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ABSTRACT

Modeling and Forecasting Stock Market Prices

with Sigmoidal Curves

By

Daniel Tran

Pricing stock market data is difficult because it is inherently noisy and prone

to unexpected events. However, stock market data generally exhibits trends in the

medium and long term. A typical successful stock index exhibits an initiation phase,

rapid growth, and then saturation whereby the price plateaus. Sigmoidal curves can

effectively model and forecast stock market data because it can represent nonlinear

stock behavior within confidence interval bounds. This thesis surveys various mem-

bers of the sigmoidal family of curves and determines which curves best fit stock

market data. We explore several techniques to filter our data, such as the moving

average, single exponential smoothing, and the Hodrick-Prescott filter. We fit the

sigmoidal curves to raw data using the Levenberg-Marquardt algorithm. This thesis

aggregates these analysis techniques and apply them towards gauging the opportune

time point to sell stocks.
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CHAPTER 1

Introduction to Stock Market Behavior and Sigmoidal Curves

The stock market is a system that connects buyers and sellers of stock. Stock

is partial ownership of a company in exchange for a certain amount of cash. The

owner of stock hopes that the value of stock increases in the future in order to sell

stock for cash profit. One may guess that the value of a stock is directly tied to the

profits a company can generate, but market exchanges announce the price of a stock

through a black box algorithm that depends upon buyer’s and seller’s bids and offers.

This allows for human psychology and market speculation to be priced into stocks.

For instance, suppose there exists stock of a company that sells poultry. If a rumor

of avian flu speculates drop in profits, the panic may cause owners of the stock to

worry and assume a drop in stock price, even though the outbreak may not infect

any chickens. Owners of stock may irrationally sell all their shares before the spread

of avian flu takes place.

This thesis will not attempt to forecast stock prices in the short term because

human psychology and geopolitical events that can affect stock market prices in un-

predictable ways. Stock prices with time frames that are less than a year generally

exhibit a random walk. Professor Jeremy J. Siegel generated stock market data with

a random walk algorithm and asked stock brokers to identify real data mixed with

simulated data. Aside from the October 19th, 1987 crash, none of the brokers could

distinguish which was real data [18].

Instead, this thesis will explore long term trends, or time scales of at least one

year with daily data. Long term prices of stock indices show a positive correlation.
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Recall that a stock index is the sum of the price of every unique stock price. The

Dow-Jones Industrial Average (DJIA) is a price-weighted index, meaning the prices

of 30 large major US industries are summed together, then divided by the number of

firms in the index [18]. Siegel fits a best fit line onto 1997 dollars adjusted data and

shows the DJIA increases 1.70% per annum. Notice that this time period covers major

events in US history, including The Great Depression, World War 2, oil shortages,

and many other unpredictable geopolitical events.

Sigmoidal curves were first used for modeling population dynamics. Sigmoidal

curves assume that a population will grow at an increasing rate until it passes an

inflection point, then the curves approaches a certain limit, called the carrying capac-

ity. In terms of demographics, this carrying capacity might be the average mortality

of a species or the maximum population a given ecosystem can sustain.

In a similar vein, the economy has finite resources and labor for goods and

services, so the growth of any particular company will also have a carrying capacity

in an economic environment. This paper will demonstrate that sigmoidal curves may

be utilized as a tool to predict long term stock market prices.

Stock market data is noisy because of market volatility and general uncertainty

about future market conditions. This thesis will follow assumptions outlined by Choliz

(2007). Choliz characterizes stock market values following three phases: emergent,

inflection, and saturation. The emergent phase is when a stock is initially accelerating

in growth, the inflection phase is when the growth rate becomes linear, and the

saturation phase is when growth decelerates. Stocks have a lower bound of zero

because stock prices cannot be negative. Stocks also have a rapid phase of growth
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with an inflection point that defines a decrease in the rate of stock market growth.

Stocks also have an upper bound once it saturates the market.

Our sigmoidal growth curve models need to have variable growth rates and

asymmetry [2]. Schumpeter observes in advanced economies over two centuries sug-

gest that periods of expansion are generally longer than periods of decline. In this the-

sis, we will use the Logistic, Gompertz, Weibull, Generalized Logistic, and Chapman-

Richards equations as the models to fit stock market data. All of these curves have

a positive horizontal asymptotes which define the carrying capacity and a horizontal

asymptote that defines a stock market price of minimum of $0. All of these sigmoidal

curves exhibit an emergent, inflection, and saturation phase. The inflection points of

each of these sigmoidal curves can vary, allowing for asymmetric fits. The Logistic

and Gompertz equation have inflection points that are multiplied by a constant. The

Weibull, Generalized Logistic, and Chapman-Richards are multiplied by a variable,

so these three sigmoidal curves provide flexibility when fitting and forecasting stock

market data. This thesis will show that the last three sigmoidal provide better fits

and forecasts than the classical Logistic and Gompertz equations.
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CHAPTER 2

Various Members of the Sigmoidal Family of Curves

Sigmoidal curves have initially been used to model the growth of biological

species populating a given ecosystem with limited resources. The economy similarly

has finite resources for goods and services, so the growth of any particular com-

pany must have a carrying capacity in unconstrained economic environment. This

metaphor motivates the use of sigmoidal curves to model stock market prices. We

need to find a function that accelerates initially as it grows, then decelerates as the

size of a stock approaches a limit. The sigmoidal curves exhibit this pattern. The

term ”sigmoidal” literally means s-shaped.

The inflection point is the turning point where the rate of growth starts to

decrease. The Logistic and Gompertz equations are classic examples of sigmoidal

curves. The problem with these functions is that the inflection point, Yinflection, is a

fixed product between the carrying capacity and a constant. The Generalized Logistic,

Chapman-Richards and Weibull equations have inflection points that are dependent

upon some variables, so the inflection point is adjustable along the x-axis and y-axis.

This chapter will explore the phase diagram and instantaneous growth rate for

each type of curves. The phase diagram is the derivative of the closed form solution,

dYt
dt

, whose unit is [amount]
[unit time]

. The inflection point occurs at the maximum value of

the phase diagram. In all of our graphs, when Yt is at the carrying capacity Y∞,

the growth rate must necessarily be zero. Growth does not occur past the carrying

capacity for sigmoidal curves.

The instantaneous growth rate divides dYt
dt

with Yt, with units of [1]
[unit time]

. This
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can be interpreted as the percentage change of Yt per unit time forward.

2.1 The Logistic Model

Given the closed form of the logistic model:

Y (t) = Yt =
Y∞

1 + αe−βt
, t ≥ 0 (2.1)

where α, β are constant growth parameters, with β being the maximum growth rate,

and Y∞ is the carrying capacity. The derivatives for the logistic models are given by

dYt
dt

=
β

Y∞
Yt(Y∞ − Yt) (2.2)

d2Yt
dt2

=
β

Y∞
(Y∞ − 2Yt)

dYt
dt
. (2.3)

Figure 2.1: Phase diagram of logistic curve with parameters β = 5, 6, 7, Y∞ = 100.

Due to symmetry, the maximum of dYt
dt

occurs at the midpoint between 0 and

Y∞, as shown in the phase diagram in Figure 2.1. Even though the height of the

5



maximum can change with β, the inflection point tinflection is fixed. The y-value of

the inflection point occurs at Yt = Y∞
2

, that is when d2Yt
dt2

= 0. Substituting this

value into the closed form of the logistic equation (2.1) gives t = 1
β

ln(α). Hence, the

inflection point occurs at

(tinflection, Yinflection) =

(
1

β
ln(α),

Y∞
2

)
. (2.4)

The instantaneous growth rate is

dYt
dt

Yt
=

β

Y∞
(Y∞ − Yt). (2.5)

Figure 2.2: Instantaneous growth rate with logistic curve with parameters β = 5, 6,

7, Y∞ = 100.

Notice that Yinflection is dependent only on the carrying capacity Y∞, sometimes

referred to as the ceiling value. To realistically model stock prices, we need functions

that are more malleable where we can adjust the inflection points, and whose curves

that are not necessarily symmetric.
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2.2 The Gompertz Model

The closed form of the Gompertz model is:

Yt = Y∞e
−αe−βt , t ≥ 0 (2.6)

where α and β are constant growth parameters, and Y∞ > 0.

Manipulation of the closed form solution (2.6) will be useful for understanding

the derivatives of the Gompertz equations. Note that

Yt = Y∞e
−αe−βt

Yt
Y∞

= e−αe
−βt

Y∞
Yt

= eαe
−βt

ln

(
Y∞
Yt

)
= αe−βt

e−βt =
1

α
ln

(
Y∞
Yt

)

The derivatives of the Gompertz equation are:

dYt
dt

= αβe−βtYt = βYt ln

(
Y∞
Yt

)
(2.7)

d2Yt
dt2

= αβ2e−βt(αe−βt − 1)Yt = β2 ln

(
Y∞
Yt

)(
ln

(
Y∞
Yt

)
− 1
)
Yt (2.8)
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Figure 2.3: Phase diagram of Gompertz model with parameters β = 5, 6, 7, Y∞ =

100.

The phase diagram shows that the inflection point occurs at a fixed point on

the x -axis, the same characteristic as the logistic equation.

The instantaneous growth rate is:

dYt
dt

Yt
= αβe−βt = β(lnY∞ − lnYt). (2.9)
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Figure 2.4: Instantaneous growth rate of Gompertz model with parameters β = 5, 6,

7, Y∞ = 100.

The instantaneous growth rate has a vertical asymptote at Yt = 0. This is no

matter for applications towards the stock market because a stock price is de-listed at

zero. Our sigmoidal curves assume that stock will always be greater than zero.

To calculate the inflection point:

0 = αe−βt − 1

1 = αe−βt

1

α
= e−βt

α = eβt

βt = ln(α)

tinflection =
ln(α)

β

9



Substituting this value into the closed form solution (2.6), we obtain

Yt = Y∞e
−αe−β

ln(α)
β

Yt = Y∞e
−αe− ln(α)

Yt = Y∞e
−α 1

α

Yinflection = Y∞e
−1.

So the inflection point occurs at:

(tinflection, Yinflection) =

(
ln(α)

β
, Y∞e

−1
)
. (2.10)

2.3 The Generalized Logistic Equation

As derived in Appendix C, the closed form solution of the generalized logistic

equation is given by:

Yt =
Y∞

(1 + αe−βrt)
1
r

, for t ≥ 0 and α =
Y r
∞
Y r
0

− 1. (2.11)

Note that the derivatives are:

dYt
dt

= βYt

[
1−

(
Yt
Y∞

)r]
(2.12)

d2Yt
dt2

= β2Yt

[
1−

(
Yt
Y∞

)r] [
1− (r + 1)

(
Yt
Y∞

)r]
(2.13)
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Figure 2.5: Phase diagram of generalized logistic with parameters β = 7, r =

0.5, 1.5, 2, Y∞ = 100.

Figure 2.6: Phase diagram of generalized logistic with parameters β = 5, 6, 7, r =

1.5, Y∞ = 100.

The phase diagrams for the generalized logistic equation show it is possible to
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shift the maximum along the x-axis. The value of the r parameter allows for change

of the inflection point to correspond to various values of Yt.

The instantaneous growth rate is:

dYt
dt

Yt
= β

[
1−

(
Yt
Y∞

)r]
(2.14)

Figure 2.7: Instantaneous growth rate of generalized logistic with parameters β =

7, r = 0.5, 1.5, 2, Y∞ = 100.

12



Figure 2.8: Instantaneous growth rate of generalized logistic with parameters β =

5, 6, 7, r = 1.5, Y∞ = 100.

We can change the concavity of the instantaneous growth rate. When r > 1,

the instantaneous growth rate decreases at an increasing rate. When r < 1, the

instantaneous growth rate decreases at a decreasing rate. When r = 1, we get back

the logistic equation.

To calculate the inflection point:

0 = 1− (r + 1)

(
Yt
Y∞

)r
1 = (r + 1)

(
Yt
Y∞

)r
1

r + 1
=

(
Yt
Y∞

)r
1

(r + 1)1/r
=

Yt
Y∞

Yinflection =
Y∞

(r + 1)1/r

13



To calculate t, substitute Yinflection into the closed form solution (2.11):

Y∞
(r + 1)1/r

=
Y∞

(1 + αe−βrt)1/r

(r + 1)1/r = (1 + αe−βrt)1/r

r = αe−βrt

r

α
= e−βrt

ln
(α
r

)
= βrt

tinflection =
1

βr
ln
(α
r

)
.

So the inflection point for this curve is:

(tinflection, Yinflection) =

(
1

βr
ln
(α
r

)
,

Y∞
(r + 1)1/r

)
. (2.15)

2.4 The Chapman-Richards Equation

The closed form solution of the Chapman–Richards equation is [13]:

Yt = Y∞[1− ae−λt]m, t ≥ 0. (2.16)

Before calculating the derivatives, we will need the following equations from

the closed form solution. (
Yt
Y∞

)
= [1− ae−λt]m (2.17)(

Yt
Y∞

)1/m

= 1− ae−λt (2.18)

The first and second derivatives are:
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dYt
dt

= Y∞aλme
−λt(1− ae−λt)m−1

= mλae−λtY∞
(1− ae−λt)m

(1− ae−λt)

= mλYt
ae−λt

(1− ae−λt)

= mλYt

(
1−

(
Yt
Y∞

)1/m
)(

Y∞
Yt

)1/m

= mλYt

((
Y∞
Yt

)1/m

− 1

)
(2.19)

d2Yt
dt2

= mλ2Yt

((
Y∞
Yt

)1/m

− 1

)[
(m− 1)

(
Y∞
Yt

)1/m

−m

]
(2.20)

Figure 2.9: Chapman–Richards phase diagram with m = −.1, λ = .01, .1, 1, Y∞ =

100.
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Figure 2.10: Chapman–Richards phase diagram with m = −1,−.1,−.01, λ =

.1, Y∞ = 100.

To calculate the inflection point:

0 = (m− 1)

(
Y∞
Yt

)1/m

−m(
Y∞
Yt

)1/m

=
m

m− 1(
Y∞
Yt

)
=

(
m

m− 1

)m
Yt
Y∞

=

(
m− 1

m

)m
Yinflection = Y∞

(
m− 1

m

)m
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Direct substitution of Yinflection to the closed form (2.16) gives:

Y∞

(
m− 1

m

)m
= Y∞[1− ae−λt]m

m− 1

m
= 1− ae−λt

1− 1

m
= 1− ae−λt

1

am
= e−λt

am = eλt

ln(am) = λt

tinflection =
ln(am)

λ

So the inflection point for this curve is:

(tinflection, Yinflection) =

(
ln(am)

λ
, Y∞

(
m− 1

m

)m)
(2.21)

The instantaneous growth rate from equation (2.19) gives:

dYt
dt

Yt
= mλ

((
Y∞
Yt

)1/m

− 1

)
(2.22)
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Figure 2.11: Chapman–Richards instantaneous growth rate with m = −.1, λ =

.01, .1, 1, Y∞ = 100.

Figure 2.12: Chapman–Richards instantaneous growth rate with m =

−1,−.1,−.01, λ = .1, Y∞ = 100.

Since the Chapman-Richards equation is of similar form to the generalized
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logistic equation, we have the same patterns for parameter adjustments.

2.5 The Weibull Equation

The closed form solution of the Weibull equation is [13]:

Yt = Y∞ − αe−βt
γ

, t ≥ 0 (2.23)

Its first and second derivatives are

dYt
dt

= βγtγ−1(Y∞ − Yt) (2.24)

d2Yt
dt2

= βγtγ−1
[
(γ − 1)t−1(Y∞ − Yt)−

dYt
dt

]
(2.25)

Figure 2.13: Weibull phase diagram with parameters α = .1, .01, .001, β = 7, γ =

1/5, Y∞ = 100.
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Figure 2.14: Weibull phase diagram with parameters α = .001, β = 5, 6, 7, γ =

1/5, Y∞ = 100.

Figure 2.15: Weibull phase diagram with parameters α = .001, β = 7, γ =

1/3, 1/5, 1/7, Y∞ = 100.
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To calculate the inflection point:

0 = βγtγ−1

(γ − 1)t−1(Y∞ − Yt)−
dYt

dt



0 = (γ − 1)t−1(Y∞ − Yt)−
dYt

dt

dYt

dt
= (γ − 1)t−1(Y∞ − Yt)

βγtγ−1(Y∞ − Yt) = (γ − 1)t−1(Y∞ − Yt)

tγ =
γ − 1

βγ

tinflection =

(
γ − 1

βγ

)1/γ

By direct substitution of tinflection into the closed form solution (2.23), we get:

Yinflection = Y∞ − αe−(γ−1)/γ (2.26)

So the inflection point for this curve is:

(tinflection, Yinflection) =

((
γ − 1

βγ

)1/γ

, Y∞ − αe−(γ−1)/γ
)
. (2.27)

The instantaneous growth rate derived from equation (2.24) is given by

dYt
dt

Yt
= βγtγ−1

(
Y∞
Yt
− 1

)
(2.28)
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Figure 2.16: Weibull instantaneous growth rate with parameters α = .1, .01, .001, β =

7, γ = 1/5, Y∞ = 100.

Figure 2.17: Weibull instantaneous growth rate with parameters α = .001, β =

5, 6, 7, γ = 1/5, Y∞ = 100.
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Figure 2.18: Weibull instantaneous growth rate with parameters α = .001, β = 7, γ =

1/3, 1/5, 1/7, Y∞ = 100.
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CHAPTER 3

Filtering Noise

Before attempting to fit our models into the raw data, we need to smooth out

the noise from the data to reduce forecasting error.

3.1 Moving Average Filtering

The simplest smoothing function is the moving average [9]:

Ft+1 =
1

k

t∑
i=t−k+1

Yi (3.1)

where Yi is raw data point, Ft+1 is the smoothed data, and k is the number of previous

data points to average.

The function takes the arithmetic average of its previous k data points. If we

assume time is initialized at t = 0, the output of the moving average function starts

at t = k. The output needs a minimum of k input points. This function places equal

weight for each previous k data point.

3.2 Single Exponential Smoothing

The single exponential smoothing function [9] is:

Ft+1 = Ft + α(Yt − Ft), (3.2)

where α is constant such that 0 < α < 1, Ft is the smoothed data, and Yt is the raw

data. The difference Yt − Ft can be regarded as the forecast error for time period

t. In this interpretation, the new forecast Ft+1 is the previous forecast Ft plus an

adjustment for the error that occurred in the last forecast.
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We initialize the smoothing function by either letting F1 = Y2 or taking the

arithmetic average of k − 1 terms. The constant α applies a weight on the difference

between smoothed data point and raw data at a given time point t. An α close to 0

has a small adjustment from the previous forecast error, while an α close to 1 has a

large adjustment. Here is an graph that illustrates the single exponential smoothing

filter with an arbitrary set of data.

Figure 3.1: Example of single exponential smoothing filter.

Notice for this data, a high α looks almost like a transposition of the raw data,

shifted to the right on the x-axis. On the other extreme, the trend line barely increases

relative to the shape of the raw data. Also, low α has very low small fluctuations in
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slope in comparison to high alpha.

3.3 The Hodrick-Prescott Filter

The Hodrick-Prescott filter [6] is a technique for finding correlations in eco-

nomic data by separating raw data into a trend function and a cyclic function.

Kim [7] summarizes the Hodrick-Prescott filter as follows.

Suppose a given set of raw data yt can be decomposed as follows:

yt = τt + ct, t = 1, 2, . . . , T, (3.3)

where τt is the trend component and ct is the cyclical component. The Hodrick-

Prescott filter isolates ct by minimizing the function

f(τ1, τ2, . . . , τT ) =

[
T∑
t=1

(yt − τt)2 + λ
T−1∑
t=2

(τt+1 − 2τt + τt−1)
2

]
, (3.4)

where λ is called the penalty parameter. We want to minimize changes in the growth

rate, thereby producing a curve with minimal sudden changes in acceleration. This

parameter can be estimated by square rooting the quotient of the percent fluctuation

of the cyclic component with the percentage growth rate of one quarter. Quarterly

data typically assumes λ = 1600 because Hodrick and Prescott assumes 5% fluctu-

ation for the cyclical component, and 1/8 % growth for a fiscal quarter. When λ

approaches 0, the trend component τt matches the raw data, and when λ approaches

infinity, τt becomes linear, or zero acceleration.

The objective function (3.4) shows two summations. The summation on the

left is the variance between raw data and the trend component. The right summation

is the variance of the acceleration of the trend component.
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To minimize f , we set

∂f

∂τ1
=
∂f

∂τ2
= . . . =

∂f

∂τT
= 0 (3.5)

Note that

∂f

∂τ1
= −2(y1 − τ1) + 2λ(τ3 − 2τ2 + τ1) = 0

This implies

y1 = (1 + λ)τ1 − 2λτ2 + λτ3

= λ(τ1 − 2τ2 + τ3) + τ1

For τ2 :

∂f

∂τ2
= −2(y2 − τ2) + 2λ(τ3 − 2τ2 + τ1)(−2) + 2λ(τ4 − 2τ3 + τ2) = 0

This implies

y2 = (−2λ)τ1 + (1 + 4λ+ λ)τ2 + (−2λ− 2λ)τ3 + λτ4

= λ(−2τ1 + 5τ2 − 4τ3 + τ4) + τ2

In general,

∂f

∂τk
= −2(yk − τk) + 2λ(τk − 2τk−1 + τk−2) + 2λ(τk+1 − 2τk + τk−1)(−2)

+ 2λ(τk+2 − 2τk+1 + τk) = 0

This implies

yk = λτk+2 + (−2λ− 2λ)τk+1 + (1 + λ+ 4λ+ λ)τk + (−2λ− 2λ)τk−1 + λτk−2

= λ(τk+2 − 4τk+1 + 6τk − 4τk−1 + τk−2) + τk
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We can now rewrite the minimization function in matrix notation as:

yT = (λF + IT )τ T (3.6)

where yT = (y1, y2, . . . , yT )T is a T × 1 vector of the raw data, IT is T × T identity

matrix , τ T = (τ1, τ2, . . . , τT )T is the T × 1 trend component vector and F is a pen-

tadiagonal symmetric matrix given by

F =



1 −2 1 0 . . . 0
−2 5 −4 1 0 . . . 0

1 −4 6 −4 1 0 . . .
...

0 1 −4 6 −4 1 0 . . .
...

. . . . . . . . . . . . . . . . . . . . .
...

0 1 −4 6 −4 1 0
. . . 0 1 −4 6 −4 1

. . . 0 1 −4 5 −2
. . . 0 1 −2 1


.

From (3.6), the trend component vector can be isolated

τ T = (λF + IT )−1yT . (3.7)

The equation (3.7) has some computational advantages. The only unknown parameter

needed to smooth raw data is a single real number λ. Since we are smoothing daily

data, Ravn and Uhlig [16] shows that λ = 1600
(
365
4

)4
= 110930628906.250. The

pentadiagonal symmetric matrix F can be easily inverted with fewer flops. The

Hodrick-Prescott filter was implemented with MATLAB code given in the appendix

[5].

3.4 Comparison of Various Smoothing techniques

To see which smoothing technique is best for sigmoidal curve fitting, this

paper will use the mean square error as a metric for the best fitting technique. The
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following data set is the daily closing price of Chipotle’s stock price from its initial

public offering date, January 26th, 2006, to June 17th, 2016 [30].

The equation for the mean square error [26] is:

MSE =
1

T

T∑
t=1

(St −Rt)
2, (3.8)

where St it the smoothed data and Rt is the raw data.

Figure 3.2: Plot of moving average filter with various k days.
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Table 3.1: MSE of moving average filtering

k MSE
5 57.796012692925402
30 480.525902866916
100 1760.21885253903
300 4227.2094117137203

Figure 3.3: Plot of single exponential filter with various α.

Table 3.2: MSE of single exponential filtering

α MSE
0.1 2.60E+02
0.2 1.33E+02
0.3 93.3976601
0.4 74.56602442
0.5 63.73344863
0.6 56.91617951
0.7 56.91617951
0.8 49.67360402
0.9 48.08265613
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Figure 3.4: Plot of Hodrick-Prescott filter with various λ.

Table 3.3: MSE of Hodrick-Prescott filtering

λ MSE
160 44.51601627
800 63.33548743
1600 74.14633128
3200 88.30237894
16000 1.38E+02
160000 2.52E+02

The MSE can only measure the extent to which the smoothed data deviates

from the raw data. After we explore fitting algorithms used in this paper, the MSE

will reveal how well sigmoidal curves fit with the raw data and how well sigmoidal

curves forecast data.

For moving average filtering, the choice of using 5, 30, 100, and 300 days is

used to approximate the average of a fiscal week, fiscal month, fiscal quarter, and
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fiscal year, respectively. The deviation in moving average filtering increases as the

number of days averaged increases. For single exponential smoothing, the smoothing

deviation decreases as α increases. For the Hodrick-Prescott filter, the MSE increases

as λ increases.
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CHAPTER 4

Fitting Data and The Levenberg-Marquardt Algorithm

This chapter starts with the discussion of polynomial interpolation as one of

the basic techniques for curve fitting. Next we look into nonlinear least squares prob-

lems that arise in the context of fitting a more general parameterized function to a

set of data points by minimizing the sum of the squares of the errors between the

data points and the function. The Levenberg-Marquardt algorithm is a standard

technique for solving nonlinear least squares problems. We present the derivation of

the Levenberg-Marquardt algorithm along with its convergence theorem. A compu-

tational example is also presented to illustrate the algorithm.

4.1 Polynomial Interpolation

One of the most common and simplest ways to fit data is by fitting polynomial

functions into a given data set. Given a data set {(xi, yi), i = 1, 2 . . . n}, we aim to

find a k-th order polynomial, where k < n:

y = a0 + a1x+ · · ·+ akx
k. (4.1)

The error r, also called residual, is defined to be the difference between the fitted

function and the data points. The sum of the square error can be written as

R(a0, a1, . . . , ak) = r2 =
n∑
i=1

[yi − (a0 + a1xi + . . .+ akx
k
i )]

2. (4.2)
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Note that R is a function of k + 1 variables a0, a1, . . . , ak. To minimize R, we take

the partial derivative with respect to each ak and set it equal to zero:

∂R

∂a0
= −2

n∑
i=1

[yi − (a0 + a1xi + . . .+ akx
k
i )] = 0

∂R

∂a1
= −2

n∑
i=1

[yi − (a0 + a1xi + . . .+ akx
k
i )]xi = 0

...

∂R

∂ak
= −2

n∑
i=1

[yi − (a0 + a1xi + . . .+ akx
k
i )]x

k
i = 0

By dividing both sides by the constants and distributing terms we get:

∂R

∂a0
=

n∑
i=1

[yi − (a0 + a1xi + . . .+ akx
k
i )] = 0

∂R

∂a1
=

n∑
i=1

[xiyi − (a0xi + a1x
2
i + . . .+ akx

k+1
i )] = 0

...

∂R

∂ak
=

n∑
i=1

[xki yi − (a0x
k
i + a1x

k+1
i + . . .+ akx

2k
i )] = 0.

34



We now separate each summation term and move all terms containing y to one side,

we get:

a0n+ a1

n∑
i=1

xi + . . .+ ak

n∑
i=1

xki =
n∑
i=1

yi

a0

n∑
i=1

xi + a1

n∑
i=1

x2i + . . .+ ak

n∑
i=1

xk+1
i =

n∑
i=1

xiyi

...

a0

n∑
i=1

xki + a1

n∑
i=1

xk+1
i + . . .+ ak

n∑
i=1

x2ki =
n∑
i=1

xki yi

(4.3)

The above system of equations is called the normal equations and can be written in

the following matrix form
n

∑n
i=1 xi . . .

∑n
i=1 x

k
i∑n

i=1 xi
∑n

i=1 x
2
i . . .

∑n
i=1 x

k+1
i

...
...

. . .
...∑n

i=1 x
k
i

∑n
i=1 x

k+1
i . . .

∑n
i=1 x

2k
i



a0
a1
...
ak

 =


∑n

i=1 yi∑n
i=1 xiyi

...∑n
i=1 x

k
i yi

 . (4.4)

A Vandermonde matrix is a matrix with the terms of a geometric progression in each

row. The matrix

V =


1 x1 . . . xk1
1 x2 . . . xk2
...

...
. . .

...
1 xn . . . xkn

 (4.5)

is a Vandermonde matrix. Note that (4.4) can be decomposed in terms of Vander-

monde matrix V as shown below:
1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...
xk1 xk2 . . . xkn




1 x1 . . . xk1
1 x2 . . . xk2
...

...
. . .

...
1 xn . . . xkn



a0
a1
...
ak

 =


1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...
xk1 xk2 . . . xkn



y1
y2
...
yn

 , (4.6)

that is,

V TV a = V Ty, (4.7)
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where a = [a0, a1, . . . , ak]
T and y = [y1, y2, . . . , yn]T . Therefore, the coefficients a can

be written as

a = (V TV )−1V Ty. (4.8)

Note that the dimension of V is n × (k + 1) and it easily becomes very large

as the number of data points is large. Solving for coefficients a from the system (4.7)

takes O((k + 1)3) using Gaussian elimination. Moreover, the behavior of polynomial

functions as t increases approaches ±∞, which is impractical for modeling a carrying

capacity. In the next section, we will look at the least square problems that arise

from fitting parameterized functions, such as the sigmoidal curves, to a set of data

points.

4.2 Nonlinear Least Square Problems

Given a set of data points {(t1, y1), (t2, y2), . . . , (tm, ym)}, the nonlinear least

square problem is a problem of finding a function p(t, x1, x2, . . . , xn) of n parame-

ters x1, x2, . . . , xn that best fits the data. We want to find the parameter values

x = (x1, x2, . . . , xn) through iterative improvement that minimizes the sum of the

squares of the errors between the data points and the function. The problem can be

formulated as follows:

min
x∈Rn

f(x), (4.9)

where

f(x) =
1

2

m∑
j=1

r2j (x), (4.10)

rj are residuals, or more specifically rj = |raw data−fitted function| = |yj−p(tj,x)|, j =

1, . . . ,m. We assume that m ≥ n.
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The minimization function can be rewritten as:

f(x) =
1

2
||r(x)||2 =

1

2
r(x)T r(x), (4.11)

where r(x) = (r1(x), r2(x), . . . , rm(x))T .

Recall that the Jacobian J(x) of r is the m × n matrix of the first partial

derivatives, that is,

J =


∂r1
∂x1

∂r1
∂x2

. . . ∂r1
∂xn

∂r2
∂x1

∂r2
∂x2

. . . ∂r2
∂xn

...
...

. . .
...

∂rm
∂x1

∂rm
∂x2

. . . ∂rm
∂xn

 . (4.12)

Recall also

∇f(x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn


=


1
2
(2r1(x) ∂r1

∂x1
+ 2r2(x) ∂r2

∂x1
+ · · ·+ 2rm(x)∂rm

∂x1
)

...
1
2
(2r1(x) ∂r1

∂xn
+ 2r2(x) ∂r2

∂xn
+ · · ·+ 2rm(x)∂rm

∂xn
)


=

r1
∂r1
∂x1

+ r2
∂r2
∂x1

+ · · ·+ rm
∂rm
∂x1

...
r1

∂r1
∂xn

+ r2
∂r2
∂xn

+ · · ·+ rm
∂rm
∂xn
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We can now rewrite ∇f(x) as

∇f(x) =


∂r1
∂x1

∂r2
∂x1

. . . ∂rm
∂x1

∂r1
∂x2

∂r2
∂x2

. . . ∂rm
∂x2

...
...

. . .
...

∂r1
∂xn

∂r2
∂xn

. . . ∂rm
∂xn



r1
r2
...
rm


= JT r

= [r1, r2, . . . , rm]


∇r1
∇r2

...
∇rm

 , where ∇rj =


∂rj
∂x1
∂rj
∂x2
...
∂rj
∂xn


= r1∇r1 + r2∇r2 + · · ·+ rm∇rm

=
m∑
j=1

rj∇rj.

The derivatives of f can be expressed in terms of the Jacobian matrix J(x) =
[
∂ri
∂xj

]
,

1 ≤ i ≤ m, 1 ≤ j ≤ n, as follows

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x) (4.13)

∇2f(x) = J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x) (4.14)

In the vicinity of a solution, r(x) is usually small, so the summation in the second

term of (4.14) is negligible and J(x)TJ(x) can be taken as an approximation for the

Hessian:

∇2f(x) ≈ J(x)TJ(x). (4.15)

4.3 Line Search Algorithms

A general procedure of line search algorithms for function minimization is as

follows. We start with an initial guess, x0 ∈ Rn, and produce a sequence of points
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{xk} that, under appropriate conditions, will converge to a minimizer x∗. At each

iteration k, the next iterate xk+1 is determined from the current iterate xk as:

xk+1 = xk + αkpk (4.16)

where pk ∈ Rn is a suitably chosen direction and αk is a suitably chosen step size.

In line search algorithms, we first determine the direction pk, then compute

the step size αk to determine how far we need to move along that direction. The

search direction pk can be written in the form

pk = −B−1k ∇fk, (4.17)

where Bk = B(xk) is an n× n matrix and ∇fk = ∇f(xk) is the gradient of f at the

current iterate xk. There are many choices for pk, but in most line search algorithms,

pk is chosen to be a descent direction.

Definition: Let f : Rn → R. A vector p ∈ Rn is a descent direction for f at x if

pT∇f(x) < 0.

Using Taylor’s theorem one can show that if we move in sufficiently small step along

the descent direction p, then the function value is reduced. Moreover, since p is a

descent direction, we also have from (4.17)

pT∇f(x) < 0⇔ (−B−1∇f(x))T∇f(x) < 0 (4.18)

⇔ −∇f(x)TB−T∇f(x) < 0 (4.19)

⇔ ∇f(x)TB−T∇f(x) > 0 (4.20)
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which implies that B−T is a positive definite matrix and so is B.

Two commonly used methods in the family of line search algorithms are the

gradient descent and Gauss-Newton methods, which will be described next.

4.3.1 Gradient descent method

In gradient descent method, the direction pk is chosen to obtain the greatest

decrease in f . For any direction p with ‖p‖ = 1 we have

∇f(x)Tp = ‖∇f(x)‖‖p‖ cos θ, (4.21)

where θ is the angle between p and ∇f(x). Since −1 ≤ cos θ ≤ 1, this implies that

−‖∇f(x)‖ ≤ ∇f(x)Tp ≤ ‖∇f(x)‖ (4.22)

and hence the greatest decrease of f occurs when

∇f(x)Tp = −‖∇f(x)‖ (4.23)

that is,

p =
−∇f(x)

‖∇f(x)‖
. (4.24)

This direction p is known as the steepest descent direction. In the form of equation

(4.17), the matrix B = I, the n× n identity matrix.

In spite of its simplicity, slow convergence of gradient descent method is one

of its major disadvantages, especially for functions with long and narrow valley struc-

tures.

4.3.2 The Gauss-Newton algorithm

In Gauss-Newton algorithm, the sum of the square errors is reduced by as-

suming that the objective function f is locally quadratic and finding the minimum of
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the quadratic approximation.

Let mk(pk) be the quadratic approximation to f(xk + pk) at the point xk.

From Taylor’s theorem we have

mk(pk) = f(xk) + pTk∇fk +
1

2
pTk∇2fkpk. (4.25)

We seek to find pk that minimizes mk. Taking the derivative of (4.25) with respect

to pk and setting it equal to 0, we obtain

∇mk(pk) = ∇fk +∇2fkpk = 0, (4.26)

which gives us the Newton’s direction

pk = −(∇2fk)
−1∇fk. (4.27)

Gauss-Newton method takes advantage of the special structure of the least

square problems. Rather than using the complete second-order Hessian matrix for

the quadratic model, the Gauss-Newton method uses an approximation (4.15). Hence,

the search direction for Gauss–Newton method is given by:

pk = −(JTk Jk)
−1∇fk, (4.28)

where Jk = J(xk). In the form of equation (4.17), the matrix Bk = JTk Jk.

4.4 Trust-Region Methods (TRM)

Another approach for solving minimization problem is by using the trust region

methods. Line search methods calculate a direction towards the minimizer, then figure

out the appropriate step size. Trust region methods take the opposite approach. The
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trust region algorithm defines a region around an iterate and constructs a model

function that approximates the objective function in that region. The algorithm

finds the minimizer of the model function and then takes an iterative step.

In other words, for every k-th iterate, given the model function mk of a trust

region within p of the current position xk, the algorithm minimizes mk(xk + p) with

respect to p. If sufficient reduction in the function value f is obtained, then mk is

accepted to be a good representation of f in that region. Otherwise the trust region

needs to be adjusted accordingly. The goal of the trust region method is to find an

approximate trust region radius to arrive at the minimizer x∗.

The algorithm for the trust region method is as follows [12]:

4.4.1 Trust-Region Method Algorithm

Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4
)

for k = 0, 1, 2, ...

(1) Approximate pk by solving:

min
p∈Rn

mk(p) = f(xk) +∇f(xk)
Tp +

1

2
pT∇2f(xk)p, ||p|| ≤ ∆k (4.29)

(2) Evaluate:

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
. (4.30)

(3) Determine how to change trust region radius for the next iteration:

if ρk <
1
4

∆k+1 = 1
4
∆k

else
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if ρk >
3
4

and ||pk|| = ∆k

∆k+1 = min(2∆k, ∆̂)

else

∆k+1 = ∆k

(4) Determine the next iterate:

if ρk > η

xk+1 = xk + pk

else

xk+1 = xk.

(End of algorithm)

Letting gk = ∇f(xk) and using Bk as an approximation to ∇2f(xk), we can

rewrite (4.29) as

mk(p) = fk + gTk p +
1

2
pTBkp. (4.31)

The following theorems from [12] will be useful in proving the convergence of

the Levenberg-Marquardt algorithm in later section.

Theorem 4.1. Let m be the quadratic function defined by

m(p) = gTp +
1

2
pTBp, (4.32)

where B is any symmetric matrix. Then

(1) a minimizer of m exists if and only if B is positive semidefinite and g is in the

range of B. If B is positive semidefinite, then every p satisfying Bp = −g is a

global minimizer of m.
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(2) m has a unique minimizer if and only if B is positive definite.

Proof. For statement (1), assuming B is positive semidefinite and g is in the range of

B, we want to show there exists some p∗ that minimizes m(p).

Since g is in the range of B, there exists some p∗ such that Bp∗ = −g. For

any w ∈ Rn:

m(p∗ + w) = gT (p∗ + w) +
1

2
(p∗ + w)TB(p∗ + w)

= gTp∗ + gTw +
1

2
(p∗ + w)T (Bp∗ +Bw)

= gTp∗ + gTw +
1

2
(p∗)TBp∗ +

1

2
(p∗)TBw +

1

2
wTBp∗ +

1

2
wTBw

(4.33)

Since B is symmetric, BT = B, which implies (p∗)TBw = (Bp∗)Tw, and

wTBp∗ = wT (Bp∗) = (Bp∗)Tw = (p∗)TBw (4.34)

Hence, (4.33) becomes:

m(p∗ + w) = (gTp∗ +
1

2
(p∗)TBp∗) + gTw + (Bp∗)Tw +

1

2
wTBw

= m(p∗) +
1

2
wTBw

≥ m(p∗).

(4.35)

The last inequality is due to the fact that B is positive semidefinite and thus wTBw ≥

0. Hence, p∗ is a minimizer of m(p).

Now assume p∗ is a minimizer of m. It follows that ∇m(p∗) = 0 and ∇2m(p∗)

is positive semidefinite. From (4.32), note that ∇m(p∗) = Bp∗+g = 0, which implies

that g is in the range of B. Moreover, ∇2m(p∗) = B, so B is positive semidefinite.

For statement (2), assume that B is positive definite. Also assume p and q

are both minimizers of m. We want to show that p = q. Using statement (1), since
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p and q are minimizers,

Bp = Bq = −g. (4.36)

Since B is positive definite, B is invertible. So this leads to B−1Bp = B−1Bq and

therefore p = q. Therefore, m has a unique minimizer.

Now assume m has a unique minimizer, call it p∗. We want to show that B is

positive definite. Suppose B is not positive definite. Then there exists some w 6= 0

such that wTBw = 0. From (4.35), m(p∗+w) = m(p∗), indicating that both p∗ and

p∗ + w are minimizers of m, which is a contradiction. Therefore B must be positive

definite.

The following theorem [12] gives the conditions to the solution of trust region

problem.

Theorem 4.2. The vector p∗ is a global solution to the trust region problem

min
p∈Rn

m(p) = f + gTp +
1

2
pTBp, ‖p‖ ≤ ∆ (4.37)

if and only if p∗ is feasible and there exists some λ ≥ 0 such that the following

conditions are satisfied:

(1) (B + λI)p∗ = −g

(2) λ(∆− ‖p∗‖) = 0

(3) (B + λI) is positive semidefinite.

Proof. (⇐) Assume there exists λ ≥ 0 satisfying the three conditions above. We

want to show that p∗ is a global minimizer of m(p). By Theorem 4.1, p∗ is the global
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minimizer of the quadratic function:

m̂(p) = gTp +
1

2
pT (B + λI)p = m(p) +

λ

2
pTp (4.38)

Since m̂(p) ≥ m̂(p∗) for any p,

m(p) ≥ m(p∗) +
λ

2

[
(p∗)Tp∗ − pTp

]
(4.39)

From condition (2), λ(∆− ‖p∗‖) = 0 implies

λ(∆− ‖p∗‖)(∆ + ‖p∗‖) = λ(∆2 − ‖p∗‖2) = λ(∆2 − (p∗)Tp∗) = 0. (4.40)

Thus,

m(p) ≥ m(p∗) +
λ

2

[
(p∗)Tp∗ + pTp

]
= m(p∗) +

λ

2

[
(p∗)Tp∗ −∆2 + ∆2 − pTp

]
= m(p∗) +

λ

2
(∆2 − pTp)

Since λ ≥ 0,m(p) ≥ m(p∗) for all p satisfying ‖p‖ ≤ ∆. Therefore, p∗ is a global

minimizer.

(⇒) Assume p∗ is a global solution to m(p). We want to show there exists

λ ≥ 0 satisfying the three conditions.

Case 1: ‖p∗‖ < ∆, that is, p∗ is an unconstrained minimizer of m.

Note that ∇m(p∗) = Bp∗ + g = 0. It follows that λ = 0 satisfies condition (1). Also

∇2m(p∗) = B, where B is positive semidefinite. The choice λ = 0 satisfies condition

(3). Condition (2) is automatically satisfied when λ = 0.
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Case 2: ‖p∗‖ = ∆.

Note that condition (2) is immediately satisfied and the minimizer is within the trust

region radius. Moreover, p∗ also solves the constraint problem (4.37). Define the

Lagrangian function:

L(p, λ) = m(p) +
λ

2
(pTp−∆2). (4.41)

By the optimality conditions for constrained optimization, there exists some λ for

which p∗ is a stationary point. Setting the partial derivative ∇pL of L with respect

to p to 0, we obtain

∇pL(p, λ) = g +Bp + λp = 0,

and it follows that

g +Bp∗ + λp∗ = 0 =⇒ (B + λI)p∗ = −g. (4.42)

So condition (1) is satisfied.

Since p∗ is the minimizer of m(p), m(p) ≥ m(p∗) for any p with pTp =

(p∗)Tp∗ = ∆2 and p 6= p∗. We can write

m(p) ≥ m(p∗) +
λ

2
((p∗)Tp∗ − pTp).

From (4.37),

m(p)−m(p∗) = (f + gTp +
1

2
pTBp)− (f + gTp∗ +

1

2
(p∗)TBp∗) (4.43)

and from (4.42),

gT = −(p∗)T (B + λI)T = −(p∗)T (B + λI), (4.44)
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where (B + λI) = (B + λI)T because it is symmetric. Thus, combining (4.43) and

(4.44),

m(p)−m(p∗)

= −(p∗)T (B + λI)p +
1

2
pT (B + λI)p + (p∗)T (B + λI)(p∗)− 1

2
(p∗)T (B + λI)(p∗)

= −(p∗)TBp− (p∗)Tλp +
1

2
pTBp +

1

2
pTλp + (p∗)TB(p∗) + (p∗)Tλ(p∗)

− 1

2
(p∗)TB(p∗)− 1

2
(p∗)Tλ(p∗)

Collect terms of B and λ:

=
1

2
pTBp− (p∗)TBp +

1

2
(p∗)TBp∗ +

1

2
pTλp− (p∗)Tλp +

1

2
(p∗)Tλp∗

=
1

2
pT (B + λI)p− (p∗)T (B + λI)p +

1

2
(p∗)T (B + λI)p∗

=
1

2
pT (B + λI)p− 1

2
(p∗)T (B + λI)p− 1

2
(p∗)T (B + λI)p +

1

2
(p∗)T (B + λI)p∗

=
1

2
(p− p∗)T (B + λI)p− 1

2
(p∗)T (B + λI)p +

1

2
(p∗)T (B + λI)p∗

=
1

2
(p− p∗)T (B + λI)p +

1

2
(p∗)T (B + λI)(p∗ − p)

=
1

2
(p− p∗)T (B + λI)p +

1

2
(p∗ − p)T (B + λI)(p∗)

=
1

2
(p− p∗)T (B + λI)p− 1

2
(p− p∗)T (B + λI)(p∗)

=
1

2
(p− p∗)T (B + λI)(p− p∗)

So,

1

2
(p− p∗)T (B + λI)(p− p∗) ≥ 0 (4.45)

which implies (B + λI) is positive semidefinite.

All three conditions are satisfied when p∗ is a global minimizer. Now we need

to show that λ ≥ 0. We will show this by proof of contradiction. Suppose to the

contrary that λ < 0 and satisfies conditions (1) and (2). Since p∗ minimizes m, by
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Theorem 4.1, B is positive semidefinite and Bp∗ = −g. This implies λ = 0 in our

theorem. This contradicts our supposition. Hence, λ ≥ 0.

4.5 The Levenberg-Marquardt Algorithm

4.5.1 Motivation behind Levenberg-Marquardt Algorithm

Before delving into the full details of the Levenberg-Marquardt (LM) algo-

rithm, reviewing the motivation behind the algorithm will add clarity to how the

algorithm works. The Gauss-Newton method, just like Newton’s method, has rapid

convergence, but is sensitive to the initial position. On the other hand, the gradient

descent method is not sensitive to initial position even though convergence may be

slow. Levenberg combines the advantages of gradient descent and Gauss-Newton by

taking Bk in equation (4.17) as:

Bk = ∇2fk + λI (4.46)

where λ is a damping factor that is adjusted at each iteration.

As in the Gauss-Newton method, the approximation JTk Jk is used instead of

the actual Hessian ∇2fk, that is,

Bk = JTk Jk + λI (4.47)

and

xk+1 = xk − (JTk Jk + λI)−1JTk rk (4.48)
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Recall that the Hessian of f is

∇2f =



∂2f

∂x21

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x22
· · · ∂2f

∂x2 ∂xn
...

...
. . .

...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2n


(4.49)

Along with the equation (4.48), Levenburg [10] defined the following rule to

determine the damping factor λ at each iteration:

(1) Perform one iteration.

(2) Evaluate error at the given iterate.

(3) If error increases, increase λ. If error decreases, decrease λ.

A more precise algorithm for calculating λ in the LM algorithm can be given

in trust-region framework and is often called the trust-region subproblem [12]:

4.5.2 Trust-Region Subproblem Algorithm

Given λ1 and k-th time step of the LM algorithm.

for n = 1, 2, 3, . . .

(1) Conduct a Cholesky factorization:

JTk+1Jk+1 + λknI = LnL
T
n , (4.50)

where Ln is an n× n lower triangular matrix.

(2) Solve p
(λ)
n and q

(λ)
n in the following equations in sequence:

LnL
T
np(λ)

n = −JTk+1rk+1 (4.51)

50



Lnq
(λ)
n = p(λ)

n (4.52)

(3) Solve the equation:

λn+1 = λn +

(
‖p(λ)

n ‖
‖q(λ)

n ‖

)2(
‖p(λ)

n ‖ −∆k

∆k

)
(4.53)

end

Given λ1 = 1 as an initial guess. For k > 1, we calculate λ using the trust-

region subproblem algorithm (Algorithm 4.2). For practical purposes, the algorithm

will not be implemented until convergence is obtained because it is computationally

expensive. Most will define a finite number of iterations n for the algorithm, or define

a tolerance for |λn+1 − λn| and stop the algorithm.

Marquardt [11] noticed that if λ becomes too large, the term JTk Jk becomes

negligible and the algorithm (4.48) behaves similarly to the gradient descent algo-

rithm. The gradient drop towards the minimum becomes very small for a given path

pk. We want movement along smaller gradients to be larger, and vice versa. Mar-

quardt eliminates this issue by replacing the identity matrix with the diagonal of

JTk Jk as follows

xk+1 = xk −
[
JTk Jk + λ diag(JTk Jk)

]−1
JTk rk. (4.54)

The above equation is the Levenberg-Marquardt algorithm.
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4.5.3 Implementation of Levenberg-Marquardt Algorithm

Using the trust region framework, the goal of the LM algorithm is to solve the

following minimization problem:

min
p

1

2
‖Jkp + rk‖2, subject to ‖p‖ ≤ ∆k, (4.55)

where ∆k > 0 is the trust-region radius. We define the model function m to be:

mk(p) =
1

2
‖rk‖2 + pTJTk rk +

1

2
pTJTk Jkp. (4.56)

If the Gauss-Newton direction pGN obtained from solving JTk Jkp
GN = −JTk rk satisfies

the constraint ‖pGN‖ < ∆, then pGN also solves the trust-region subproblem. If this

is not the case, then there exists λ > 0 for which pLMk solves

(JTk Jk + λI)pLMk = −JTk rk = −∇fk, (4.57)

and ‖pLM‖ = ∆.

The following lemma [12] gives the conditions for the solution of minimization

problem (4.55).

Lemma 4.3. The vector pLM is the solution to the minimization problem (4.55) if

and only if pLM is feasible and there exists λ ≥ 0 such that

(JTk Jk + λI)pLM = −JTk rk (4.58)

λ(∆− ‖pLM‖) = 0 (4.59)

Proof. Condition (3) in Theorem 4.2 is satisfied automatically since JTk Jk is positive

semidefinite and λ ≥ 0. Equations (4.58) and (4.59) follow from condition (1) and

condition (2) of Theorem 4.2.
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4.5.4 The Levenberg-Marquardt Algorithm

Given ∆̂ > 0, ∆1 ∈ (0, ∆̂), and η ∈ [0, 1
4
)

for k = 1, 2, ...

(1) If k = 1, calculate pGNk :

pk
GN = −(JTk Jk)

−1JTk rk (4.60)

if pGNk < ∆1

Use the Gauss–Newton method to obtain convergence

else

Initiate the LM algorithm.

(2) Calculate λk using the trust-region subproblem (Algorithm 4.5.2).

(3) Approximate pk by:

pLMk = −(JTk Jk + λI)−1JTk rk (4.61)

(4) Evaluate ρk using equation (4.56) for mk(x):

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(4.62)

(5) Determine how to change trust region radius for the next iteration:

if ρk <
1
4

∆k+1 = 1
4
∆k

else

if ρk >
3
4

and ||pk|| = ∆k
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∆k+1 = min(2∆k, ∆̂)

else

∆k+1 = ∆k

(6) Determine if after the step direction pk, ρk is small enough to reach an accept-

able tolerance η.

if ρk > η

xk+1 = xk + pk

else

xk+1 = xk.

4.5.5 Convergence of The Levenberg-Marquardt Algorithm

Before proving the convergence of the LM algorithm, we have to prove the

convergence of the trust region algorithm.

Theorem 4.4. Let η ∈ (0, 1
4
) in the trust region algorithm (Algorithm 4.4.1). Suppose

that ‖Bk‖ ≤ β for some constant β. Let g be bounded below on the set level set S

defined by:

S(R0) = {x | ‖x− y‖ < R0, for some y ∈ S}, (4.63)

where R0 > 0. Let g be a Lipschitz continuous function in S(R0) with Lipschitz

constant β1, that is g ∈ LCβ1(S(R0)). Suppose all approximate solution pk in trust-

region algorithm satisfies

mk(0)−mk(p) ≥ c1||gk||min
(

∆k,
||gk||
Bk

)
(4.64)

and ||pk|| ≤ γ∆k for some constant γ ≥ 0, c1 > 0. Then {gk} → 0.
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Proof. We consider a particular positive index m such that g(xm) 6= 0. Since g ∈

LCβ1(S), we have:

||g(x)− g(xm)|| ≤ β1||x− xm||, ∀x,xm ∈ S(R0). (4.65)

We define scalars ε = 1
2
||gm|| and R = min

(
ε
β1
, R0

)
. Notice the R-ball around xm

B(xm, R) = {x | ||x− xm|| ≤ R} (4.66)

is contained in S(R0), so Lipschitz continuity of g holds inside B(xm, R), that is,

‖g(x)− g(y)‖ ≤ β1‖x− y‖, ∀x,y ∈ B(xm, R).

In particular,

‖g(x)− g(xm)‖ ≤ β1‖x− xm‖

≤ β1R ≤ β1(ε/β1) = ε =
1

2
‖g(xm)‖.

From the triangle inequality

||g(xm)|| − ||g(x)|| ≤ ||g(xm)− g(x)|| ≤ 1

2
‖g(xm)‖ (4.67)

which implies

||g(x)|| ≥ 1

2
‖g(xm)‖ = ε. (4.68)

Let {xk} be a sequence generated by trust-region algorithm. If {xk}k≥m ⊂

B(xm, R), then ‖g(xk)‖ ≥ ε for all k ≥ m. Hence, {g(xk)} 9 0. Therefore, there

must exist some index l ≥ m such that {xl+1,xl+2, . . .} lie outside the ball B(xm, R),

that is, xl+1 is the first iterate that escapes B(xm, R). Note that ‖g(xk)‖ ≥ ε for
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k = m,m+ 1, . . . , l. Thus,

f(xm)− f(xl+1) = f(xm)− f(xm+1) + f(xm+1)− . . .− f(xl+1) (4.69)

=
l∑

k=m

f(xk)− f(xk+1.) (4.70)

If x = xk+1, then f(xk) − f(xk+1) = 0. If x 6= xk+1, then xk+1 = xk + pk for some

pk 6= 0 and this happens when ρk > η, that is,

ρk =
f(xk)− f(xk+1)

mk(0)−mk(pk)
> η

⇒ f(xk)− f(xk+1) > η(mk(0)−mk(pk))

From (4.70), we have

f(xk)− f(xl+1) ≥
l∑

k=m,xk 6=xk+1

η(mk(0)−mk(pk))

≥
l∑

k=m,xk 6=xk+1

ηc1‖gk‖min
(

∆k,
‖gk‖
Bk

)
(by assumption)

≥
l∑

k=m,xk 6=xk+1

ηc1εmin
(

∆k,
ε

β

)
.

The last inequality comes from the fact that ‖gk‖ ≥ ε for all k ≥ m and ‖Bk‖ ≤ β.

We consider two cases:

Case 1: If ∆k > ε/β, then

f(xm)− f(xl+1) ≥ ηc1ε
ε

β
. (4.71)

Case 2: If ∆k ≤ ε/β for k = m,m+ 1, . . . , l, then

f(xm)− f(xl+1) ≥ ηc1ε
l∑

k=m,xk 6=xk+1

∆k (4.72)

≥ ηc1εR (4.73)

= ηc1εmin
( ε
β
,R0

)
. (4.74)
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Since {f(xk)} is decreasing and bounded below, {f(xk)} → f(x∗) and f(x∗) > −∞.

Hence, combining both cases we obtain

f(xm)− f(x∗) ≥ f(xm)− f(xl+1) (since f(x∗) ≤ f(xl+1))

≥ ηc1εmin
( ε
β
,
ε

β1
, R0

)
=

1

2
ηc1‖g(xm)‖min

(‖g(xm)‖
2β

,
‖g(xm)‖

2β1
, R0

)
.

But as m→∞, f(xm)− f(x∗)→ 0, and this forces ‖g(xm)‖ → 0 as well.

Now we use this theorem to show that the Levenberg-Marquardt algorithm

converges [12].

Theorem 4.5. Let η ∈ (0, 1
4
) in the trust region algorithm. Suppose the set level L

as defined by (4.63) is bounded and the residual functions rj, where j = 1, . . . ,m are

Lipschitz continuous and differentiable in neighborhood N of L. Assume that for each

k, the approximate solution for pk in 4.55 satisfies:

mk(0)−mk(pk) ≥ c1||JTk rk||min
(

∆k,
||JTk rk||
||JTk Jk||

)
(4.75)

for some constant c1 > 0. In addition, ||pk|| ≤ γ∆k for some constant γ ≥ 1. Then

lim
k→∞

JTk rk = 0 (4.76)

Proof. From the smoothness of rj, i.e. rj is infinitely differentiable. We can choose

M > 0 such that ||JTk Jk|| ≤ M for all k. f is bounded is bounded below by zero.

Thus, Theorem 4.4 is satisfied.

4.5.6 Computational Example

This example will illustrate the Levenberg-Marquardt (LM) algorithm 4.5.4.

The following table shows the annual full-time student enrollment data from Califor-
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nia State University, Los Angeles from 2005-2015 [21].

Table 4.1: California State University, Los Angeles full-time student enrollment data

from 2005-2015

Year Full-Time Student Enrollment
2005 15936
2006 16251
2007 16687
2008 16297
2009 15967
2010 16151
2011 17262
2012 17952
2013 18796
2014 20445
2015 23252

We fit the following nonlinear model function

p(t,x) = x2 ln(x1t) + x3 (4.77)

using the LM algorithm 4.5.4.

The parameter vector changes after each k-th iterate:

xk =

x
(k)
1

x
(k)
2

x
(k)
3

 (4.78)

Our initial guess for x1 after a rough estimate will be:

x1 =

100
50
100

 (4.79)

The first step of the LM algorithm is to use the Gauss–Newton method.
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r(x1) =



50 ln(100) + 100− 15936
50 ln(200) + 100− 16251
50 ln(300) + 100− 16687
50 ln(400) + 100− 16297
50 ln(500) + 100− 15967
50 ln(600) + 100− 16151
50 ln(700) + 100− 17262
50 ln(800) + 100− 17952
50 ln(900) + 100− 18796
50 ln(1000) + 100− 20445
50 ln(1100) + 100− 23252


=



15606
15886
16302
15897
15556
15731
16834
17518
18356
20000
22802


(4.80)

||r(x1)||2 = 3.3510 ∗ 109, so f(x1) = 1.6755 ∗ 1013

Recall that the residual is defined as rj = |yj − p(tj,x)|. Since the absolute

function is not smooth, to ensure positivity by re-writing the residual rj as a square

function:

r2j = (yj − x2 ln(x1tj)− x3)2 (4.81)

The Jacobian is calculated:
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J(x1) =
[
∂rj
∂x1

∂rj
∂x2

∂rj
∂x3

]

=



∂r1
∂x1

∂r1
∂x2

∂r1
∂x3

∂r2
∂x1

∂r2
∂x2

∂r2
∂x3

∂r3
∂x1

∂r3
∂x2

∂r3
∂x3

∂r4
∂x1

∂r4
∂x2

∂r4
∂x3

∂r5
∂x1

∂r5
∂x2

∂r5
∂x3

∂r6
∂x1

∂r6
∂x2

∂r6
∂x3

∂r7
∂x1

∂r7
∂x2

∂r7
∂x3

∂r8
∂x1

∂r8
∂x2

∂r8
∂x3

∂r9
∂x1

∂r9
∂x2

∂r9
∂x3

∂r10
∂x1

∂r10
∂x2

∂r10
∂x3

∂r11
∂x1

∂r11
∂x2

∂r11
∂x3



=



−326 −185964 −32604
−318 −190498 −31795
−311 −193352 −31113
−315 −201262 −31462
−337 −220568 −33669
−350 −234199 −35036
−367 −249728 −36712
−400 −276305 −39999
−456 −319366 −45604



(4.82)

Combining equation(4.13) and equation(4.28) from the Gauss–Newton method

(GN), we get:

pk
GN = −(JTk Jk)

−1JTk rk (4.83)

Substituting our calculated values we get p1
GN = (−36.9018,−2.6100, 0.4891)

Once we go through one step of the GN algorithm, we compare p1
GN to ∆1.

The trust regions acts as an indicator to see if we are within an acceptable range of

the minimum of the minimization function f(x) from equation (4.10). For illustrative

purposes, let ∆1 = 0.1. In this case, ||p1
GN || = 36.9972 > 0.1. Because of this, we

switch to the LM algorithm.

We can now initialize the LM algorithm. Going back to our initial guess x1,
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||r(x1)||2 = 3.3510 ∗ 109, so f(x1) = 1.6755 ∗ 1013, same as the initialization step of

GN.

Let λ1 = 1 as an initial guess. For the purposes of this illustration, we will use

this algorithm only once.

So using λ1 = 1 and equation (4.61), p1
LM = (0.0050,−5.5109∗10−10, 0.5000).

Following the trust region algorithm (4.4.1), we now calculate ρk (4.84).

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(4.84)

(1)

f(x1) = 1.6755 ∗ 1013 (4.85)

(2)

f(x1 + p1) = f(x2) =
1

2
||r(x2)||2 = 1.6754 ∗ 109 (4.86)

(3)

m1(0) =
1

2
||r(x1)||2 = f(x1) = 1.6755 ∗ 1013 (4.87)

(4)

mk(pk) = 8.7897 ∗ 1025 (4.88)

Combining terms, we end up with:

ρ1 =
f(x1)− f(x1 + p1)

m1(0)−m1(p1)
= 5.2461 ∗ 1016 (4.89)
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For the purpose of illustration, let ∆1 = 0.1 and η = 0.001 From the trust

algorithm (4.4.1), we keep the same trust region value, so ∆2 = ∆1. Since ρ1 > η,

x2 = x1 + p1

We can now update our parameter values:

x2 = x1 + p1
LM =

 100 + .0050
50 + (−5.5109 ∗ 10−10)

100 + .5000

 =

100.0050
50.0000
100.5000

 (4.90)

For k = 2, we need to calculate λ2 first with the trust region subproblem (4.4.1).

When k > 1, λ in equation (4.61) is calculated using the trust region subproblem

algorithm (4.5.2):

JT2 J2 + λ1I =

1340177.876 847098339.3 134024387.8
847098339.3 5.41941 ∗ 1011 84714069006
134024387.8 84714069006 13403108838

 (4.91)

We take the Cholesky Decomposition to get:

L1L
T
1 =

 1157.6605 0 0
731732.9440 80673.0616 0
115771.7532 0.7835 100.0069

1157.6605 731732.9440 115771.7532
0 80673.0616 0.7835
0 0 100.0069


(4.92)

Solving p1
(λ) from equation (4.51):

p1
(λ) =

 3350.1457
−5.5320 ∗ 10−5

−32.9994

 (4.93)

Solving q1
(λ) from equation (4.52):

q1
(λ) =

 2.8939
−26.2486
−3350.2041

 (4.94)

Using the equation (4.53) we get:

λ2 = λ1 +

(
||p1

(λ)||
||q1

(λ)||

)2( ||p1
(λ)|| −∆

∆

)
= 1 +

(
3.3503 ∗ 104

3.3503 ∗ 104

)2(
3.3503 ∗ 104 − 0.1

0.1

)
= 3.3503 ∗ 104

(4.95)
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Using to calculate (4.61) to calculate p2
LM , we end up with:

p2 =

 0.0050
1.6264 ∗ 10−5

0.5000

 (4.96)

This implies:

x3 = x2 + p2
LM =

100.0100
50

100.9998

 (4.97)

The following graph provides an illustration of the LM algorithm after a suc-

cessive number of iterations:

Figure 4.1: LM Algorithm fitting on Annual Cal State LA Full-Time Enrollment Data

from 2005 - 2015
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Figure 4.2: LM Algorithm fitting on Annual Cal State LA Full-Time Enrollment Data

from 2005 - 2015

The LM algorithm ends once ρk < η.
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4.6 Results of Fit

Figure 4.3: LM Algorithm of various sigmoidal curves and their respective mean

square error (MSE).

Table 4.2: LM algorithm of various sigmoidal curves and their respective MSE

Curve Name MSE
Logistic 4835.38127595731
Gompertz 5409.55782739912
Weibull 4548.42018423027
Generalized 4060.92655664517
Chapman-Richards 4005.64641784122
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Figure 4.4: Polynomial algorithms of various degrees and their respective mean square

error (MSE).
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Table 4.3: Polynomial algorithms of various degrees and their respective mean square

average (MSE)

Polynomial Degree MSE
1 7362.6697517347902
2 6168.5780648502696
3 4615.8348964957704
4 3407.5441301470801
5 3107.53868716131
6 2235.1476172573798
7 2070.1495434897602
8 1433.1560713026099
9 1257.1509207751301
10 1191.5658148058201
11 1179.1434984611301
12 1178.4457355050699
13 1006.92989762918
14 924.50777729245601
15 868.82744941962801
16 833.82532793095197
17 829.35627632649903
18 823.47416471310203
19 822.90489838668702
20 780.12966874691404
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CHAPTER 5

Forecasting Data

5.1 Methodology

This chapter will demonstrate the use of the Levenberg-Marquardt (LM) algo-

rithm to fit data and forecast stock market prices. We filter the data with the Hodrick–

Prescott (HP), exponential smoothing, and moving average techniques. Data without

a filter applied is our standard of comparison. We will use the Logistic, Gompertz,

Weibull, Chapman-Richards, and the Generalized Logistic equations after application

of each respective filter.

All data fitted starts at the closing price of the initial public offering (IPO) to

variable amounts of days chosen forward in time. The raw data is the daily closing

prices of Vanguard Energy Fund Investor Shares (VGENX) [31]. It starts from May

23rd, 1984 to November 11th, 2016. The fund invests in US energy and foreign

securities. The composition of the fund as of December 31st, 2016 is shown in this

data table:
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Table 5.1: Composition of VGENX Mutual Fund

Energy Fund Investor as of 12/31/2016
Coal & Consumable Fuels 0.00%
Consumer Discretionary 0.10%
Consumer Staples 0.10%
Financials 0.20%
Health Care 0.10%
Industrials 0.20%
Information Technology 0.20%
Integrated Oil & Gas 36.10%
Oil & Gas Drilling 1.60%
Oil & Gas Equipment & Services 9.00%
Oil & Gas Exploration & Production 37.90%
Oil & Gas Refining & Marketing 7.20%
Oil & Gas Storage & Transportation 3.70%
Utilities 3.50%

From this data set, we start with the IPO to a certain number of days we

assume to be known data. We call this ”prior data.” The prior data consists of 1000,

2000, 3000, 4000, 5000, 6000, and 7000 data points. From the prior data, we attempt

to forecast a set number of days after the last prior data point. We attempt to forecast

stock prices 100, 300, 1000, and 3000 trading days into the future. Prior to fitting

the data with the LM algorithm, we either leave the prior data unfiltered, apply the

Hodrick-Prescott filter, the moving average filter, or the exponential smoothing filter.

The moving average filter is arbitrarily 300 trading days, which approximates one

year’s worth of trading. The weight factor α for the exponential average was chosen

by taking the lowest mean square error value between the prior data and filtered data

set in 0.1 intervals between 0 and 1. The forecast difference is defined as the actual

data at the forecasted time point minus the fitted data at the forecast time point.
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Positive values correspond to forecast underestimates, and negative values correspond

to forecast overestimates.

5.2 Results

Since the raw data set is large, only 1000, 5000, and 7000 prior data points

are provided with more detailed analysis. Their respective forecast plots, forecast

difference bar graph, and MSE bar graph are shown in section 5.4. The reason for

these choices is because 1000 prior data points is representative of initial behavior

of a sigmoidal curve, 5000 prior points is representative of behavior immediately

before inflection behavior, and 7000 prior data points is representative of behavior

of a sigmoidal curve inclusive of the inflection point. In other words, these prior

data points are representative of emergent, inflection, and saturation phases. The

inflection point occurs roughly between 5000 - 6000 days after IPO. Histograms of

forecast differences display all prior data sets from 1000 - 7000 prior data points. Data

tables of each forecast differences and their mean square error (MSE) are located in

appendix D.1.

From section 5.4, the data set shows the MSE and forecast difference magni-

tude increases as the number of forecast days increases. For 1000 prior data points,

the all MSE are less than 100 $2, which implies the mean error is within the square

root of the MSE, or $10. But if we look at 1000 forecast days or less, the MSE is

generally less than 10$2, or error that is roughly $3.

For 5000 prior data points, the MSE are generally less than 200 $2 for 100 and

300 forecast days, and range from 800 - 1800 $2 for 1000 to 3000 forecast days, which
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implies a mean error of about $10−$40. Forecasting near or past the inflection point

produces higher uncertainty. The forecast differences 300 and 1000 forecast days were

generally high, with a range of approximately $10 − $50. The HP filter was able to

keep 100 to 1000 forecast days all under $20. But forecasting past the inflection point

at 3000 forecast days, the forecast difference drops, but the MSE remains relatively

high. This suggests there is much more volatility after the inflection point.

For 7000 prior data points, the forecast values are generally negative, meaning

the sigmoidal curves generally overestimates the actual stock value. But once the

maximum value for the stock price is known and the approximate location of the

inflection point, the MSE are all below 1000 $2. The behavior of stock prices near

the carrying capacity is less volatile than it is near the inflection point.
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When plotting the histogram of forecast differences, positive values correspond

to underestimates, and negative values correspond to overestimates. Ideally, we would

like to have our difference curves skew to the right and be as close to zero as possible.

This translates to accurate forecasts that are slightly underestimated. The standard

deviation is generally within $30 for all filtration techniques and curves. The expo-

nential filter appears to be worse than our control. A filter should provide a greater

contrast in moment values so that it is easier to distinguish how each sigmoidal curve

member is behaving. By inspection of minimums and maximums of teach statistical

moment with each type of filtration and curve, the difference between the minimums

and maximums of the exponential filter is the smallest. The minimum and maximum

differences are smaller than unfiltered data. So the exponential filter performs worse

than the control.

A normal distribution itself still does not demonstrate a particular sigmoidal

curve is better at forecasting than another. A normal distribution near a mean of

zero simply implies that the forecasts have a 50 % chance of forecasting above or

below the actual price. We want the normal distributions to have a mean past zero

and have a positive skew to that the probability of underestimating accurate data is

greater than 50 %.
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Table 5.2: Average of Forecast Differences

Unfiltered Hodrick-Prescott Exponential Moving Average
Logistic 2.966 1.263 1.757 1.508
Gompertz 1.982 1.604 1.931 2.331
Weibull 4.930 1.911 3.468 3.607
Chapman-Richards 9.161 8.542 5.312 6.072
Generalized 10.406 4.207 5.179 10.163

Note: Red highlighted are the lowest values of a column, and blue values the highest.

Table 5.3: Standard Deviation of Forecast Differences

Unfiltered Hodrick-Prescott Exponential Moving Average
Logistic 22.059 22.832 22.706 22.498
Gompertz 22.837 22.496 22.860 22.020
Weibull 22.313 22.051 22.482 22.102
Chapman-Richards 19.478 17.899 20.444 19.127
Generalized 19.433 18.358 20.515 20.334

Note: Red highlighted are the lowest values of a column, and blue values the highest.

Table 5.4: Histogram of Skews of Forecast Differences

Unfiltered Hodrick-Prescott Exponential Moving Average
Logistic 0.056 0.035 0.161 0.224

Gompertz 0.036 0.025 0.032 0.181
Weibull 0.247 0.255 0.179 0.296

Chapman-Richards 1.252 1.600 0.732 1.374
Generalized 1.259 1.279 0.718 1.274

Note: Red highlighted are the lowest values of a column, and blue values the highest.

The skew is the measure of asymmetry about the mean. Positive skew values

means the data is more spread out to the right of the mean, and negative skew values

means the data is more spread out to the left of the mean. Here is a general schematic

of skew [29]:
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The following is the equation to calculate skew [23]:

s =
E(x− µ)3

σ3
=

1
n

∑n
i=1(xi − x̄)3(√

1
n

∑n
i=1(xi − x̄)2

)3 (5.1)

For the applications of this thesis, positive skew values correspond to higher fre-

quency of positive forecast differences. The Chapman-Richards and Generalized Lo-

gistic equations have the largest positive skew values, meaning forecast values tend to

underestimate actual values. The Logistic and Gompertz equations have the lowest

skew values for all filtration techniques, implying that their distributions are close to

symmetry about the mean.

Table 5.5: Kurtosis

Unfiltered Hodrick-Prescott Exponential Moving Average
Logistic 5.856 5.259 4.961 5.543
Gompertz 5.262 5.492 5.283 5.850
Weibull 4.352 5.003 4.874 5.448
Chapman-Richards 4.947 6.131 5.120 5.636
Generalized 4.970 5.725 5.091 4.383

Note: Red highlighted are the lowest values of a column, and blue values the highest.

The kurtosis is the measure of ”tailedness” of a normal distribution, not the

sharpness nor relative height of a normal distribution’s peak [8]. In other words,
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kurtosis is the measure outliers normalized to the standard deviation. The kurtosis

does not directly imply the shape of a peak for a given distribution.

The following is the equation to calculate kurtosis [22]:

k =
E(x− µ)4

σ4
=

1
n

∑n
i=1(xi − x̄)4(√

1
n

∑n
i=1(xi − x̄)2

)4 (5.2)

The forecast distributions should ideally show low kurtosis, which would imply

the data would have few outliers and be close to the mean. Low kurtosis implies that

the data would have forecasts far from the mean. The Logistic equation generally has

the lowest kurtosis, which implies fewest outliers relative to the mean. But our data

also shows that for the logistic equation, the mean is close to zero, and the standard

deviation is very high, so we end up with a low kurtosis. The Gompertz has high

kurtosis because the it has many outliers, so the numerator has a high value. The

Chapman-Richards with the Hodrick–Prescott filter have high kurtosis because it has

the lowest standard deviation. The Generalized Logistic with the moving average has

a low kurtosis because is contains few outliers relative to the mean.

Another important feature of the data is the value of the fitted inflection point.

The inflection point defines where the growth rate transitions from acceleration to

deceleration, meaning the change of growth rate goes from positive to negative. From

visual inspection, the inflection point occurs between 5000-6000 points after IPO.

When trying to fit data with prior data near the inflection point, the fits forecast

an extremely high carrying capacity, generally to the order of $103 − $104 . This is

because the fitting algorithm assumes that the high growth rate will last for a long

time. The growth rate is the highest near the inflection point because the growth
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rate is approaching an extrema value with respect to the second derivative of the

closed form solution. Since we are fitting sigmoidal curves, the curve to the left

of the inflection point exhibits positive concavity, and the curve to the right of the

inflection point exhibits negative concavity. For all forecast differences, most of the

differences were positive before encountering the inflection point and negative after

the inflection point. This implies the sigmoidal curve generally underestimates the

actual data prior to the inflection point, and overestimates after the inflection point.

If the inflection point is known, an investor can take advantage of this behavior and

determine whether to by or sell stock.

The MSE before and after the inflection point increases dramatically. If we

focus our attention to 1000 and 3000 forecast days, for 1000 prior data points, all

the MSE were less than 40 $2. 3000 forecast days implies 4000 days after IPO, so

this time point is not past the inflection point. The increase is apparent for 5000

prior data points. The MSE for 1000 and 3000 forecast days are around 1000$2. This

implies stock prices have greater volatility after the inflection point.

Macroeconomic reasons can explain why stock prices have greater volatility.

Baumeister and Peersman [1] and Robe and Wallen [17] show fluctuations in physical

crude oil inventories are the biggest factor that determine oil prices. Crude oil pro-

duction reported by the OECD has been fairly stable since VGENX went into IPO

[27]:
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But what has changed is the oil price elasticity. Price elasticity of is percentage change

of the quantity demanded/supplied to the percent change in price [3]. Baumeister et

al. [1] shows the price elasticity of crude oil decreases from 1985 to 2010. Low price

elasticity implies small fluctuations in supply results in large changes in price.

Based on the data and analysis results, the Hodrick-Prescott (HP) filter used in

tandem with the Chapman-Richards equation provide the best forecast results for this

particular data set. The HP filter provides the largest difference in extreme values

for the standard deviation, skew, and kurtosis. This allows for a bigger contrast

when looking at the differences in moments between each type of equation. The

Chapman-Richards provided consistent high average forecast differences for 2 out of

3 filtering techniques, which demonstrates its tendency to underestimate forecasts.
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The Chapman-Richards consistently demonstrated the smallest standard deviation

for all filtering techniques, so most differences are least likely to produce extreme

values. The Chapman-Richards produces the highest positive skew values, so the

forecast differences tend to underestimate actual values. The combination of the HP

filter and Chapman-Richards has the highest kurtosis, which implies most of the data

is concentrated near the mean.

5.3 Future Research

This paper used a deterministic approach to forecasting stock market data.

Another path to explore could explore correlations with other stock market indicators,

such as oil rig counts or the VIX indicator, to see how it would influence forecasting

with sigmoidal curves as suggested by Baumeister et al [1]. One can also explore how

to incorporate sigmoidal curves into agent based modeling [4]. One can also explore

applications to mean reversion theory and how to determine the best conditions to

sell stock [18].
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5.4 Data

5.4.1 Raw Data
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5.4.2 Fit of Various Sigmoidal Curves

1000 Prior Data Points
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5000 Prior Data Points
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7000 Prior Data Points
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5.4.3 Forecast Difference with 1000 Prior Known Days

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.
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5.4.4 Forecast Difference with 5000 Prior Known Days
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5.4.5 Forecast Difference with 7000 Prior Known Days
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5.4.6 MSE with 1000 Prior Known Days
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5.4.7 MSE with 5000 Prior Known Days
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5.4.8 MSE with 7000 Prior Known Days
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APPENDIX A

The Logistic Model

We start with definition of the logistic differential equation [13]:

dYt
dt

= βYt

(
1− Yt

Y∞

)
, (A.1)

where β is the maximal growth rate when Yt is much smaller than Y∞, and Y∞ is the

upper limit fo the sigmoidal curve, also known as the carrying capacity.

We nondimensionalize (A.1) by dividing Yt by its max value Y∞:

dYt/dt

Y∞
= β

Yt
Y∞

(
1− Yt

Y∞

)
and then substitute x = Yt/Y∞ to get

dx

dt
= βx(1− x). (A.2)

Using the method of separation of variables, we have

dx

x(1− x)
= βdt. (A.3)

Now we use partial fractions decomposition to write

1

x(1− x)
=
A

x
+

B

(1− x)

A(1− x) +Bx = 1⇒ A− Ax+Bx = 1

which gives us a system of equations{
−A+B = 0

A = 1

and it follows that B = 1. Integrating the left hand side of (A.3), we obtain∫
1

x(1− x)
dx =

∫
1

x
dx+

∫
1

1− x
dx = ln(x)− ln(1− x)
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and therefore

ln(x)− ln(1− x) = βt+ C

ln
(1− x

x

)
= −βt− C

1

x
− 1 = αe−βt, where α = e−C .

Solving for x,

x =
1

1 + αe−βt
.

When we substitute x = Yt/Y∞, we finally obtain

Yt =
Y∞

1 + αe−βt
, t ≥ 0. (A.4)
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APPENDIX B

The Gompertz Model

We start with definition of the Gompertz differential equation from [13]:

dYt
dt

= βYt ln

(
Y∞
Yt

)
, (B.1)

where β is a positive constant, and Y∞ is the upper limit for the curve. We multiply

1/Y∞ on both sides:

dYt/dt

Y∞
= β

Yt
Y∞

ln

(
Y∞
Yt

)
and then substitute x = Yt/Y∞ to get

dx

dt
= βx ln

(
1

x

)
. (B.2)

Using the separation of variables, we solve for x as follows:

∫
dx

x ln( 1
x
)

=

∫
βdt

− ln

(
ln

1

x

)
= βt+ C, where C is a constant

ln

(
ln

1

x

)
= −βt− C

ln
1

x
= αe−βt, and α = e−C

lnx = −αe−βt

x = e−αe
−βt

Finally, the substitution x = Yt/Y∞ gives the closed form solution of the Gompertz

equation:

Yt = Y∞e
−αe−βt . (B.3)
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APPENDIX C

The Generalized Logistic Equation

The Generalized Logistic Equation (or sometimes called the Richard’s model)

is given by:

dYt
dt

= βYt

[
1−

(
Yt
Y∞

)r]
= βYt −

β

Y r
∞
Y r+1
t (C.1)

Let η = − β

Y r
∞

. Then

dYt
dt

(
1

Y r+1
t

)
=

β

Y r
t

+ η

dYt
dt

(
1

Y r+1
t

)
− β

Y r
t

= η

We use the substitution w =
1

Y r
t

= Y −rt to get

w′ =
−rY r−1

t
dYt
dt

(Y r
t )2

=
−r dYt

dt

(Y
(r+1)
t )

Note that

−w
′

r
− βw = η

w′ + rβw = −rη.

Using the method of integrating factor, we let µ(t) = e
∫
rβdt = erβt and multiply both

sides of the equation with µ(t):

erβtw′ + rβerβtw = −rηerβt.
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Note that the left hand side of the above equation is the derivative of erβtw. Inte-

grating both sides of the equation with respect to t gives us

erβtw = −
∫
rηerβtdt

werβt = − rη
rβ
erβt + k, where k is the integration constant

werβt +
η

β
erβt = k

erβt
(
w +

η

β

)
= k

w =
k

erβt
− η

β

1

Y r
t

=
k

erβt
− η

β
=
kβ − ηerβt

erβtβ

We then obtain

Y r
t =

erβtβ

kβ − ηerβt
(C.2)

Letting Y (0) = Y0 we have

Y r
0 =

β

kβ − η

kβ − η =
β

Y r
0

kβ =
β

Y r
0

+ η

k =
1

Y r
0

+
η

β
=

1

Y r
0

− 1

Y r
∞
.
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Substituting these values into (C.2):

Y r
t =

1e
−rβt

β

 (kβ − ηerβt)

=
1

e−rβtk −

η

β



=
1

e−rβt

 1

Y r
0

−
1

Y r
∞

+ 1
Y r∞

=
1

e−rβt

Y r
0

−
e−rβt

Y r
∞

+
1

Y r
∞

=
Y r
∞

e−rβt

Y
r
∞

Y r
0

− e−rβt + 1

=
Y r
∞

1 + αe−βrt
, where α =

Y r
∞
Y r
0

− 1.

By taking the rth root of both sides, we obtain the generalized logistic growth func-

tion:

Yt =
Y∞

(1 + αe−βrt)
1
r

, t ≥ 0 (C.3)
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APPENDIX D

The Chapman-Richards Model

The von Bertalanffy proposed the following ODE to model the growth of a

biological organism [13]:

dYt
dt

= ηY k
t − γYt (D.1)

Letting x = Y 1−k
t , its derivative is given by

dx

dt
= (1− k)Y −kt

dYt
dt

which gives

dYt
dt

=
1

1− k
Y k
t

dx

dt
. (D.2)

By equating both forms of dYt
dt

in (D.1) and (D.2), and dividing by Y k
t , we

solve for the closed form of von Bertalanffy equation:

1

1− k
dx

dt
= η − γY 1−k

t .

Substituting x = Y 1−k
t , we obtain

∫
dx

η − γx
=

∫
(1− k)dt

−γ−1 ln(η − γx) = (1− k)t+ C

ln(η − γx) = −γ(1− k)t− γC

η − γx = αe−γ(1−k)t, where α = e−γC

x =
η

γ
− α

γ
e−γ(1−k)t.
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We then substitute Y 1−k
t for x to get

Yt =

[
η

γ
− α

γ
e−γ(1−k)t

]1/(1−k)
. (D.3)

For t = 0,

Y0 =

[
η

γ
− α

γ

]1/(1−k)
⇒ α

γ
=
η

γ
− Y 1−k

0 (D.4)

Substituting (D.4) into (D.3) we get:

Yt =

[
η

γ
−
(
η

γ
− Y 1−k

0

)
e−γ(1−k)t

]1/(1−k)

Since lim
t→∞

Yt = Y∞ =

(
η

γ

)1/(1−k)

,

Yt = [Y 1−k
∞ − (Y 1−k

∞ − Y 1−k
0 )e−γ(1−k)t]1/(1−k).

We arrive at the von Bertalanffy growth equation:

Yt = Y∞
[
1− βe−γ(1−k)t

]1/(1−k)
, where β = 1−

(
Y0
Y∞

)1−k

. (D.5)

By rewriting the parameters of von Bertalanffy, Chapman and Richards arrive at the

final equation:

Yt = Y∞[1− ae−λt]m. (D.6)
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D.1 Data

D.1.1 No filter

Mean Square Error (MSE)

Table D.1: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.61135103 1.938620929 1.831250179 15.33841508
Gompertz 2.701222206 2.034266155 1.96325777 10.77792298
Weibull 2.120946758 1.503765706 2.59596849 31.20901334
Chapman Richards 1.293579949 1.095170952 4.522710583 39.18503707
Generalized Logistic 1.299437909 1.09723158 4.515052626 39.15932587

Table D.2: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 1.800483147 2.08533946 1.995083273 54.33160091
Gompertz 1.910437072 2.117080353 1.869612992 50.10425501
Weibull 1.194105121 2.018420201 3.063977076 68.50349107
Chapman Richards 0.156830314 2.662841411 5.957570279 82.734415
Generalized Logistic 0.886154736 5.149701411 10.71258562 98.6432342

Table D.3: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 10.69470413 24.91988161 37.49973957 664.5941422
Gompertz 10.25766667 24.11311424 36.03035963 652.1851722
Weibull 10.28566453 24.15709457 36.08489618 652.3824135
Chapman Richards 15.51644259 32.73336354 48.97689301 716.9550356
Generalized Logistic 31.33035885 53.89153253 73.56245124 785.2451826
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Table D.4: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.726135938 8.74613049 8.077473188 428.4271285
Gompertz 4.742461287 10.85126113 7.297735 516.4951064
Weibull 111.8297312 136.6688715 84.47549707 866.0758109
Chapman Richards 33.23430693 55.81688673 45.82072379 1181.878319
Generalized Logistic 51.71422851 79.05724671 66.48795532 1266.361606

Table D.5: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 19.92395364 100.0127934 906.3739881 736.3018321
Gompertz 18.56187854 96.21082464 881.786391 676.3090507
Weibull 25.48713249 115.2253061 999.8426897 946.5744979
Chapman Richards 42.9318586 156.6388477 1190.154764 1248.220562
Generalized Logistic 40.51928163 151.8599956 1175.75574 1232.410253

Table D.6: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 691.8738066 450.8928624 305.0963175
Gompertz 397.0122517 501.646422 524.9902366
Weibull 2986.086057 1348.620977 1031.69712
Chapman Richards 381.4951379 425.3962578 198.942821
Generalized Logistic 748.0353833 423.6319938 157.6057573

Table D.7: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 290.3010775 301.8115534 867.3404451
Gompertz 316.3715881 327.0463339 895.4991004
Weibull 287.4328534 271.0701173 562.2934959
Chapman Richards 58.34841661 32.12436709 105.1386588
Generalized Logistic 59.39813492 33.11909998 106.9589824

112



Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.8: Forecast Difference with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -2.066310904 0.662142318 -2.480770687 6.740436053
Gompertz -2.103747199 0.569037486 -2.910795642 5.194857981
Weibull -1.847781119 1.18507066 -0.801632266 9.647463173
Chapman Richards -1.438128878 1.851865219 0.10186521 10.56186421
Generalized Logistic -1.440795843 1.849181744 0.09918166 10.55918066

Table D.9: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -0.727687614 2.075221929 3.222525593 15.40425759
Gompertz -0.778357031 1.988727232 3.00033098 14.93770252
Weibull -0.417377295 2.557194625 4.13370569 16.64318908
Chapman Richards 0.51198514 3.52198614 5.12198414 17.63198414
Generalized Logistic 1.1075219 4.1175229 5.7175209 18.2275209

Table D.10: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.357168478 6.86100949 6.2245945 62.65587074
Gompertz 3.282331626 6.757179044 6.017809144 62.24497855
Weibull 3.286859424 6.762092192 6.022852113 62.25121457
Chapman Richards 4.066483983 7.706484637 7.3964826 64.1364866
Generalized Logistic 5.72866624 9.36866724 9.05866524 65.79866924
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Table D.11: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.385771094 4.771539117 1.542554833 19.74543194
Gompertz 2.713315502 5.229037776 2.640628169 25.04711562
Weibull 11.3661223 13.7656101 10.89390101 34.15105328
Chapman Richards 6.4856222 9.993897312 11.12329382 46.33328735
Generalized Logistic 8.209253432 11.71551963 12.84401299 48.05399221

Table D.12: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.191962884 14.41322567 46.62142119 -3.500302616
Gompertz 5.015369782 14.15218463 45.91605572 -7.214083317
Weibull 5.859695626 15.41079745 49.12448701 5.245876076
Chapman Richards 7.450869562 17.61110106 53.15909336 11.9986534
Generalized Logistic 7.339379866 17.4825779 53.01503836 11.85341717

Table D.13: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 16.44554473 -15.67002212 -20.19462441
Gompertz 9.755636043 -22.8203652 -28.68270755
Weibull 8.044992968 -24.57737186 -28.60646251
Chapman Richards 10.10905934 -18.38267036 -3.107529918
Generalized Logistic 17.90783962 -11.93527626 0.069921092

Table D.14: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -18.94603776 -17.3070845 -60.31517522
Gompertz -19.70018713 -17.95053452 -60.76854887
Weibull -18.5230645 -15.03829552 -48.35886035
Chapman Richards -7.84916078 -1.55461871 -26.35174228
Generalized Logistic -7.942010079 -1.697978502 -26.56022142
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D.1.2 Hodrick-Prescott Filter

Mean Square Error (MSE)

Table D.15: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.14 2.482836339 2.687134216 6.986980062
Gompertz 3.16812579 2.522960154 2.960802858 6.409337644
Weibull 3.15 2.51E+00 2.985237236 6.603449025
Chapman Richards 1.45 1.15E+00 4.326874982 38.51581804
Generalized Logistic 3.14 2.488612783 2.725313696 6.789343938

Table D.16: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.268255972 2.841676677 2.073973497 29.27206475
Gompertz 3.358160819 2.90571996 2.226282854 24.10895201
Weibull 3.341454951 2.894599571 2.226008255 23.27260654
Chapman Richards 0.145267343 2.799319487 6.285097605 84.00143871
Generalized Logistic 3.286002181 2.854144311 2.101803306 28.23959813

Table D.17: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 8.46968511 21.06393166 31.43812992 623.8057854
Gompertz 8.202362778 20.51400416 30.3008658 608.0868897
Weibull 8.06225778 20.21942417 29.67089433 597.6596448
Chapman Richards 25.30586286 46.02906226 64.51944499 761.2256188
Generalized Logistic 8.24400015 20.59944641 30.4766176 610.6552474
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Table D.18: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.982988865 9.283457336 7.780115081 453.0562864
Gompertz 4.872692766 11.09661809 7.287253988 523.0280666
Weibull 5.117064623 11.7049181 7.161920067 575.2289679
Chapman Richards 3.799803948 8.893864838 7.965383031 532.8350959
Generalized Logistic 4.814877291 10.98188876 7.297876108 518.9677351

Table D.19: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 19.49550529 98.88928381 900.1640677 724.0282654
Gompertz 18.43511692 95.86178546 879.721134 672.2705621
Weibull 20.71078937 102.1319052 918.0005185 753.8243247
Chapman Richards 29.51304598 127.9355016 1091.71416 1134.78763
Generalized Logistic 18.47832367 95.98176214 880.4812841 674.030009

Table D.20: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 381.4076452 516.9280736 602.749032
Gompertz 468.706295 472.1715354 418.3656329
Weibull 360.7075314 514.0727826 523.4484477
Chapman Richards 619.0322864 439.1713901 228.3569864
Generalized Logistic 503.6905178 453.9548338 290.8366148

Table D.21: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 334.5253618 345.9903777 914.6566041
Gompertz 332.4030947 345.7409865 941.0796625
Weibull 316.0754505 314.7064835 749.4005854
Chapman Richards 17.95971655 11.3953223 81.94574406
Generalized Logistic 125.2538798 90.66611107 176.5710753
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.22: Forecast Difference with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -0.008415298 -0.014301092 0.013383698 6.995860441
Gompertz -0.015109631 -0.034434975 -0.127789896 5.921448366
Weibull -0.004551068 -0.011185207 -0.043801143 6.089955726
Chapman Richards -0.001395194 0.007408208 0.167018255 7.940645832
Generalized Logistic 0.004006005 0.024305323 0.285719445 8.524301828

Table D.23: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 0.091456871 0.263338377 1.764616031 22.5438809
Gompertz 0.065465285 0.212582267 1.573874101 21.71695979
Weibull 0.066122699 0.210534936 1.543841054 21.45731051
Chapman Richards 0.083246532 0.247250255 1.704444771 22.29852757
Generalized Logistic 0.077709916 0.236388956 1.663513139 22.12318071

Table D.24: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 0.616459482 1.073309389 4.055010712 35.56383512
Gompertz 0.606327059 1.048157958 3.925942575 34.56101197
Weibull 0.709596252 1.180538704 4.163899581 34.99633086
Chapman Richards 0.606763492 1.050242314 3.939958177 34.68263727
Generalized Logistic 0.607685884 1.052200636 3.94908127 34.75365463
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Table D.25: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 1.743689131 3.024696582 11.5614518 17.87814296
Gompertz 2.025912464 3.410911831 12.45724421 22.10166844
Weibull 1.765377871 3.116396744 12.134019 22.97501495
Chapman Richards 1.754728259 3.039064065 11.63594002 26.73289831
Generalized Logistic 10.07404053 12.43016539 25.12719578 47.57826876

Table D.26: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 6.705109637 9.274409414 13.38242541 -29.64868752
Gompertz 7.395251896 10.19510614 15.44813183 -19.49862191
Weibull 4.234554445 6.225852605 8.681303607 -27.60409232
Chapman Richards 1.754728259 3.039064065 11.63594002 26.73289831
Generalized Logistic 9.150442648 12.03160676 17.46575222 -18.25470527

Table D.27: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -0.188315936 -3.62324445 -22.92033175
Gompertz 1.892872138 -0.821910946 -16.40615778
Weibull -1.777275786 -4.880709853 -20.09416812
Chapman Richards 0.13842415 -2.965114941 -17.39558626
Generalized Logistic 0.739168347 -2.021867697 -13.8706468

Table D.28: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 4.822883311 2.809086553 -9.247084424
Gompertz -12.9152326 -18.52542613 -42.92180762
Weibull -3.114465025 -5.227639673 -14.25369377
Chapman Richards -2.978530658 -4.350017956 -11.59722922
Generalized Logistic -3.210986067 -4.647619835 -11.98960708
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D.1.3 Exponential Smoothing

Mean Square Error (MSE)

Table D.29: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.669944362 1.994311526 1.859967218 14.23897108
Gompertz 2.762401552 2.094862134 2.036655355 9.714757291
Weibull 1.94167264 1.366310537 3.85164855 36.77015075
Chapman Richards 1.312027382 1.101692763 4.499461711 39.10669887
Generalized Logistic 1.329418502 1.107920586 4.477478975 39.03241513

Table D.30: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.365195256 2.316449902 1.748999339 44.45182348
Gompertz 2.010209922 2.156101118 1.825256389 48.56344111
Weibull 1.250578778 2.024860438 2.999704891 68.05853326
Chapman Richards 1.111565046 2.042198386 3.303800886 70.08249952
Generalized Logistic 1.22667632 2.054372709 3.182756702 69.30544503

Table D.31: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 10.73385612 24.97979318 37.5764782 664.9106837
Gompertz 10.29517381 24.17068621 36.1037297 652.5044372
Weibull 10.36463391 24.29087237 36.29633479 653.9414169
Chapman Richards 10.37475404 24.31837733 36.37521187 654.9505867
Generalized Logistic 10.35296661 24.27712385 36.29729237 654.2356193
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Table D.32: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.745947608 8.779146568 8.076462059 428.3595572
Gompertz 4.798205752 10.93308602 7.319144661 514.916165
Weibull 4.726824011 10.92323258 7.153879283 550.1415442
Chapman Richards 3.838510766 8.984984786 7.922412924 442.433408
Generalized Logistic 3.822858374 8.949865613 7.948129622 440.0709937

Table D.33: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 20.03521194 100.2625705 907.3350164 737.6272655
Gompertz 18.67207357 96.46006556 882.7315455 677.5116702
Weibull 25.80770342 115.9158129 1002.485035 950.6577789
Chapman Richards 41.97263962 154.7956104 1184.825706 1242.432728
Generalized Logistic 40.71034937 152.2234075 1176.802899 1233.548805

Table D.34: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 308.4063305 564.8859472 769.7007274
Gompertz 398.0235938 501.2133996 523.7149649
Weibull 348.3991981 521.6327645 546.9904746
Chapman Richards 308.7844532 564.5352978 768.229178
Generalized Logistic 306.4900621 566.0357431 772.4602557

Table D.35: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 280.6887896 279.3134455 715.4719307
Gompertz 324.4042263 335.9050986 912.850504
Weibull 320.3188007 316.8772496 730.27608
Chapman Richards 667.8927667 409.4925154 153.720457
Generalized Logistic 74.66805199 45.49988629 121.2489878
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.36: Forecast Difference with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -2.262918868 0.262658636 -3.874716821 2.694651597
Gompertz -2.274469883 0.226360757 -4.149266786 0.450379975
Weibull -2.269373774 0.233368263 -4.182065623 -0.518034138
Chapman Richards -1.508252049 1.781515189 0.031514465 10.49151346
Generalized Logistic -2.264591926 0.257344768 -3.914986438 2.404411214

Table D.37: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -1.267141611 1.296587923 1.601835493 12.19785897
Gompertz -1.298707999 1.234099357 1.359918685 11.09998192
Weibull -1.29375167 1.239142102 1.346978759 10.85696325
Chapman Richards 0.593925679 3.603923635 5.203921536 17.71392154
Generalized Logistic -1.273431493 1.284056306 1.553519077 11.99542495

Table D.38: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.970745734 6.377748151 5.433157246 61.34159653
Gompertz 2.917629416 6.295763722 5.226217406 60.74600871
Weibull 2.889211568 6.25069238 5.103922385 60.32833679
Chapman Richards 5.160097401 8.799282862 8.489150847 65.22915472
Generalized Logistic 2.925944574 6.308553712 5.258774108 60.84562596
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Table D.39: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.473843683 4.893205285 1.838675494 21.42038939
Gompertz 2.750559053 5.276063558 2.731944806 25.3788115
Weibull 2.826655137 5.415999675 3.224445145 28.25414299
Chapman Richards 2.410966313 4.804488294 1.677645871 30.21645533
Generalized Logistic 2.733772539 5.253137994 2.680286686 25.16638851

Table D.40: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.138138884 14.33941019 46.45675916 -4.096021363
Gompertz 4.998690285 14.12833484 45.85929082 -7.445213018
Weibull 5.290685464 14.55338452 46.9179543 -3.004556288
Chapman Richards 6.327918276 16.26147526 51.48929617 10.26514451
Generalized Logistic 5.004385544 14.1366081 45.88111895 -7.327423602

Table D.41: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 9.256473656 -23.76144198 -32.31856511
Gompertz 11.64395473 -20.48367338 -24.29960552
Weibull 8.778315117 -23.6875907 -26.99182023
Chapman Richards 15.11971468 -16.08340281 -9.501655126
Generalized Logistic 12.56241707 -18.86380352 -13.63784019

Table D.42: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -20.22548227 -18.46927024 -60.87177879
Gompertz -20.18462503 -18.55216347 -61.92458382
Weibull -19.55873347 -17.04703306 -55.28220878
Chapman Richards -1.451166873 4.865345005 -19.9106586
Generalized Logistic -11.97192188 -6.13246367 -31.49059789
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D.1.4 Moving average

Mean Square Error (MSE)

Table D.43: MSE with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.783553787 2.479959358 6.512169118 86.52237742
Gompertz 2.538221027 2.18670505 4.823457284 35.82214713
Weibull 9.278385675 12.00970097 17.55032478 15.8358527
Chapman Richards 2.781715323 2.477492061 6.491756386 85.34189969
Generalized Logistic 2.777375901 2.471967544 6.441968335 79.92021265

Table D.44: MSE with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 4.412226784 3.711932122 3.627867348 14.43022009
Gompertz 4.569694085 3.856002982 4.177404381 9.543539458
Weibull 3.337214839 2.866321033 1.862662718 45.71176139
Chapman Richards 2.043808258 2.26078458 2.596196972 64.80701341
Generalized Logistic 2.121283323 2.287190281 2.548615182 64.37108156

Table D.45: MSE with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 12.16433469 26.98542795 39.71706267 670.0284523
Gompertz 11.63760329 26.02763744 37.96275961 655.1270863
Weibull 13.73913945 29.72743468 44.38069737 698.7482607
Chapman Richards 13.75559166 29.77766389 44.49996193 699.1445167
Generalized Logistic 13.75537277 29.77725868 44.49923213 699.1406427
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Table D.46: MSE with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.142166985 11.01945988 8.061311933 433.0551156
Gompertz 6.265782064 13.16580912 7.729422718 514.7802866
Weibull 5.665775838 12.20221223 7.552815115 528.3374692
Chapman Richards 5.166742234 11.07522786 8.026588796 437.5257159
Generalized Logistic 46.75435489 72.82795307 60.83293425 1244.298544

Table D.47: MSE with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 26.2453239 112.7899884 944.7882963 772.9001994
Gompertz 24.78999089 108.9637432 920.4360407 711.3290176
Weibull 31.56192177 126.5662578 1027.877097 964.5900265
Chapman Richards 47.76848652 164.9888151 1211.615384 1270.993694
Generalized Logistic 169.9131162 351.0156976 1639.711449 1725.989964

Table D.48: MSE with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 691.8738066 450.8928624 305.0963175
Gompertz 807.7989969 446.1882789 216.6611512
Weibull 653.4003697 447.9109943 285.4299857
Chapman Richards 769.1785331 439.856513 185.4372621
Generalized Logistic 740.814953 433.2490506 174.6319294

Table D.49: MSE with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 290.3010775 301.8115534 867.3404451
Gompertz 276.7096807 287.5778911 854.2818288
Weibull 285.1606003 287.815095 750.71414
Chapman Richards 70.31857887 42.19105593 118.0810847
Generalized Logistic 22.82271923 23.42658721 93.45590279
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Forecast Difference

Note: Negative correspond to overestimation in forecasts, while positive num-

bers correspond to underestimation of forecasts. Units are in U.S. dollars.

Table D.50: Forecast Difference with 1000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -2.219922966 -0.040314981 -6.460394281 -19.48797949
Gompertz -2.127300056 0.145172059 -5.616302599 -10.86211149
Weibull -3.90147552 -2.790527773 -6.972131628 3.473705776
Chapman Richards -2.219209188 -0.038662229 -6.450667057 -19.29816221
Generalized Logistic -2.21758517 -0.035083929 -6.425831193 -18.24393338

Table D.51: Forecast Difference with 2000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic -1.611344652 0.761044237 0.325405529 8.97215896
Gompertz -1.6578925 0.670213133 -0.047254275 6.722920973
Weibull -1.266574622 1.410430382 2.374244468 14.65125837
Chapman Richards -0.756759184 2.251666205 3.851551279 16.36155127
Generalized Logistic -0.787265749 2.218110837 3.817564271 16.32756407

Table D.52: Forecast Difference with 3000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 3.57237535 7.064050431 6.395321345 62.78925595
Gompertz 3.487488344 6.944972134 6.15322809 62.29488477
Weibull 3.813352741 7.384042533 6.954058839 63.65207079
Chapman Richards 3.815514235 7.390558355 6.967696968 63.66090836
Generalized Logistic 3.815480143 7.390509924 6.967612977 63.66079905
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Table D.53: Forecast Difference with 4000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 2.792258756 5.164854658 1.871579972 19.66136388
Gompertz 3.102266284 5.595267605 2.897681306 24.65748832
Weibull 2.930810017 5.413530447 2.768938023 25.82768393
Chapman Richards 2.799558686 5.177488234 1.914514119 20.0053434
Generalized Logistic 7.847033254 11.34706546 12.47274528 47.68267735

Table D.54: Forecast Difference with 5000 Prior Known Days

Forecast Days: 100 300 1000 3000
Logistic 5.873120348 15.10541143 47.34919267 -2.693802561
Gompertz 5.701733247 14.84984782 46.64949736 -6.41807983
Weibull 6.446343308 15.97029499 49.56036761 5.264815663
Chapman Richards 7.898629238 18.05334892 53.59800879 12.43745346
Generalized Logistic 14.08575591 24.26514699 59.82483848 18.66482709

Table D.55: Forecast Difference with 6000 Prior Known Days

Forecast Days: 100 300 1000
Logistic 16.44548575 -15.67008809 -20.19472133
Gompertz 18.79869837 -12.52372989 -12.94842988
Weibull 15.70444051 -16.16262837 -17.36206608
Chapman Richards 18.08976838 -12.91439742 -5.731746716
Generalized Logistic 17.61827939 -13.00579795 -3.356993845

Table D.56: Forecast Difference with 7000 Prior Known Days

Forecast Days: 100 300 1000
Logistic -18.94607399 -17.30712349 -60.31522455
Gompertz -18.56316153 -16.93658111 -60.36809333
Weibull -18.73304387 -16.52367769 -56.1086117
Chapman Richards -8.768779743 -2.632819952 -27.59889037
Generalized Logistic 0.760684731 7.132579374 -17.59355243

126



APPENDIX E

MATLAB Code

E.1 Filters

E.1.1 Moving Average

If the time point has less data points than the moving average length, take

the average of the prior data points.

data: Raw data. MALength: Length of moving average.

function [ result ] = meanAvg( data, MALength )

t = length(data);

for i = 1:t

if i == 1

result(1)= data(1);

end

if i <= MALength

A = data(1:i);

result(i) = 1/i * sum(A);

end

if i > MALength

k = i-MALength;
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A = data(k:i);

result(i) = 1/MALength * sum(A);

end

end

*Note: MATLAB has its own built in function, ”movmean.”

E.2 Exponential Filter

This MATLAB code outputs columns of various weight parameters. The num-

ber of columns and the size of the weight parameter can easily be changed as per the

user’s specifications.

function [ result ] = alpha( data, PriorDataLength)

for i = 1:PriorDataLength

for k = 1:9

if i == 1

result(1, k)= data(1);

end

if i ~= 1

result(i, k) = result(i-1, k) + k * 0.1* (data(i-1) - result(i-1, k)) ;

end

end

end
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*Note: MATLAB has its own built in function, ”tsmovavg” in the Financial

Toolbox.

E.2.1 The Hodrick-Prescott Filter

y : Unfiltered data w: lambda constant for Hodrick-Prescott Filter

function [s,desvabs] = hpfilter(y,w,plotter)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Author: Wilmer Henao wi-henao@uniandes.edu.co

% Department of Mathematics

% Universidad de los Andes

% Colombia

%

% Hodrick-Prescott filter extracts the trend of a time series, the

% output is not a formula but a new filtered time series. This

% trend can be adjusted with parameter w; values for w lie usually

% in the interval [100,20000], and it is up to you to use the one

% you like, As w approaches infty, H-P will approach a line. If

% the series doesn’t have a trend p.e.White Noise, doing H-P is

% meaningles

% [s] = hpfilter(y,w)

% w = Smoothing parameter (Economists advice: "Use w = 1600 for

% quarterly data")

% y = Original series
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% s = Filtered series

% This program can work with several series at a time, as long

% as the number of series you are working with doesn’t exceed

% the number of elements in the series + it uses sparse matrices

$ which improves speed and performance in the longest series

%

% [s] = hpfilter(y,w,’makeplot’)

% ’makeplot’ in the input, plots the graphics of the original

% series against the filtered series, if more than one series

% is being considered the program will plot all of them in

% different axes

%

% [s,desvabs] = hpfilter(y,w)

% Gives you a mesure of the standardized differences in absolute

% values between the original and the filtered series. A big

% desvabs means that the series implies a large relative

% volatility.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic

if nargin < 2

error(’Requires at least two arguments.’);

end
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[m,n] = size (y);

if m < n

y = y’; m = n;

end

d = repmat([w -4*w ((6*w+1)/2)], m, 1);

d(1,2) = -2*w; d(m-1,2) = -2*w;

d(1,3) = (1+w)/2; d(m,3) = (1+w)/2;

d(2,3) = (5*w+1)/2; d(m-1,3) = (5*w+1)/2;

B = spdiags(d, -2:0, m, m); %I use a sparse version of B,

because when m is large, B will have many zeros

B = B+B’;

s = B\y;

if nargin == 3

t = size(y,2);

for i = 1:t

figure(i)

plot(s(:,i),’r’); grid on; hold on; plot(y(:,i));

title([’Series #’,num2str(i)]);

end

end

if nargout == 2

desvabs = mean(abs(y-s)./s);
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end

toc

*Note: MATLAB has its own built in function, ”hpfilter” in the Econometrics Tool-

box.

E.3 Fitting

E.3.1 Polynomial Fit

parameter = polyfit(x value,y value raw data,polynomial order)

y values of fit = polyval( parameter, x value)

E.3.2 The Levenburg-Marquart Algorithm

[beta,R,J] = nlinfit(days,raw data, function ,test parameters);

E.4 MSE and Difference of Forecast

This function calculates the mean square error (MSE) and difference between

the forecasted final time point and actual data point.

a : parameters from LM algorithm func: function PriorDataLength: Number

of known time points ydata: Entire raw data set

function [ mse, diff ] = results( a, func, PriorDataLength , ydata)

for i = 1:4

%% change i = 1:3 if forecast data exceeds dataset

if i == 1 %%MSE and difference calculation for 100 future points
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A1 = ydata(1: (PriorDataLength + 100));

B2 = transpose (func(a,(1: (PriorDataLength + 100))));

A = A1( (PriorDataLength + 1):(PriorDataLength + 100) );

B = B2( (PriorDataLength + 1):(PriorDataLength + 100) );

C = (minus(A,B)).^2;

mse(i) = sum( C )/100;

diff(i) = ydata(PriorDataLength + 100)

- func(a,(PriorDataLength + 100)) ;

end

if i == 2 %%MSE and difference calculation for 300 future points

A1 = ydata(1: (PriorDataLength + 300));

B2 = transpose (func(a,(1: (PriorDataLength + 300))));

A = A1( (PriorDataLength + 1):(PriorDataLength + 300) );

B = B2( (PriorDataLength + 1):(PriorDataLength + 300) );

C = (minus(A,B)).^2;

mse(i) = sum( C )/300;

diff(i) = ydata(PriorDataLength + 300)

- func(a,(PriorDataLength + 300)) ;

end

if i == 3 %%MSE and difference calculation for 1000 future points

A1 = ydata(1: (PriorDataLength + 1000));
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B2 = transpose (func(a,(1: (PriorDataLength + 1000))));

A = A1( (PriorDataLength + 1):(PriorDataLength + 1000) );

B = B2( (PriorDataLength + 1):(PriorDataLength + 1000) );

C = (minus(A,B)).^2;

mse(i) = sum( C )/1000;

diff(i) = ydata(PriorDataLength + 1000)

- func(a,(PriorDataLength + 1000)) ;

end

if i == 4 %%MSE and difference calculation for 3000 future points

A1 = ydata(1: (PriorDataLength + 3000));

B2 = transpose (func(a,(1: (PriorDataLength + 3000))));

A = A1( (PriorDataLength + 1):(PriorDataLength + 3000) );

B = B2( (PriorDataLength + 1):(PriorDataLength + 3000) );

C = (minus(A,B)).^2;

mse(i) = sum( C )/3000;

diff(i) = ydata(PriorDataLength + 3000)

- func(a,(PriorDataLength + 3000)) ;

end

end
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mse = transpose(mse);

diff = transpose(diff);

end
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