(Akis*, Beer, Krebs)

DO 5 OUT OF 7 (Indicate clearly which 5 problems you submit for evaluation).

1. (a) Let X be a set. Prove that the intersection of any nonempty collection of topologies on X is a topology.

(b) Give an example to show that the union of two topologies need not be a topology.

- 2. Let X be a normal Hausdorff space. Let R denote the set of real numbers, endowed with the usual topology. We say that a subset U of X is a cozero set if there exists a continuous function $f: X \rightarrow R$ such that $U = \{x \in X : f(x) \neq 0\}$. Prove that the collection of all cozero sets forms a basis for the given topology of X.
- 3. (a) Let $\{K_1, K_2, \dots, K_n\}$ be a family of nonempty compact subsets of a topological space X. Prove $\bigcup_{j=1}^n K_j$ is compact.

(b) Let F be a nonempty closed subset of a compact set $K \subseteq X$. Prove that F is compact.

4. Consider the Euclidean plane R^2 equipped with the usual topology. Prove, giving complete justification of all claims, that

5. Let ⟨x_n⟩ be a Cauchy sequence in a metric space (X,d).
(a) Prove that E = {x_n : n ∈ N} is a bounded set, i.e., that E is contained in a ball.

(b) Suppose $\langle w_n \rangle$ is another sequence in the space where $\lim_{n \to \infty} d(x_n, w_n) = 0$. Prove that $\langle w_n \rangle$ is Cauchy as well.

6. The graph of a function $f: X \rightarrow Y$ is the set

$$\Gamma(f) = \{(x, f(x)) : x \in X\} \subseteq X \times Y.$$

Suppose X, Y are topological spaces and $f: X \to Y$ is a continuous function. Prove that $\Gamma(f)$ is path connected, if X is path connected.

Recall that a topological space S is path connected, if for every $x, y \in S$ there exists a continuous function $p:[0,1] \rightarrow S$ of the unit interval into S, such that, p(0) = x, p(1) = y.

7. (a) Suppose X, Y are topological spaces. Define what it means to say that a function $f: X \rightarrow Y$ is continuous.

(b) Use your definition above to show that, for every sequence $\langle x_n \rangle \subseteq X$ converging to $x \in X$, the sequence $\langle f(x_n) \rangle$ converges to f(x).

(c) By using your answers above, determine if the following real valued function of the real numbers (equipped with the usual topology), is continuous:

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ \sin(1/x) & \text{if } x \neq 0. \end{cases}$$