Topology Comprehensive Examination - Spring 2021

Akis, Mijares*, Krebs

Do 5 out of 7:

- 1. Let X be a Hausdorff space, and let $p \in X$.
 - a. Prove that the boundary of $\{p\}$ is either the empty set or $\{p\}$.
 - b. Give an example where the boundary of $\{p\}$ is the empty set.
 - c. Give an example where the boundary of $\{p\}$ is $\{p\}$.

2. Consider the set of all real numbers endowed with the lower-limit topology, whose neighborhood basis consists of all half-open intervals of the form $[a,b) = \{x: a \le x < b\}$. What are the connected components of this topological space? Prove your answer is correct.

3. We say a topological space X is Lindelof if every open cover of X has a countable subcover. Prove that every secondcountable space is Lindelof.

4. Let \mathbb{R} denote the set of real numbers endowed with the standard (Euclidean) topology. Either exhibit a homeomorphism between the following subsets of \mathbb{R} , or prove that one does not exist.

a. $[0,2] = \{x: 0 \le x \le 2\}$ and $[1,3] = \{x: 1 \le x \le 3\}$

b. $[0,2] = \{x: 0 \le x \le 2\}$ and $(-\infty, 0] = \{x: x \le 0\}$

c. \mathbb{R} and \mathbb{R}^2 (the 2-dimensional Euclidean space)

- 5. Let (X,d) be a metric space.
 - a. Let $p \in X$, and let $\langle x_n \rangle \subseteq X$ be a sequence converging to $x \in X$. Prove that $\lim_{n \to \infty} d(x_n, p) = d(x, p)$.
 - b. Suppose $A \subseteq X$ is compact, and $x \in X \setminus A$. Prove that there exists $a_0 \in A$, such that, $d(x, a_0) = \inf_{x \in A} d(x, a)$.

6. A topological space is said to have the fixed-point property if for every continuous function $f: X \to X$ there exists $p \in X$, such that, f(p) = p. Prove that if X has the fixed-point property, then X must be connected.

7. Suppose X is a nonempty set, and let $p \in X$. Consider the family of sets $\tau = \{G \subseteq X : p \in G\} \cup \{\emptyset\}$. Prove the following:

- a. The family τ is a topology for X.
- b. The closure of $\{p\}$ is X.
- c. (X,τ) is separable.
- d. If X is uncountable, then $X \setminus \{p\}$ (with the subspace topology) is not separable.