(Akis*, Beer, Krebs)
DO 5 OUT OF 7 (Indicate clearly which 5 problems you submit for evaluation).

1. (a) Let X be a set. Prove that the intersection of any nonempty collection of topologies on X is a topology.
(b) Give an example to show that the union of two topologies need not be a topology.
2. Let X be a normal Hausdorff space. Let R denote the set of real numbers, endowed with the usual topology. We say that a subset U of X is a cozero set if there exists a continuous function $f: X \rightarrow R$ such that $U=\{x \in X: f(x) \neq 0\}$. Prove that the collection of all cozero sets forms a basis for the given topology of X.
3. (a) Let $\left\{K_{1}, K_{2}, \cdots, K_{n}\right\}$ be a family of nonempty compact subsets of a topological space X. Prove $\bigcup_{j=1}^{n} K_{j}$ is compact.
(b) Let F be a nonempty closed subset of a compact set $K \subseteq X$. Prove that F is compact.
4. Consider the Euclidean plane R^{2} equipped with the usual topology. Prove, giving complete justification of all claims, that
(a) $\left\{(x, y): x^{2}+y^{2}>1\right\}$ is a connected subset of R^{2};
(b) $\left\{(x, y): x^{2}+y^{2} \neq 1\right\}$ fails to be a connected subset of R^{2}.
5. Let $\left\langle x_{n}\right\rangle$ be a Cauchy sequence in a metric space (X, d).
(a) Prove that $E=\left\{x_{n}: n \in \mathbf{N}\right\}$ is a bounded set, i.e., that E is contained in a ball.
(b) Suppose $\left\langle w_{n}\right\rangle$ is another sequence in the space where $\lim _{n \rightarrow \infty} d\left(x_{n}, w_{n}\right)=0$. Prove that $\left\langle w_{n}\right\rangle$ is Cauchy as well.
6. The graph of a function $f: X \rightarrow Y$ is the set

$$
\Gamma(f)=\{(x, f(x)): x \in X\} \subseteq X \times Y
$$

Suppose X, Y are topological spaces and $f: X \rightarrow Y$ is a continuous function. Prove that $\Gamma(f)$ is path connected, if X is path connected.

Recall that a topological space S is path connected, if for every $x, y \in S$ there exists a continuous function $p:[0,1] \rightarrow S$ of the unit interval into S, such that, $p(0)=x, p(1)=y$.
7. (a) Suppose X, Y are topological spaces. Define what it means to say that a function $f: X \rightarrow Y$ is continuous.
(b) Use your definition above to show that, for every sequence $\left\langle x_{n}\right\rangle \subseteq X$ converging to $x \in X$, the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ converges to $f(x)$.
(c) By using your answers above, determine if the following real valued function of the real numbers (equipped with the usual topology), is continuous:

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ \sin (1 / x) & \text { if } x \neq 0\end{cases}
$$

