-Richards 1.252 1.600 0.732 1.374
Generalized 1.259 1.279 0.718 1.274

Note: Red highlighted are the lowest values of a column, and blue values the highest.

The skew is the measure of asymmetry about the mean. Positive skew values

means the data is more spread out to the right of the mean, and negative skew values

means the data is more spread out to the left of the mean. Here is a general schematic

of skew [29]:
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The following is the equation to calculate skew [23]:
E(x — ,u)3 % 2?21(331' - j)3
=R (5.1)
o

(V=i —ap)

For the applications of this thesis, positive skew values correspond to higher fre-

quency of positive forecast differences. The Chapman-Richards and Generalized Lo-

gistic equations have the largest positive skew values, meaning forecast values tend to

underestimate actual values. The Logistic and Gompertz equations have the lowest

skew values for all filtration techniques, implying that their distributions are close to

symmetry about the mean.

Table 5.5: Kurtosis

Unfiltered | Hodrick-Prescott | Exponential | Moving Average
Logistic 5.856 5.259 4.961 5.543
Gompertz 5.262 5.492 5.283 5.850
Weibull 4.352 5.003 4.874 5.448
Chapman-Richards | 4.947 6.131 5.120 5.636
Generalized 4.970 5.725 5.091 4.383

Note: Red highlighted are the lowest values of a column, and blue values the highest.

The kurtosis is the measure of "tailedness” of a normal distribution, not the

sharpness nor relative height of a normal distribution’s peak [8].
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In other words,




kurtosis is the measure outliers normalized to the standard deviation. The kurtosis
does not directly imply the shape of a peak for a given distribution.

The following is the equation to calculate kurtosis [22]:

L Bla—pt ¢ i 7) (5.2)

7 (ishe )

The forecast distributions should ideally show low kurtosis, which would imply

the data would have few outliers and be close to the mean. Low kurtosis implies that
the data would have forecasts far from the mean. The Logistic equation generally has
the lowest kurtosis, which implies fewest outliers relative to the mean. But our data
also shows that for the logistic equation, the mean is close to zero, and the standard
deviation is very high, so we end up with a low kurtosis. The Gompertz has high
kurtosis because the it has many outliers, so the numerator has a high value. The
Chapman-Richards with the Hodrick—Prescott filter have high kurtosis because it has
the lowest standard deviation. The Generalized Logistic with the moving average has
a low kurtosis because is contains few outliers relative to the mean.

Another important feature of the data is the value of the fitted inflection point.
The inflection point defines where the growth rate transitions from acceleration to
deceleration, meaning the change of growth rate goes from positive to negative. From
visual inspection, the inflection point occurs between 5000-6000 points after TPO.
When trying to fit data with prior data near the inflection point, the fits forecast
an extremely high carrying capacity, generally to the order of $10% — $10* . This is
because the fitting algorithm assumes that the high growth rate will last for a long
time. The growth rate is the highest near the inflection point because the growth
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rate is approaching an extrema value with respect to the second derivative of the
closed form solution. Since we are fitting sigmoidal curves, the curve to the left
of the inflection point exhibits positive concavity, and the curve to the right of the
inflection point exhibits negative concavity. For all forecast differences, most of the
differences were positive before encountering the inflection point and negative after
the inflection point. This implies the sigmoidal curve generally underestimates the
actual data prior to the inflection point, and overestimates after the inflection point.
If the inflection point is known, an investor can take advantage of this behavior and
determine whether to by or sell stock.

The MSE before and after the inflection point increases dramatically. If we
focus our attention to 1000 and 3000 forecast days, for 1000 prior data points, all
the MSE were less than 40 $2. 3000 forecast days implies 4000 days after IPO, so
this time point is not past the inflection point. The increase is apparent for 5000
prior data points. The MSE for 1000 and 3000 forecast days are around 1000$2. This
implies stock prices have greater volatility after the inflection point.

Macroeconomic reasons can explain why stock prices have greater volatility.
Baumeister and Peersman [1] and Robe and Wallen [17] show fluctuations in physical
crude oil inventories are the biggest factor that determine oil prices. Crude oil pro-
duction reported by the OECD has been fairly stable since VGENX went into IPO

27]:
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But what has changed is the oil price elasticity. Price elasticity of is percentage change
of the quantity demanded/supplied to the percent change in price [3]. Baumeister et
al. [1] shows the price elasticity of crude oil decreases from 1985 to 2010. Low price
elasticity implies small fluctuations in supply results in large changes in price.
Based on the data and analysis results, the Hodrick-Prescott (HP) filter used in
tandem with the Chapman-Richards equation provide the best forecast results for this
particular data set. The HP filter provides the largest difference in extreme values
for the standard deviation, skew, and kurtosis. This allows for a bigger contrast
when looking at the differences in moments between each type of equation. The
Chapman-Richards provided consistent high average forecast differences for 2 out of

3 filtering techniques, which demonstrates its tendency to underestimate forecasts.
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The Chapman-Richards consistently demonstrated the smallest standard deviation
for all filtering techniques, so most differences are least likely to produce extreme
values. The Chapman-Richards produces the highest positive skew values, so the
forecast differences tend to underestimate actual values. The combination of the HP
filter and Chapman-Richards has the highest kurtosis, which implies most of the data
is concentrated near the mean.

5.3 Future Research

This paper used a deterministic approach to forecasting stock market data.
Another path to explore could explore correlations with other stock market indicators,
such as oil rig counts or the VIX indicator, to see how it would influence forecasting
with sigmoidal curves as suggested by Baumeister et al [1]. One can also explore how
to incorporate sigmoidal curves into agent based modeling [4]. One can also explore
applications to mean reversion theory and how to determine the best conditions to

sell stock [18].
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5.4 Data

5.4.1 Raw Data

Daily Closing Prices of VGENX from IPO to November 11th, 2016
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5.4.2 Fit of Various Sigmoidal Curves

1000 Prior Data Points

Various Sigmoidal Curves Fitted on 1000 Prior Data Points on Unfiltered Data
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Various Sigmoidal Curves Fitted on 1000 Prior Data Points on Exponential Filtered Data
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5000 Prior Data Points

Various Sigmoidal Curves Fitted on 5000 Prior Data Points on Unfiltered Data
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Various Sigmoidal Curves Fitted on 5000 Prior Data Points on Exponential Filtered Data
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7000 Prior Data Points

Various Sigmoidal Curves Fitted on 7000 Prior Data Points on Unfiltered Data
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Various Sigmoidal Curves Fitted on 7000 Prior Data Points on Exponential Filtered Data
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5.4.3 Forecast Difference with 1000 Prior Known Days

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.
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Forecast Difference in [§]

Forecast Difference in [§]

1000 Frior Data Points: Forecast Difference with Exponential Smoothing Filter
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5.4.4  Forecast Difference with 5000 Prior Known Days

5000 Prior Data Points: Forecast Difference with Mo Filter
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Forecast Difference in [§]

Forecast Difference in [§]

5000 Prior Data Points: Forecast Difference with Exponential Smoothing Filter

B0

m
o
T

=
=
T

[}
o

[}
[

—_
o

-10

- Logistic
- Gompertz
[ Tweibull

- Chapman Richards
- Generalized Logistic

B0

|
100

1
300

|
1000

Forecast Days

|
3000

o000 Prior Data Foints: Forecast Difference with Moving Average Filter

50

40

30

20

10

-Lngistic
-Gumpertz
[ Tweibull

o Chapman Richards
B :oncralized Logistic

-10

|
o0

1
300

Forecast Days

91

|
1000

|
3000



5.4.5 Forecast Difference with 7000 Prior Known Days

Forecast Difference in [§]

Forecast Difference in [§]
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Forecast Difference in [§]

Forecast Difference in [§]
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5.4.6 MSE with 1000 Prior Known Days

MSE in [§]2
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MSE in [#2]

MSE in [$2]
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5.4.7 MSE with 5000 Prior Known Days

A000 Prior Data Points: Mean Square Error with Mo Filter
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MSE in [#2]

MSE in [$2]

5000 Prior Data Foints: Mean Square Error with Exponential Smoothing Filter
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5.4.8 MSE with 7000 Prior Known Days
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APPENDIX A
The Logistic Model

We start with definition of the logistic differential equation [13]:

dy, Y,

where [ is the maximal growth rate when Y; is much smaller than Y., and Y, is the
upper limit fo the sigmoidal curve, also known as the carrying capacity.

We nondimensionalize (A.1) by dividing Y; by its max value Y:

Avijdt _ ,Yi ()Y
Yo | Ve Voo

and then substitute z = Y;/Y,, to get
d
;§:5ﬂ1—@. (A.2)
Using the method of separation of variables, we have

dx

I Bdt. (A.3)

Now we use partial fractions decomposition to write

1 A B

v(l—mz) :L‘+(1—x)

Al—z)+Bx=1=A—-Ax+Bx =1

which gives us a system of equations

—A+B=0
A=1

and it follows that B = 1. Integrating the left hand side of (A.3), we obtain

[ 1
10

! xdx =In(z) — In(1 — 2)

1—
3



and therefore

In(z) —In(1 —z) =pt+C

m(l_‘”):—ﬁt—c

T

1 _
——1=ce
T

[t C

Solving for z,

1
r = ——-—-.:
1+ ae Pt

When we substitute z = Y;/Y,,, we finally obtain

Yoo

“Tracr (20

t
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APPENDIX B
The Gompertz Model

We start with definition of the Gompertz differential equation from [13]:

dY; Yoo

where (3 is a positive constant, and Y, is the upper limit for the curve. We multiply

1/Y, on both sides:

dy,jdt Y, [V
v oy (f)

and then substitute x = Y;/Y,, to get

dx 1

/%:/mt

1
—1In (ln—) = Bt + C, where C is a constant
x
1
In (ln—> =—pt—-C
x
1 Bt —-C
In—=ae™™, anda=c¢e
x
Inz = —ae P
fae_ﬁt
r=e

Finally, the substitution = = Y;/Y,, gives the closed form solution of the Gompertz

equation:

Y, = Yae ™. (B.3)
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APPENDIX C
The Generalized Logistic Equation

The Generalized Logistic Equation (or sometimes called the Richard’s model)

is given by:
dy; i\’ B
— =0Y |1— | — = pY, — =Yy ! 1
dt ﬁt{ (Yoo>:| o ve (©1)

Let n = —%. Then

i 1 \_8
at \y;71) "y T

avp /1 N _ 8 _
dt }/t?“-ﬁ-l }/;T_n

1
We use the substitution w = — =Y," to get
}/;T‘

r—1dY; dYi
w, _ —TY; “a _ —T’W
(Y;r)2 (}/;(r—&-l))
Note that
!
—— — fw =

Using the method of integrating factor, we let u(t) = eJ 784 — 7Bt and multiply both

sides of the equation with pu(t):

e’ + rBetw = —rne™Pt
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Note that the left hand side of the above equation is the derivative of e"w. Inte-

grating both sides of the equation with respect to ¢ gives us

el = —/merﬁtdt

we™Pt = il

r

wePt + Qewt =k

et <w + %) =

_k
- erﬁt - E
1 k _n_kﬁ—ne’”ﬂt
Yr o erBt B erBt 3
We then obtain
rBt
vy =0
kB — nerdt
Letting Y (0) = Y, we have
r_ P
kB
5
kB —n= 15
Yy
s
k=< +n
Yy
1 1
Lo Lo
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Substituting these values into (C.2):

1
efr,Bt efrﬁt 1
- +
Yy Y, YL
Yo
Y
e—Tht —e Bt 11
}/07'
Y’I" I
= * —— where o = ==
1+ qebrt

}/O’I“

By taking the rth root of both sides, we obtain the generalized logistic growth func-
tion:

(C.3)



APPENDIX D
The Chapman-Richards Model
The von Bertalanffy proposed the following ODE to model the growth of a

biological organism [13]:

dY;

T Yy =Y, (D.1)

Letting « = Y;' 7%, its derivative is given by

dr ,dY

which gives

dy; 1 _,dz
— =—Y"—. D.2
d 11—k "' dt (D-2)

By equating both forms of % in (D.1) and (D.2), and dividing by Y;*¥, we

solve for the closed form of von Bertalanfty equation:

Substituting z = ¥;' 7%, we obtain

/nfwi N /<1 ~ k)t

—ytIn(n —vyz) = (1 — k)t +C

In(n —yz) = —y(1 — k)t —1C

(1—k)t

n—yr=ae ! , where v = ¢ ¢

e _ 2 —0-mt

T
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We then substitute Y;'* for x to get

Sole (D.3)
For t =0,
n o 1/(1—k) n
Yy = [———] e (D.4)
T Yo
Substituting (D.4) into (D.3) we get:
1/(1—k
Y, = [Q — (Q — Yol—k> 6—7(1—’6)'5} o0
8 g
1/(1-k)
Since lim Y, =Y, = (Q> ,
t—00 Y
}/; — [Yolo—k . (Yolo—k o Y'Ol—k:>6—’y(1—k)t]1/(1—k)'
We arrive at the von Bertalanffy growth equation:
1/(1—Fk) Yo \ P
Vi=Ye[l- 56_7(1_’“”} , where =1 — (Y—O> . (D.5)

By rewriting the parameters of von Bertalanffy, Chapman and Richards arrive at the

final equation:

Y, = Y[l — ae™M]™. (D.6)
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D.1.1 No filter

D.1 Data

Mean Square Error (MSE)

Table D.1: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 2.61135103 | 1.938620929 | 1.831250179 | 15.33841508
Gompertz 2.701222206 | 2.034266155 | 1.96325777 | 10.77792298
Weibull 2.120946758 | 1.503765706 | 2.59596849 | 31.20901334

Chapman Richards

1.293579949

1.095170952

4.522710583

39.18503707

Generalized Logistic

1.299437909

1.09723158

4.515052626

39.15932587

Table D.2: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 1.800483147 | 2.08533946 | 1.995083273 | 54.33160091
Gompertz 1.910437072 | 2.117080353 | 1.869612992 | 50.10425501
Weibull 1.194105121 | 2.018420201 | 3.063977076 | 68.50349107
Chapman Richards | 0.156830314 | 2.662841411 | 5.957570279 | 82.734415
Generalized Logistic | 0.886154736 | 5.149701411 | 10.71258562 | 98.6432342
Table D.3: MSE with 3000 Prior Known Days
Forecast Days: 100 300 1000 3000
Logistic 10.69470413 | 24.91988161 | 37.49973957 | 664.5941422
Gompertz 10.25766667 | 24.11311424 | 36.03035963 | 652.1851722
Weibull 10.28566453 | 24.15709457 | 36.08489618 | 652.3824135

Chapman Richards

15.51644259

32.73336354

48.97689301

716.9550356

Generalized Logistic

31.33035885

03.89153253

73.56245124

785.2451826
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Table D.4: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 3.726135938 | 8.74613049 | 8.077473188 | 428.4271285
Gompertz 4.742461287 | 10.85126113 | 7.297735 516.4951064
Weibull 111.8297312 | 136.6688715 | 84.47549707 | 866.0758109
Chapman Richards | 33.23430693 | 55.81688673 | 45.82072379 | 1181.878319
Generalized Logistic | 51.71422851 | 79.05724671 | 66.48795532 | 1266.361606

Table D.5: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 19.92395364 | 100.0127934 | 906.3739881 | 736.3018321
Gompertz 18.56187854 | 96.21082464 | 881.786391 | 676.3090507
Weibull 25.48713249 | 115.2253061 | 999.8426897 | 946.5744979

Chapman Richards

42.9318586

156.6388477

1190.154764

1248.220562

Generalized Logistic

40.51928163

151.8599956

1175.75574

1232.410253

Table D.6: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 691.8738066 | 450.8928624 | 305.0963175
Gompertz 397.0122517 | 501.646422 | 524.9902366
Weibull 2986.086057 | 1348.620977 | 1031.69712
Chapman Richards | 381.4951379 | 425.3962578 | 198.942821
Generalized Logistic | 748.0353833 | 423.6319938 | 157.6057573

Table D.7: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 290.3010775 | 301.8115534 | 867.3404451
Gompertz 316.3715881 | 327.0463339 | 895.4991004
Weibull 287.4328534 | 271.0701173 | 562.2934959

Chapman Richards

58.34841661

32.12436709

105.1386588

Generalized Logistic

59.39813492

33.11909998

106.9589824
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.8: Forecast Difference with 1000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic -2.066310904 | 0.662142318 | -2.480770687 | 6.740436053
Gompertz -2.103747199 | 0.569037486 | -2.910795642 | 5.194857981
Weibull -1.847781119 | 1.18507066 | -0.801632266 | 9.647463173
Chapman Richards | -1.438128878 | 1.851865219 | 0.10186521 10.56186421
Generalized Logistic | -1.440795843 | 1.849181744 | 0.09918166 10.55918066

Table D.9: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -0.727687614 | 2.075221929 | 3.222525593 | 15.40425759
Gompertz -0.778357031 | 1.988727232 | 3.00033098 | 14.93770252
Weibull -0.417377295 | 2.557194625 | 4.13370569 | 16.64318908
Chapman Richards | 0.51198514 3.52198614 | 5.12198414 | 17.63198414
Generalized Logistic | 1.1075219 4.1175229 5.7175209 18.2275209

Table D.10: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.357168478 | 6.86100949 | 6.2245945 62.65587074
Gompertz 3.282331626 | 6.757179044 | 6.017809144 | 62.24497855
Weibull 3.286859424 | 6.762092192 | 6.022852113 | 62.25121457
Chapman Richards | 4.066483983 | 7.706484637 | 7.3964826 64.1364866
Generalized Logistic | 5.72866624 | 9.36866724 | 9.05866524 | 65.79866924
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Table D.11: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 2.385771094 | 4.771539117 | 1.542554833 | 19.74543194
Gompertz 2.713315502 | 5.229037776 | 2.640628169 | 25.04711562
Weibull 11.3661223 | 13.7656101 | 10.89390101 | 34.15105328
Chapman Richards | 6.4856222 9.993897312 | 11.12329382 | 46.33328735

Generalized Logistic

8.209253432

11.71551963

12.84401299

48.05399221

Table D.12: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.191962884 | 14.41322567 | 46.62142119 | -3.500302616
Gompertz 5.015369782 | 14.15218463 | 45.91605572 | -7.214083317
Weibull 5.859695626 | 15.41079745 | 49.12448701 | 5.245876076
Chapman Richards | 7.450869562 | 17.61110106 | 53.15909336 | 11.9986534
Generalized Logistic | 7.339379866 | 17.4825779 | 53.01503836 | 11.85341717

Table D.13: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 16.44554473 | -15.67002212 | -20.19462441
Gompertz 9.755636043 | -22.8203652 | -28.68270755
Weibull 8.044992968 | -24.57737186 | -28.60646251

Chapman Richards

10.10905934

-18.38267036

-3.107529918

Generalized Logistic

17.90783962

-11.93527626

0.069921092

Table D.14: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000

Logistic -18.94603776 | -17.3070845 | -60.31517522
Gompertz -19.70018713 | -17.95053452 | -60.76854887
Weibull -18.5230645 | -15.03829552 | -48.35886035
Chapman Richards | -7.84916078 | -1.55461871 | -26.35174228
Generalized Logistic | -7.942010079 | -1.697978502 | -26.56022142
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D.1.2 Hodrick-Prescott Filter

Mean Square Error (MSE)

Table D.15: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 3.14 2.482836339 | 2.687134216 | 6.986980062
Gompertz 3.16812579 | 2.522960154 | 2.960802858 | 6.409337644
Weibull 3.15 2.51E+00 2.985237236 | 6.603449025
Chapman Richards | 1.45 1.15E4-00 4.326874982 | 38.51581804
Generalized Logistic | 3.14 2.488612783 | 2.725313696 | 6.789343938

Table D.16: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 3.268255972 | 2.841676677 | 2.073973497 | 29.27206475
Gompertz 3.358160819 | 2.90571996 | 2.226282854 | 24.10895201
Weibull 3.341454951 | 2.894599571 | 2.226008255 | 23.27260654

Chapman Richards

0.145267343

2.799319487

6.285097605

84.00143871

Generalized Logistic

3.286002181

2.854144311

2.101803306

28.23959813

Table D.17: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 8.46968511 | 21.06393166 | 31.43812992 | 623.8057854
Gompertz 8.202362778 | 20.51400416 | 30.3008658 | 608.0868897
Weibull 8.06225778 | 20.21942417 | 29.67089433 | 597.6596448
Chapman Richards | 25.30586286 | 46.02906226 | 64.51944499 | 761.2256188
Generalized Logistic | 8.24400015 | 20.59944641 | 30.4766176 | 610.6552474
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Table D.18: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.982988865 | 9.283457336 | 7.780115081 | 453.0562864
Gompertz 4.872692766 | 11.09661809 | 7.287253988 | 523.0280666
Weibull 5.117064623 | 11.7049181 | 7.161920067 | 575.2289679
Chapman Richards | 3.799803948 | 8.893864838 | 7.965383031 | 532.8350959
Generalized Logistic | 4.814877291 | 10.98188876 | 7.297876108 | 518.9677351
Table D.19: MSE with 5000 Prior Known Days
Forecast Days: 100 300 1000 3000
Logistic 19.49550529 | 98.88928381 | 900.1640677 | 724.0282654
Gompertz 18.43511692 | 95.86178546 | 879.721134 | 672.2705621
Weibull 20.71078937 | 102.1319052 | 918.0005185 | 753.8243247
Chapman Richards | 29.51304598 | 127.9355016 | 1091.71416 | 1134.78763
Generalized Logistic | 18.47832367 | 95.98176214 | 880.4812841 | 674.030009
Table D.20: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 381.4076452 | 516.9280736 | 602.749032

Gompertz 468.706295 | 472.1715354 | 418.3656329

Weibull 360.7075314 | 514.0727826 | 523.4484477

Chapman Richards | 619.0322864 | 439.1713901 | 228.3569864

Generalized Logistic | 503.6905178 | 453.9548338 | 290.8366148

Table D.21: MSE with 7000 Prior Known Days

Forecast Days:

100

300

1000

Logistic 334.5253618 | 345.9903777 | 914.6566041
Gompertz 332.4030947 | 345.7409865 | 941.0796625
Weibull 316.0754505 | 314.7064835 | 749.4005854

Chapman Richards

17.95971655

11.3953223

81.94574406

Generalized Logistic

125.2538798

90.66611107

176.5710753
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.22: Forecast Difference with 1000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic -0.008415298 | -0.014301092 | 0.013383698 | 6.995860441
Gompertz -0.015109631 | -0.034434975 | -0.127789896 | 5.921448366
Weibull -0.004551068 | -0.011185207 | -0.043801143 | 6.089955726
Chapman Richards | -0.001395194 | 0.007408208 | 0.167018255 | 7.940645832
Generalized Logistic | 0.004006005 | 0.024305323 | 0.285719445 | 8.524301828

Table D.23: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 0.091456871 | 0.263338377 | 1.764616031 | 22.5438809
Gompertz 0.065465285 | 0.212582267 | 1.573874101 | 21.71695979
Weibull 0.066122699 | 0.210534936 | 1.543841054 | 21.45731051

Chapman Richards

0.083246532

0.247250255

1.704444771

22.29852757

Generalized Logistic

0.077709916

0.236388956

1.663513139

22.12318071

Table D.24: Forecast Difference with 3000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic

0.616459482

1.073309389

4.055010712

35.96383512

Gompertz

0.606327059

1.048157958

3.925942575

34.56101197

Weibull

0.709596252

1.180538704

4.163899581

34.99633086

Chapman Richards

0.606763492

1.050242314

3.939958177

34.68263727

Generalized Logistic

0.607685884

1.052200636

3.94908127

34.75365463
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Table D.25: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 1.743689131 | 3.024696582 | 11.5614518 | 17.87814296
Gompertz 2.025912464 | 3.410911831 | 12.45724421 | 22.10166844
Weibull 1.765377871 | 3.116396744 | 12.134019 22.97501495

Chapman Richards

1.754728259

3.039064065

11.63594002

26.73289831

Generalized Logistic

10.07404053

12.43016539

25.12719578

47.57826876

Table D.26: Forecast Difference with 5000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic

6.705109637

9.274409414

13.38242541

-29.64868752

Gompertz

7.395251896

10.19510614

15.44813183

-19.49862191

Weibull

4.234554445

6.225852605

8.681303607

-27.60409232

Chapman Richards

1.754728259

3.039064065

11.63594002

26.73289831

Generalized Logistic

9.150442648

12.03160676

17.46575222

-18.25470527

Table D.27: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000

Logistic -0.188315936 | -3.62324445 | -22.92033175
Gompertz 1.892872138 | -0.821910946 | -16.40615778
Weibull -1.777275786 | -4.880709853 | -20.09416812

Chapman Richards

0.13842415

-2.965114941

-17.39558626

Generalized Logistic

0.739168347

-2.021867697

-13.8706468

Table D.28: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 4.822883311 | 2.809086553 | -9.247084424
Gompertz -12.9152326 | -18.52542613 | -42.92180762
Weibull -3.114465025 | -5.227639673 | -14.25369377
Chapman Richards | -2.978530658 | -4.350017956 | -11.59722922
Generalized Logistic | -3.210986067 | -4.647619835 | -11.98960708
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D.1.3 Exponential Smoothing

Mean Square Error (MSE)

Table D.29: MSE with 1000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic 2.669944362 | 1.994311526 | 1.859967218 | 14.23897108
Gompertz 2.762401552 | 2.094862134 | 2.036655355 | 9.714757291
Weibull 1.94167264 | 1.366310537 | 3.85164855 | 36.77015075
Chapman Richards | 1.312027382 | 1.101692763 | 4.499461711 | 39.10669887

Generalized Logistic

1.329418502

1.107920586

4477478975

39.03241513

Table D.30: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 2.365195256 | 2.316449902 | 1.748999339 | 44.45182348
Gompertz 2.010209922 | 2.156101118 | 1.825256389 | 48.56344111
Weibull 1.250578778 | 2.024860438 | 2.999704891 | 68.05853326

Chapman Richards

1.111565046

2.042198386

3.303800886

70.08249952

Generalized Logistic

1.22667632

2.054372709

3.182756702

69.30544503

Table D.31: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 10.73385612 | 24.97979318 | 37.5764782 | 664.9106837
Gompertz 10.29517381 | 24.17068621 | 36.1037297 | 652.5044372
Weibull 10.36463391 | 24.29087237 | 36.29633479 | 653.9414169

Chapman Richards

10.37475404

24.31837733

36.37521187

654.9505867

Generalized Logistic

10.35296661

24.27712385

36.29729237

654.2356193
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Table D.32: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.745947608 | 8.779146568 | 8.076462059 | 428.3595572
Gompertz 4.798205752 | 10.93308602 | 7.319144661 | 514.916165
Weibull 4.726824011 | 10.92323258 | 7.153879283 | 550.1415442
Chapman Richards | 3.838510766 | 8.984984786 | 7.922412924 | 442.433408
Generalized Logistic | 3.822858374 | 8.949865613 | 7.948129622 | 440.0709937
Table D.33: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 20.03521194 | 100.2625705 | 907.3350164 | 737.6272655
Gompertz 18.67207357 | 96.46006556 | 882.7315455 | 677.5116702
Weibull 25.80770342 | 115.9158129 | 1002.485035 | 950.6577789

Chapman Richards

41.97263962

154.7956104

1184.825706

1242.432728

Generalized Logistic

40.71034937

152.2234075

1176.802899

1233.548805

Table D.34: MSE with 6000 Prior Known Days

Forecast Days:

100

300

1000

Logistic 308.4063305 | 564.8859472 | 769.7007274
Gompertz 398.0235938 | 501.2133996 | 523.7149649
Weibull 348.3991981 | 521.6327645 | 546.9904746
Chapman Richards | 308.7844532 | 564.5352978 | 768.229178

Generalized Logistic | 306.4900621 | 566.0357431 | 772.4602557

Table D.35: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 280.6887896 | 279.3134455 | 715.4719307
Gompertz 324.4042263 | 335.9050986 | 912.850504
Weibull 320.3188007 | 316.8772496 | 730.27608
Chapman Richards | 667.8927667 | 409.4925154 | 153.720457
Generalized Logistic | 74.66805199 | 45.49988629 | 121.2489878
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.36: Forecast Difference with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -2.262918868 | 0.262658636 | -3.874716821 | 2.694651597
Gompertz -2.274469883 | 0.226360757 | -4.149266786 | 0.450379975
Weibull -2.269373774 | 0.233368263 | -4.182065623 | -0.518034138

Chapman Richards

-1.508252049

1.781515189

0.031514465

10.49151346

Generalized Logistic

-2.264591926

0.257344768

-3.914986438

2.404411214

Table D.37: Forecast Difference with 2000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic -1.267141611 | 1.296587923 | 1.601835493 | 12.19785897
Gompertz -1.298707999 | 1.234099357 | 1.359918685 | 11.09998192
Weibull -1.29375167 | 1.239142102 | 1.346978759 | 10.85696325

Chapman Richards

0.593925679

3.603923635

5.203921536

17.71392154

Generalized Logistic

-1.273431493

1.284056306

1.553519077

11.99542495

Table D.38: Forecast Difference with 3000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic 2970745734 | 6.377748151 | 5.433157246 | 61.34159653
Gompertz 2917629416 | 6.295763722 | 5.226217406 | 60.74600871
Weibull 2.889211568 | 6.25069238 | 5.103922385 | 60.32833679

Chapman Richards

5.160097401

8.799282862

8.489150847

65.22915472

Generalized Logistic

2.925944574

6.308553712

5.258774108

60.84562596
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Table D.39: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.473843683 | 4.893205285 | 1.838675494 | 21.42038939
Gompertz 2.750559053 | 5.276063558 | 2.731944806 | 25.3788115
Weibull 2.826655137 | 5.415999675 | 3.224445145 | 28.25414299

Chapman Richards

2.410966313

4.804488294

1.677645871

30.21645533

Generalized Logistic

2.733772539

5.253137994

2.680286686

25.16638851

Table D.40: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 5.138138884 | 14.33941019 | 46.45675916 | -4.096021363
Gompertz 4.998690285 | 14.12833484 | 45.85929082 | -7.445213018
Weibull 5.290685464 | 14.55338452 | 46.9179543 | -3.004556288

Chapman Richards

6.327918276

16.26147526

51.48929617

10.26514451

Generalized Logistic

5.004385544

14.1366081

45.88111895

-7.327423602

Table D.41: Forecast Difference with 6000 Prior Known Days

Forecast Days:

100

300

1000

Logistic 9.256473656 | -23.76144198 | -32.31856511
Gompertz 11.64395473 | -20.48367338 | -24.29960552
Weibull 8.778315117 | -23.6875907 | -26.99182023

Chapman Richards

15.11971468

-16.08340281

-9.501655126

Generalized Logistic

12.56241707

-18.86380352

-13.63784019

Table D.42: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -20.22548227 | -18.46927024 | -60.87177879
Gompertz -20.18462503 | -18.55216347 | -61.92458382
Weibull -19.55873347 | -17.04703306 | -55.28220878
Chapman Richards | -1.451166873 | 4.865345005 | -19.9106586
Generalized Logistic | -11.97192188 | -6.13246367 | -31.49059789
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D.1.4 Moving average

Mean Square Error (MSE)

Table D.43: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.783553787 | 2.479959358 | 6.512169118 | 86.52237742
Gompertz 2.538221027 | 2.18670505 | 4.823457284 | 35.82214713
Weibull 9.278385675 | 12.00970097 | 17.55032478 | 15.8358527

Chapman Richards

2.781715323

2.477492061

6.491756386

85.34189969

Generalized Logistic

2777375901

2.471967544

6.441968335

79.92021265

Table D.44: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 4.412226784 | 3.711932122 | 3.627867348 | 14.43022009
Gompertz 4.569694085 | 3.856002982 | 4.177404381 | 9.543539458
Weibull 3.337214839 | 2.866321033 | 1.862662718 | 45.71176139

Chapman Richards

2.043808258

2.26078458

2.596196972

64.80701341

Generalized Logistic

2.121283323

2.287190281

2.548615182

64.37108156

Table D.45: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 12.16433469 | 26.98542795 | 39.71706267 | 670.0284523
Gompertz 11.63760329 | 26.02763744 | 37.96275961 | 655.1270863
Weibull 13.73913945 | 29.72743468 | 44.38069737 | 698.7482607
Chapman Richards | 13.75559166 | 29.77766389 | 44.49996193 | 699.1445167
Generalized Logistic | 13.75537277 | 29.77725868 | 44.49923213 | 699.1406427
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Table D.46: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 5.142166985 | 11.01945988 | 8.061311933 | 433.0551156
Gompertz 6.265782064 | 13.16580912 | 7.729422718 | 514.7802866
Weibull 5.665775838 | 12.20221223 | 7.552815115 | 528.3374692

Chapman Richards

0.166742234

11.07522786

8.026588796

437.5257159

Generalized Logistic

46.75435489

72.82795307

60.83293425

1244.298544

Table D.47: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 26.2453239 | 112.7899884 | 944.7882963 | 772.9001994
Gompertz 24.78999089 | 108.9637432 | 920.4360407 | 711.3290176
Weibull 31.56192177 | 126.5662578 | 1027.877097 | 964.5900265

Chapman Richards

47.76848652

164.9888151

1211.615384

1270.993694

Generalized Logistic

169.9131162

351.0156976

1639.711449

1725.989964

Table D.48: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 691.8738066 | 450.8928624 | 305.0963175
Gompertz 807.7989969 | 446.1882789 | 216.6611512
Weibull 653.4003697 | 447.9109943 | 285.4299857
Chapman Richards | 769.1785331 | 439.856513 | 185.4372621
Generalized Logistic | 740.814953 | 433.2490506 | 174.6319294

Table D.49: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 290.3010775 | 301.8115534 | 867.3404451
Gompertz 276.7096807 | 287.5778911 | 854.2818288
Weibull 285.1606003 | 287.815095 | 750.71414
Chapman Richards | 70.31857887 | 42.19105593 | 118.0810847
Generalized Logistic | 22.82271923 | 23.42658721 | 93.45590279
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.50: Forecast Difference with 1000 Prior Known Days
Forecast Days: 100 300 1000 3000
Logistic -2.219922966 | -0.040314981 | -6.460394281 | -19.48797949
Gompertz -2.127300056 | 0.145172059 | -5.616302599 | -10.86211149
Weibull -3.90147552 | -2.790527773 | -6.972131628 | 3.473705776
Chapman Richards | -2.219209188 | -0.038662229 | -6.450667057 | -19.29816221
Generalized Logistic | -2.21758517 | -0.035083929 | -6.425831193 | -18.24393338

Table D.51: Forecast Difference with 2000 Prior Known Days
Forecast Days: 100 300 1000 3000
Logistic -1.611344652 | 0.761044237 | 0.325405529 | 8.97215896
Gompertz -1.6578925 0.670213133 | -0.047254275 | 6.722920973
Weibull -1.266574622 | 1.410430382 | 2.374244468 | 14.65125837
Chapman Richards | -0.756759184 | 2.251666205 | 3.851551279 | 16.36155127

Generalized Logistic

-0.787265749

2.218110837

3.817564271

16.32756407

Table D.52: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000

Logistic 3.57237535 | 7.064050431 | 6.395321345 | 62.78925595
Gompertz 3.487488344 | 6.944972134 | 6.15322809 | 62.29488477
Weibull 3.813352741 | 7.384042533 | 6.954058839 | 63.65207079
Chapman Richards | 3.815514235 | 7.390558355 | 6.967696968 | 63.66090836
Generalized Logistic | 3.815480143 | 7.390509924 | 6.967612977 | 63.66079905
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Table D.53: Forecast Difference with 4000 Prior Known Days

Forecast Days:

100

300

1000

3000

Logistic

2.792258756

5.164854658

1.871579972

19.66136388

Gompertz

3.102266284

2.595267605

2.897681306

24.65748832

Weibull

2.930810017

5.413530447

2.768938023

25.82768393

Chapman Richards

2.799558686

5.177488234

1.914514119

20.0053434

Generalized Logistic

7.847033254

11.34706546

12.47274528

47.68267735

Table D.54: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.873120348 | 15.10541143 | 47.34919267 | -2.693802561
Gompertz 5.701733247 | 14.84984782 | 46.64949736 | -6.41807983
Weibull 6.446343308 | 15.97029499 | 49.56036761 | 5.264815663

Chapman Richards

7.898629238

18.05334892

53.59800879

12.43745346

Generalized Logistic

14.08575591

24.26514699

59.82483848

18.66482709

Table D.55: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000

Logistic 16.44548575 | -15.67008809 | -20.19472133
Gompertz 18.79869837 | -12.52372989 | -12.94842988
Weibull 15.70444051 | -16.16262837 | -17.36206608
Chapman Richards | 18.08976838 | -12.91439742 | -5.731746716
Generalized Logistic | 17.61827939 | -13.00579795 | -3.356993845

Table D.56: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -18.94607399 | -17.30712349 | -60.31522455
Gompertz -18.56316153 | -16.93658111 | -60.36809333
Weibull -18.73304387 | -16.52367769 | -56.1086117
Chapman Richards | -8.768779743 | -2.632819952 | -27.59889037

Generalized Logistic

0.760684731

7.132579374

-17.59355243
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APPENDIX E
MATLAB Code

E.1 Filters

E.1.1 Moving Average

If the time point has less data points than the moving average length, take
the average of the prior data points.
data: Raw data. MALength: Length of moving average.

function [ result ] = meanAvg( data, MALength )

t = length(data);
for i = 1:¢t

if 1 ==

result(1)= data(1);

end

if 1 <= MALength
A = data(1:1);
result(i) = 1/i * sum(A);

end

if 1 > MALength

k = i-MALength;
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A = data(k:1);
result(i) = 1/MALength * sum(A);
end
end
*Note: MATLAB has its own built in function, ”movmean.”

E.2 Exponential Filter

This MATLAB code outputs columns of various weight parameters. The num-
ber of columns and the size of the weight parameter can easily be changed as per the
user’s specifications.

function [ result ] = alpha( data, PriorDatalength)

for i = 1:PriorDatalength
for k = 1:9
if i ==1

result(l, k)= data(l);

end

ifi7=1

result(i, k) = result(i-1, k) + k * 0.1* (data(i-1) - result(i-1, k)) ;
end

end

end
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*Note: MATLAB has its own built in function, ”tsmovavg” in the Financial

Toolbox.

E.2.1 The Hodrick-Prescott Filter

y : Unfiltered data w: lambda constant for Hodrick-Prescott Filter

function [s,desvabs] = hpfilter(y,w,plotter)
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Author: Wilmer Henao wi-henao@uniandes.edu.co
Department of Mathematics
Universidad de los Andes

Colombia

Hodrick-Prescott filter extracts the trend of a time series, the
output is not a formula but a new filtered time series. This
trend can be adjusted with parameter w; values for w lie usually
in the interval [100,20000], and it is up to you to use the one
you like, As w approaches infty, H-P will approach a line. If
the series doesn’t have a trend p.e.White Noise, doing H-P is
meaningles

[s] = hpfilter(y,w)

w = Smoothing parameter (Economists advice: "Use w = 1600 for
quarterly data")

y = Original series
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s = Filtered series

This program can work with several series at a time, as long
as the number of series you are working with doesn’t exceed
the number of elements in the series + it uses sparse matrices

which improves speed and performance in the longest series

[s] = hpfilter(y,w, ’makeplot’)

’makeplot’ in the input, plots the graphics of the original
series against the filtered series, if more than one series
is being considered the program will plot all of them in

different axes

[s,desvabs] = hpfilter(y,w)

Gives you a mesure of the standardized differences in absolute
values between the original and the filtered series. A big
desvabs means that the series implies a large relative

volatility.

Yoo 1o oo o ToTo 6o o JoTo o o o ToTo o o o To o o o JoToTo o o ToTo o o o To oo o o ToTo o o ToTa o o o To T o o o To o o o To T o o o To o o

tic

if nargin < 2

error (’Requires at least two arguments.’);

end
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[m,n] = size (y);

if m<n

d = repmat([w -4*w ((6*xw+1)/2)], m, 1);

d(1,2) = -2xu; d(m-1,2) = -2x*w;

d(1,3) = (1+w)/2; d(m,3) = (1+w)/2;

d(2,3) = (5*%w+1)/2; d(m-1,3) = (5*xw+1)/2;

B = spdiags(d, -2:0, m, m); %I use a sparse version of B,

because when m is large, B will have many zeros

B = B+B’;
s = B\y;
if nargin ==

t = size(y,2);

for i = 1:¢

figure(i)

plot(s(:,1),’r’); grid on; hold on; plot(y(:,1i));
title([’Series #’,num2str(i)]);

end

end

if nargout ==

desvabs = mean(abs(y-s)./s);
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end
toc
*Note: MATLAB has its own built in function, "hpfilter” in the Econometrics Tool-
box.

E.3 Fitting

E.3.1 Polynomial Fit

parameter = polyfit(x value,y value raw data,polynomial order)

y values of fit = polyval( parameter, x value)

E.3.2 The Levenburg-Marquart Algorithm

[beta,R,J] = nlinfit(days,raw data, function ,test parameters);

E.4 MSE and Difference of Forecast

This function calculates the mean square error (MSE) and difference between
the forecasted final time point and actual data point.

a : parameters from LM algorithm func: function PriorDatal.ength: Number
of known time points ydata: Entire raw data set

function [ mse, diff ] = results( a, func, PriorDatalength , ydata)

for i = 1:4
%% change i = 1:3 if forecast data exceeds dataset

if i == 1 JMSE and difference calculation for 100 future points

132



Al

B2

A

B

C

ydata(l: (PriorDatalLength + 100));

transpose (func(a, (1: (PriorDataLength + 100))));
A1( (PriorDatalLength + 1):(PriorDatalength + 100) );
B2( (PriorDatalLength + 1):(PriorDatalength + 100) );

(minus(A,B))."2;

mse(i) = sum( C )/100;

diff(i) = ydata(PriorDatalength + 100)

- func(a, (PriorDatalength + 100)) ;

en

if

Al

B2

A

B

C

d

== 2 %/MSE and difference calculation for 300 future points
ydata(l: (PriorDatalength + 300));

transpose (func(a,(1: (PriorDataLength + 300))));

A1( (PriorDatalLength + 1):(PriorDataLength + 300) );

B2( (PriorDatalLength + 1):(PriorDatalength + 300) );

(minus(A,B))."2;

mse(i) = sum( C )/300;

diff(i) = ydata(PriorDatalength + 300)

- func(a, (PriorDatalength + 300)) ;

en

if

d

i

== H4MSE and difference calculation for 1000 future points

Al = ydata(l: (PriorDatalength + 1000));
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B2 = transpose (func(a,(1l: (PriorDataLength + 1000))));

A = A1( (PriorDatalLength + 1):(PriorDataLength + 1000) );
B = B2( (PriorDatalength + 1):(PriorDatalength + 1000) );
C = (minus(A,B))."2;

mse(i) = sum( C )/1000;
diff(i) = ydata(PriorDataLength + 1000)

- func(a, (PriorDatalength + 1000)) ;

end

if i == %/HMSE and difference calculation for 3000 future points
A1 = ydata(l: (PriorDatalLength + 3000));

B2 = transpose (func(a,(1l: (PriorDataLength + 3000))));

A = A1( (PriorDatalength + 1):(PriorDatalength + 3000) );
B = B2( (PriorDatalength + 1):(PriorDatalength + 3000) );

C

(minus(A,B)) . 2;

mse(i) = sum( C )/3000;

diff(i) = ydata(PriorDatalLength + 3000)
- func(a, (PriorDatalength + 3000)) ;

end

end
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mse = transpose(mse);

diff = transpose(diff);

end
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