Tupic 4-The matrix of a linear transformation

HW 4 Topic The Matrix of a linear Transformation (1) Def: Let V be a finite-dimensional Vector space over a field F. Suppose {V1, V2, ..., Vn } is a basis for V. We write $\beta = [v_1, v_2, \dots, v_n]$ to mean that Bis an ordered basis for V, that is, the order of the vectors in B is given and fixed.

Def: Let V be a vector space (2)
over a field F with an
ordered basis
$$P = [V_1, V_2, ..., V_n]$$
.
Let $x \in V$.
Then we can write x uniquely
in the form
 $x = C_1 V_1 + C_2 V_2 + ... + C_n V_n$
We write
 $[x]_p = \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}$
and call $[x]_p$ the coordinates
of x with respect to P
(or the coordinate vector of x
with respect to P)

This becomes

$$\begin{pmatrix} S \\ Y \end{pmatrix} = \begin{pmatrix} C_{1} \\ 2C_{1} \end{pmatrix} + \begin{pmatrix} -C_{2} \\ C_{2} \end{pmatrix}$$
Which becomes

$$\begin{pmatrix} S \\ Y \end{pmatrix} = \begin{pmatrix} C_{1} - C_{2} \\ 2C_{1} + C_{2} \end{pmatrix}$$
This gives

$$\begin{aligned} 5 = c_{1} - c_{2} \\ Y = 2c_{1} + c_{2} \end{cases}$$

$$\begin{pmatrix} 1 & -1 & | & 5 \\ 2 & 1 & | & Y \end{pmatrix} \xrightarrow{-2R_{1} + R_{2} \rightarrow R_{2}} \begin{pmatrix} 1 & -1 & | & 5 \\ 0 & 3 & | & -6 \end{pmatrix}$$

$$\frac{1}{3}R_{2} \rightarrow R_{2} \qquad \begin{pmatrix} 1 & -1 & | & 5 \\ 0 & 1 & | & -2 \end{pmatrix}$$
This becomes

$$\begin{aligned} C_{1} - C_{2} = 5 \\ C_{2} = -2 \end{aligned}$$

[hus, $C_2 = -2$. And, $c_1 = 5 + c_2 = 5 - 2 = 3$. So, $x = \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 2 \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ Thus, $[x]_{\beta} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ Thus, What if we kept $x = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ but changed to the standard basis $\beta' = \left[\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \right].$ Then, $x = \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 5 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 4 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ So, $[x]_{B'} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \in$

 $V = P_2(\mathbb{R}) = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$ F = |R|Let $B = [1, [+X, [+X+X^2]]$ $(Y_{ou} can)$ H_{ou} $(Y_{ou} can)$ are lin. ind. Since Consider $\gamma = 2 - \chi + 3 \chi^2$ $\dim\left(\mathcal{P}_{2}(\mathbb{R})\right)=3$ they must be a basis Let's find [V]B. We need to solve $2 - x + 3x^{2} = c_{1} \cdot [+c_{2}(1+x) + c_{3}(1+x+x^{2})]$ V's courdinates with respect to B

This becomes

$$2-x+3x^{2} = (c_{1}+c_{2}+c_{3}) \cdot | + (c_{2}+c_{3}) \cdot x$$

$$+ c_{3} x^{2}$$
So we get

$$c_{1}+c_{2}+c_{3} = 2$$

$$c_{2}+c_{3} = -|$$

$$c_{3} = 3$$
We get

$$c_{3} = 3$$
We get

$$c_{3} = -|-c_{3} = -|-3 = -4|$$

$$c_{1} = 2-c_{2}-c_{3} = 2-(-4)-3 = 3$$
Thus,

$$2-x+3x^{2} = 3 \cdot |-4| \cdot (1+x)+3 \cdot (1+x+x^{2})$$
And

$$(2-x+3x^{2})_{\beta} = (-\frac{3}{3})$$

Vef: Let T:V→W be a 8) linear transformation between two finite-dimensional vectos spaces over a field F. Let $B = [V_{1}, V_{2}, \dots, V_{n}]$ be an ordered basis for V and let & be an ordered basis for W. The matrix $\begin{bmatrix} T \end{bmatrix}_{\beta}^{\gamma} = \left(\begin{bmatrix} T(v_{1}) \end{bmatrix}_{\beta} \begin{bmatrix} T(v_{2}) \end{bmatrix}_{\beta} \cdots \begin{bmatrix} T(v_{n}) \end{bmatrix}_{\beta} \right)$ Column (olumn Column Vector vector Vector matrix of T with respect to B and 8. If V = W and B = V, then we just write $[T]_{\beta}$ instead of $[T]_{\beta}$

Ex: Let
$$V = W = \mathbb{R}^2$$
 and $F = \mathbb{R}$. (9)
Let $L: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
be defined by $L(\frac{x}{y}) = (\frac{x+y}{2x-y})$
You can check that L is a
linear transformation.
Let $B = [\binom{1}{0}, \binom{0}{1}] \leftarrow \frac{\text{standard}}{\text{basis for } \mathbb{R}^2}$
Let's compute
 $\begin{bmatrix} L \end{bmatrix}_{B} = \begin{bmatrix} L \end{bmatrix}_{B}^{B}$
 $V = \mathbb{R}^2$ $W = \mathbb{R}^2$
 $U = \mathbb{R}^2$ $W = \mathbb{R}^2$
 $U = \mathbb{R}^2$ $W = \mathbb{R}^2$
 $L\binom{1}{0} = \binom{1+0}{2-0} = \binom{1}{2} = 1 \cdot \binom{1}{0} + 2 \cdot \binom{0}{1}$
 $L\binom{0}{1} = \binom{0+1}{0-1} = \binom{-1}{1} = 1 \cdot \binom{0}{0} - 1 \cdot \binom{0}{1}$
 $\frac{1}{1} = \frac{1}{0} + \frac{1}{0} = \binom{1}{1} = 1 \cdot \binom{1}{0} - 1 \cdot \binom{0}{1}$
 $\frac{1}{1} = \frac{1}{0} + \frac{1}{0} = \binom{1}{0} = \frac{1}{0} + \frac{1}{0} + \frac{1}{0} = \frac{1}{0} + \frac{1}{0} + \frac{1}{0} = \frac{1}{0} + \frac{1}{0} + \frac{1}{0} + \frac{1}{0} = \frac{1}{0} + \frac{$

Recall
$$L(\frac{x}{y}) = \binom{x+y}{2x-y}$$

 $L\binom{1}{1} = \binom{1+1}{2-1} = \binom{2}{1} = a \cdot \binom{1}{1} + c \cdot \binom{-1}{1}$
 $L\binom{-1}{1} = \binom{-1+1}{-2-1} = \binom{0}{-3} = b \cdot \binom{1}{1} + d\binom{-1}{1}$
plug basis for write output in terms
 $V = IR^2$ into L of basis for $W = IR^2$

This becomes

$$\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} a-c\\a+c \end{pmatrix} \text{ and } \begin{pmatrix} 0\\-3 \end{pmatrix} = \begin{pmatrix} b-d\\b+d \end{pmatrix}$$

This becomes

$$2 = a - c$$
 and $0 = b - d$
 $1 = a + c$ and $-3 = b + d$

If you solve there you will get $a=\frac{2}{2}, c=-\frac{1}{2}, b=-\frac{3}{2}, d=-\frac{3}{2}$

So,
$$\beta' = \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right]$$

$$L \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$L \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} = -\frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$L \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} = -\frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
Thus,

$$\begin{bmatrix} L \\ _{\beta'} \end{bmatrix} = \begin{bmatrix} L \end{bmatrix}_{\beta'}^{\beta'}$$

$$= \left(\begin{bmatrix} L \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)_{\beta'} \quad \begin{bmatrix} L \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right)_{\beta'}$$

$$= \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 3/2 \\ -1/2 \\ -3/2 \end{pmatrix}$$

Let's calculate []^P

 $L\binom{1}{1} = \binom{2}{1} = 2\binom{1}{0} + \binom{0}{1} - \frac{1}{1}$ $0(\binom{1}{6}) - 3(\binom{0}{1}) L\begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} =$ write the answers in terms of 13 plug p'into L

 $\begin{bmatrix} \Box \end{bmatrix}_{\beta'}^{\beta} = \left(\begin{bmatrix} L(i) \end{bmatrix}_{\beta} \\ \begin{bmatrix} L(i) \end{bmatrix}_{\beta'} \\ \\ \begin{bmatrix} L(i) \end{bmatrix}_{\beta'} \\ \\ \begin{bmatrix} L(i$ $= \begin{pmatrix} z & 0 \\ 1 & -3 \end{pmatrix}$

What do these matrices do?
Let's see with an example.
Pick
$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \leftarrow \begin{array}{c} \text{these are the coordinates} \\ \text{of } v \text{ using the standard basis} \end{array}$$

$$\begin{bmatrix} 2 \\ (\frac{1}{2}) \bullet \\ (\frac{1}{$$

Let's now see what
$$[L]_{p'} = [L]_{p'}^{p'}$$
 (b)
does to V.
We will show that
 $[L]_{p'} [V]_{p'} = [L(v)]_{p'}$
So, $[L]_{p'} = [L]_{p'}^{p'}$ wants p' coordinates
as its input and it computes L usins
the input and outputs the answer
in p' coordinates.
What are $v's p'$ coordinates?
Need to solve:
 $V = \binom{1}{2} = \alpha_1 \binom{1}{1} + \alpha_2 \binom{-1}{1}$
 $p' = [(1), (1)]$

This becomes $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \alpha_1 - \alpha_2 \\ \alpha_1 + \alpha_2 \end{pmatrix}$

This becomes adding giver $3 = 2\alpha_1$ $\alpha_1 = 3/2$ $\begin{vmatrix} = \alpha_1 - \alpha_2 \\ 2 = \alpha_1 + \alpha_2 \end{vmatrix} \triangleq$ So, $\alpha_2 = 2 - \alpha_1$ = $2 - \frac{3}{2} = \frac{1}{2}$ The solution is $\alpha_{1} = \frac{3}{2}$ $\alpha_2 = 1/2$ $S_{0}, V = \frac{3}{2} \binom{1}{1} + \frac{1}{2} \binom{-1}{1}$ Thus, $\begin{bmatrix} v \end{bmatrix}_{\beta'} = \begin{pmatrix} 3/2 \\ Y_2 \end{pmatrix}$ Then, $\begin{bmatrix} 3/2 & -3/2 \\ -1/2 & -3/2 \end{bmatrix} \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \begin{bmatrix} 1/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} 3/2$ Jhen, $= \begin{pmatrix} \binom{3}{2} \binom{3}{2} - \binom{3}{2} - \binom{3}{2} \binom{7}{2} \\ \binom{-7}{2} \binom{3}{2} - \binom{3}{2} \binom{7}{2} \\ -\frac{3}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ -\frac{3}{2} \\ -\frac{7}{2} \end{pmatrix}$ This should be $[L(U)]_{B'}$.

Whose
$$\beta'$$
 coordinates are these? (7)
 $3/2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} + \frac{3}{2} \\ \frac{3}{2} - \frac{3}{2} \end{pmatrix}$
 $= \begin{pmatrix} \frac{6}{4} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix}$
 $= L(N)$
So, $[L(N)]_{p_1} = \begin{pmatrix} \frac{3}{2} \\ -\frac{3}{2} \end{pmatrix}$.
Thus, $[L]_{p'}[V]_{p'} = [L(V)]_{p'}$
Now let's see What $[L]_{p'}^{p}$ does.
I claim that
 $[L]_{p_1}^{p}[V]_{p'} = [L(V)]_{p}$
So, $[L]_{p'}^{p}$ wants β' coordinater as
in put, and computer L , but gives
the answer in β coordinates

We have that

$$\begin{bmatrix} L \end{bmatrix}_{\beta'}^{\beta} \begin{bmatrix} V \end{bmatrix}_{\beta'} = \begin{pmatrix} 2 & 0 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$$

$$= \begin{pmatrix} (2)(3/2) + (0)(1/2) \\ (1)(3/2) + (-3)(1/2) \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{bmatrix} L(V) \end{bmatrix}_{\beta}$$

Theorem: Let Vand W be finite-dimensional vector spaces over a field F. Let $\beta = [v_1, v_2, \dots, v_n]$ be an ordered basis for V and B=[W,,Wz,...,Wm] be an ordered basis for W. Let L:V-JW be a linear transformation. $\begin{bmatrix} L \end{bmatrix}_{\beta}^{\beta'} \begin{bmatrix} x \end{bmatrix}_{\beta}^{\beta} = \begin{bmatrix} L(x) \end{bmatrix}_{\beta'}^{\beta'}$ Ther, all $x \in V$. for B J L

$$\frac{\text{proof:}}{\text{Since } \beta = \begin{bmatrix} v_{1,1}v_{2,1} \dots v_n \end{bmatrix} \text{ is a basis}}{\text{Since } \beta = \begin{bmatrix} v_{1,1}v_{2,1} \dots v_n \end{bmatrix} \text{ is a basis}}$$

$$\frac{\text{for } v_{1,1} \dots v_n \text{ write } v_{1,1} \dots v_n \text{ write } v_{1,2} \dots v_n \in F.$$

$$\frac{\text{for some } v_{1,1}v_{2,2} \dots v_n \in F.}{\text{Then, } [x]_{\beta} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}$$

$$\frac{\text{Since } \beta = \begin{bmatrix} w_{1,1}w_{2,1} \dots w_n \end{bmatrix} \text{ is a basis } for \quad W \text{ we may write } v_n \text{ write } v$$

Thus, $\begin{bmatrix} L \end{bmatrix}_{\beta}^{\beta'} = \left(\begin{bmatrix} L(v_1) \end{bmatrix}_{\beta'} \right) \begin{bmatrix} L(v_2) \end{bmatrix}_{\beta'} \cdots \left[\begin{bmatrix} L(v_h) \end{bmatrix}_{\beta'} \right)$ $= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$ let's get [L(x)]p' Show that Now and $\begin{bmatrix} L \end{bmatrix}_{p}^{p'} \begin{bmatrix} x \end{bmatrix}_{p} = \begin{bmatrix} L(x) \end{bmatrix}_{p'}^{p'}$

To get [L(x)]p' we need to ZZ express L(x) in terms of B. We have that $L(\mathbf{x}) = L(\mathbf{a}, \mathbf{v}, + \mathbf{a}_2 \, \mathbf{v}_2 + \dots + \mathbf{a}_n \, \mathbf{v}_n)$ L is $A, L(v_1) + d_2 L(v_2) + \dots + d_n L(v_n)$ linear $L(v_1)$ $= \alpha_1 \left(\alpha_{11} W_1 + \alpha_{21} W_2 + \dots + \alpha_{m1} W_m \right)$ $t d_{2} \left(a_{12} W_{1} + a_{22} W_{2} + \dots + a_{m2} W_{m} \right)$ $L(V_2)$ $+ \alpha_n \left(\alpha_{1n} W_1 + \alpha_{2n} W_2 + \dots + \alpha_{mn} W_m \right)$ $L(v_n)$

23) $= \left(\alpha_1 \, \alpha_{11} + \alpha_2 \, \alpha_{12} + \ldots + \alpha_n \, \alpha_{1n} \right) \, W_1$ $+ (\alpha_1 \alpha_{21} + \alpha_2 \alpha_{22} + \dots + \alpha_n \alpha_{2n}) W_2$ $+(\alpha_1 \alpha_{m_1} + \alpha_2 \alpha_{m_2} + \dots + \alpha_n \alpha_{m_n}) W_m$

hus, $\begin{bmatrix} L(x) \end{bmatrix}_{\beta'} = \begin{pmatrix} d_1 a_{11} + d_2 a_{12} + \dots + d_n a_{1n} \\ d_1 a_{21} + d_2 a_{22} + \dots + d_n a_{2n} \\ \vdots \\ d_1 a_{m_1} + d_2 a_{m_2} + \dots + d_n a_{mn} \end{pmatrix}$ Thus, $=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \vdots \\ \alpha_{n} \end{pmatrix}$ $= \left[L \right]_{\beta} \left[X \right]_{\beta}$ \square

We can use what we have developed to convert one coordinate system into another coordinate system.

We want a matrix that does this coordinate conversion.

Theorem: Let V be a 25 finite-dimensional vector space Over a field F. Let Band B' be two ordered bases for V. Let I:V->V be the identity function, that is I(x) = xfor all $x \in V$. Then, $\begin{bmatrix}I\\B\\B\end{bmatrix} = \begin{bmatrix}x\\B\end{bmatrix} = \begin{bmatrix}x\\B\end{bmatrix}$ <u>proof</u>: We have that f(x)=x $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} \begin{bmatrix} x \end{bmatrix}_{\beta} \stackrel{=}{\rightarrow} \begin{bmatrix} I (x) \end{bmatrix}_{\beta'} \stackrel{\neq}{=} \begin{bmatrix} x \end{bmatrix}_{\beta'}$ thm from Weds or pg I today The matrix [I]^B is called the change of basis matrix from B to B'.

Ex: Let
$$V = [\mathbb{R}^2, F = \mathbb{R}$$
.
Let $B = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$ Standard
basis
and $B' = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \end{bmatrix}$ We used
this basis
last week
Lets calculate $[\mathbb{I}]_{B'}^{B'}$ Recall
 $\mathbb{I} : \mathbb{R}^2 \to \mathbb{R}^2$
We have that
 $\mathbb{I} (v) = v$
 $\mathbb{I} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
 $\mathbb{I} (v) = v$
 $\mathbb{I} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
plug B into \mathbb{I} express in terms of B'
This gives
 $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 - b \\ a + b \end{pmatrix}$
 $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + d \begin{pmatrix} -1 \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 - d \\ c + d \end{pmatrix}$

This becomes

$$\begin{bmatrix} I = a - b \\ 0 = a + b \end{bmatrix} \text{ and } \begin{bmatrix} 0 = c - d \\ I = c + d \end{bmatrix}$$
If you solve these you will get

$$a = \frac{1}{2}, b = -\frac{1}{2}, c = \frac{1}{2}, d = \frac{1}{2}.$$
Thus,

$$\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} = \left(\begin{bmatrix} I \begin{pmatrix} 0 \\ 0 \end{bmatrix}_{\beta'} \middle| \begin{bmatrix} I \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{\beta'} \right)$$

$$= \begin{pmatrix} q & c \\ b & d \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
Let's test this matrix.

28 Pick $V = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ \forall random vector vector we picked $\begin{bmatrix} V \end{bmatrix}_{\beta} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}_{\epsilon} \end{pmatrix}$ $V = \begin{pmatrix} 2 \\ 5 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{bmatrix} V \end{bmatrix}_{\mathbf{B}'} = \begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{B}}^{\mathbf{B}'} \begin{bmatrix} V \end{bmatrix}_{\mathbf{B}} = \begin{pmatrix} V_2 & V_2 \\ -V_2 & V_2 \\ -V_2 & V_2 \end{pmatrix} \begin{pmatrix} Z \\ 5 \\ 5 \end{pmatrix}$ this matrix turns B-coordinates into B'- coordinates $= \begin{pmatrix} (\frac{1}{2})(2) + (\frac{1}{2})(5) \\ (-\frac{1}{2})(2) + (\frac{1}{2})(5) \end{pmatrix} = \begin{pmatrix} \frac{7}{2} \\ \frac{3}{2} \end{pmatrix}$ Checking: B'=(1),(-1) $\frac{7}{2}\binom{1}{1} + \frac{3}{2}\binom{-1}{1} = \binom{7}{2} + \frac{3}{2} = \binom{2}{5} = \sqrt{2}$

What about
$$W = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 (25)
Then, $W = -3 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
So, $[W]_{\mathcal{B}} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$
And,
 $[W]_{\mathcal{B}}, = [T]_{\mathcal{B}}^{\mathcal{B}'} [W]_{\mathcal{B}}$
 $= \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} -3/2 + 0 \\ 3/2 + 0 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 3/2 \end{pmatrix}$
Thus,
 $\begin{pmatrix} -3 \\ 0 \end{pmatrix} = W = \frac{-3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{3}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

30) Def: Let V be a finitedimensional vector space over a field F. Let $B = [V_{1}, V_{2}, \dots, V_{n}]$ be an ordered basis for V. So, dim(V)=n. Define $\overline{\Phi}: V \rightarrow F^{\circ} by \overline{\Phi}(x) = [x]_{\beta}$ Note that $\overline{\Phi}$ depends on the β that is chosen, so sometimes we will write $\overline{\Phi}_{\beta}$ instead $\overline{\Phi}_{\beta}$ just $\overline{\Phi}$ We call I the <u>canonical</u> isomorphism between V and Fⁿ.

 $E_X: V = P_2(\mathbb{R}), F = \mathbb{R}$ Let $B = [1, X, X^2] \notin Standard basic$ $\dim(P_2(\mathbb{R}))=3$ $\overline{\Phi}: P_2(\mathbb{R}) \longrightarrow \mathbb{R}$ Let $f_{1} = 2 - 3x + 5x^{2}$ $\underline{\Phi}(f_1) = \begin{bmatrix} f_1 \end{bmatrix}_{\beta} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ Let $f_z = 5 - \chi^2$ $\Phi(\mathbf{f}_z) = \begin{pmatrix} \mathbf{5} \\ \mathbf{0} \\ -\mathbf{1} \end{pmatrix}$ R $P_2(\mathbf{R})$ Φ $+ \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ $2 - 3x + 5x^{2}$ $\Rightarrow \begin{pmatrix} 5 \\ o \\ -1 \end{pmatrix}$ 5-x

Let's show that E really is 33) an isomorphism Let V be a finite dimensional vector space over a field F. Let $B = [V_1, V_2, \dots, V_n]$ be an ordered basis for V. Pick the standard basis for $F'_{,ie}$ ie $B'_{=} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right]$ $\overline{\Phi}(v_1) = \overline{\Phi}(|v_1+0v_2+\dots+0v_n|) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Then, $\Phi(v_2) = \Phi(0 \cdot v_1 + | \cdot v_2 + \dots + 0 \cdot v_n) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$: $\overline{\Phi}(v_n) = \overline{\Phi}(v_1 + 0v_2 + \dots + |v_n) = \begin{pmatrix} 0 \\ \vdots \\ i \end{pmatrix}$

also said that The theorem Since $\{\overline{\Phi}(V_{n}),\overline{\Phi}(V_{2}),...,\overline{\Phi}(V_{n})\}$ $= \underbrace{\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}}_{i} \underbrace{\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}}$ is a basis for F[^] We have that $\overline{\Phi}$ is isomorphism between V and F?

Commutative diagram 36 Let V and W be finile-dimensional vector spaces over a field F. Let L:V->W be a linear transformation. B be an ordered basis for V and 8 be an ordered basis for W. Let n = dim(V) and m = dim(W). Let $\rightarrow L(x)$ $\begin{array}{c} \cong & \cong & \bigoplus \\ n & \begin{bmatrix} L \end{bmatrix}_{\mathcal{B}} & \longleftarrow \\ \end{array} \\ \end{array}$ Ēß $\rightarrow [L]_{\beta}^{\gamma}[x] = [L(x)]_{\beta}$ B X

Noteg We are now back to What to cover after the pys. 33-36 maybe, On the next pages decide how much to cover by how much time is left. Definitely at least state the theorems on Uot and T⁻¹

HW 41 4 Let V and W be finite-dimensional Vector spaces over a field F. Let X and B be ordered bases for V and W. Let $T_1: V \rightarrow W$ and $T_2: V \rightarrow W$ transformations. be linear T2 $\begin{bmatrix} T_1 \end{bmatrix}_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} T_2 \end{bmatrix}_{\mathcal{A}}^{\mathcal{B}},$ TF $T_1 = T_2$

HW 5 2 Let V be a finite dimensional Vectos space over a field F. Let B be an ordered basis for V. Let $I_V: V \to V$ be the identity linear transformation. That is, $I_v(x) = x$ for all $x \in V$. Then, $[I_v]_{\beta} = I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$ Let n = dim(v). where In is the nxn identity matrix

Theorem: Let V and W be finite-dimensional vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Let B and V be ordered bases for V and W, respectively. Then, T is an isomorphism (ie I-I) iff [T] & is invertible. Furthermore, if this is the case then $\begin{bmatrix} T \end{bmatrix}_{\mathcal{X}}^{\mathcal{B}} = \left[\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}}^{\mathcal{X}} \right]^{\mathcal{A}}$ $B = T^{-1}$

Proof: (=) Suppose T is an isomorphism. and onto, and from a theorem B X Then T is one-to-one in class, dim(V) = dim(w). So, B and & both have the same number of elements, lets say n elements each. # of elements BIS $[T]_{\beta}^{\delta}$ is nxn. Then, ColumnS # of elements V is the Let $I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}$ # of rows nxn identity be the matrix.

Because T is an isomorphism, $T^{-1}: W \rightarrow V$ exists and is a linear transformation (we did this in class).

Let B = A⁻¹. So, B is nxn also. Let $B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{pmatrix}$ From a previous theorem in class We can construct a linear transformation U:W->V where $U(w_n) = B_{in}v_i + B_{2n}v_2 + \dots + B_{nn}v_n$

Then,

$$\begin{bmatrix} V & T & W \\ B & U & \delta \end{bmatrix}$$

$$\begin{bmatrix} U \circ T \end{bmatrix}_{\beta} = \begin{bmatrix} U \circ T \end{bmatrix}_{\beta}^{\beta} = \begin{bmatrix} U \end{bmatrix}_{\delta}^{\beta} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\delta}$$

$$= BA = A^{T}A = I_{n} = \begin{bmatrix} T \lor \end{bmatrix}_{\beta}$$

$$= BA = A^{T}A = I_{n} = \begin{bmatrix} T \lor \end{bmatrix}_{\beta}$$
Since $\begin{bmatrix} U \circ T \end{bmatrix}_{\beta} = \begin{bmatrix} T \lor \end{bmatrix}_{\beta}$, by HW

$$U \circ T = I_{V}$$
Similarly,

$$\begin{bmatrix} T & U \end{bmatrix}_{\delta}^{\delta} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta} = AB = AA^{T} = I_{n}$$

$$\begin{bmatrix} T \circ U \end{bmatrix}_{\delta}^{\gamma} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\delta} \begin{bmatrix} U \end{bmatrix}_{\delta}^{\beta} = AB = AA^{T} = I_{n}$$

$$\begin{bmatrix} T \circ U \end{bmatrix}_{\delta}^{\gamma} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\delta} \begin{bmatrix} U \end{bmatrix}_{\delta}^{\beta} = AB = AA^{T} = I_{n}$$

$$\begin{bmatrix} T \circ U \end{bmatrix}_{\delta}^{\gamma} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\gamma} \begin{bmatrix} U \end{bmatrix}_{\delta}^{\gamma} = AB = AA^{T} = I_{n}$$
So, by HW $T \circ U = I_{W}$.

Since
$$U \circ T = I_V$$

and $T \circ U = I_W$
we know that $U = T$.
So, $T': W \rightarrow V$ exists
and T is $I-I$ and onto.

49) Lorollary: Let V be a finite dimensional vector space over a field F. Let B and B' be ordered bases for V. Let $I:V \rightarrow V$ be the identity linear transformation I(x) = x for all $X \in V$ Let $Q = [T]_{\beta}^{\beta'}$ be the change of basis matrix from B to B. () Q is invertible and $Q' = [I]_{B'}^{P}$ Then: ② If T:V→V is a linear transformation then $[T]_{\beta} = Q[T]_{\beta}, Q$ $\begin{bmatrix} \mathbf{J} \end{bmatrix}_{\mathbf{\beta}}^{\mathbf{\beta}} \begin{bmatrix} \mathbf{T} \end{bmatrix}_{\mathbf{\beta}}^{\mathbf{\beta}} \begin{bmatrix} \mathbf{J} \end{bmatrix}_{\mathbf{\beta}}^{\mathbf{\beta}}$

proof: () I is invertible and T=I. $T:V \rightarrow V$ I(x)=x for all $x \in V$ The theorem, for Weds says that $Q = [I]_{B}^{B'}$ is invertible and $Q^{-} = \left(\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} \right)^{-1} = \left[I^{-1} \right]_{\beta'}^{\beta} = \left[I \end{bmatrix}_{\beta'}^{\beta}$ (2) We have that $Q^{-1}[T]_{\beta}, Q = [I]_{\beta}^{\beta}, [T]_{\beta}^{\beta'}, [I]_{\beta}^{\beta'}$ HW 4 $= [I]_{p}^{p} [T_{0}]_{p}^{p'}$ $\begin{bmatrix} U \circ T \end{bmatrix}_{a}^{F} = \begin{bmatrix} I \end{bmatrix}_{b}^{F} \begin{bmatrix} T \end{bmatrix}_{b}^{F} = \begin{bmatrix} I \circ T \end{bmatrix}_{b}^{F}$ $\begin{bmatrix} U \end{bmatrix}_{b}^{F} \begin{bmatrix} T \end{bmatrix}_{c}^{F} = \begin{bmatrix} T \end{bmatrix}_{b}^{F} \begin{bmatrix} T \end{bmatrix}_{c}^{F} \begin{bmatrix} T \end{bmatrix}_{c}^{F}$

Pef: Let A and B be Nxn matrices with entries in a field F. We say that A and B are <u>similar</u> if there exists an nxn invertible matrix Q with entries from F Where B=QAQ

In the previous theorem we saw that [T] p and [T] p' are similar matrices. Theorem: Let V be a finite-dimensional Vector space over a field F. Let B be an ordered basis for V. Let $T: V \rightarrow V$ be a linear transformation. Suppose n=dim(V). IF A is an nxn matrix with entries from F that is then to [T]B, similar A= [T] where & is some ordered basis for V.

proof: We have n=dim(V). (53) Then $\beta = [V_1, V_2, ..., V_n]$ where $V_{1,j}V_{2,j}...,V_{n}\in V.$ Also, [T]p is nxn. Since A is similar to [T]B We know that there exists an invertible matrix Q that is nxn and has entries in F and $A = Q'[T]_{B}Q$ Let Qij denote the entry in Q in row is and column j.

That is, 54 $Q = \begin{pmatrix} Q_{11} & Q_{12} & \cdots & Q_{1n} \\ Q_{21} & Q_{22} & \cdots & Q_{2n} \\ \vdots \\ Q_{n1} & Q_{n2} & \cdots & Q_{nn} \end{pmatrix}$ W_1, W_2, \dots, W_n Define the vectors as follows: $W_{1} = Q_{11}V_{1} + Q_{21}V_{2} + \dots + Q_{n1}V_{n}$ $W_{2} = Q_{12}V_{1} + Q_{22}V_{2} + \dots + Q_{n2}V_{n}$ $W_n = Q_{1n}V_1 + Q_{2n}V_2 + \dots + Q_{nn}V_n$ So, $W_j = \sum_{i=1}^{n} Q_{ij} V_i \leftarrow \begin{cases} \text{this sum} \\ \text{runs down} \\ \text{the j-th} \\ Column \end{cases}$ of Q

We will how show that & is a basis for V. Suppose $C_1 W_1 + C_2 W_2 + \cdots + C_n W_n = 0$ Where $C_1, C_2, \dots, C_n \in F$. Then, wi $C_{1}\left(Q_{11}V_{1}+Q_{21}V_{2}+\dots+Q_{n1}V_{n}\right)W_{2}$ $+ C_2 \left(Q_{12} V_1 + Q_{22} V_2 + \dots + Q_{n2} V_n \right)$ $+ \dots + C_n \left(Q_{1n} V_1 + Q_{2n} V_2 + \dots + Q_{nn} V_n \right)$ = 0

56 Rearranging we get that $(c_1Q_{11} + c_2Q_{12} + ... + c_nQ_{1n})V_1$ $+ (C_1Q_{21} + C_2Q_{22} + ... + C_nQ_{2n})V_2$ $+(c_1Q_{n_1}+c_2Q_{n_2}+\ldots+c_nQ_{n_n})V_n=O$ +....+ Since $\beta = [V_{1}, V_{2}, ..., V_{n}]$ is a linearly independent set we have that $c_{1}Q_{11} + c_{2}Q_{12} + \dots + C_{n}Q_{1n} = 0$ $c_{1}Q_{21} + c_{2}Q_{22} + \dots + C_{n}Q_{2n} = 0$ $C_{1}Q_{n1} + C_{2}Q_{n2} + \dots + C_{n}Q_{nn} = 0$

Rewriting this as a matrix equation
$$(57)$$

We get that
 $\begin{pmatrix} Q_{11} & Q_{12} & \cdots & Q_{1n} \\ Q_{21} & Q_{22} & \cdots & Q_{2n} \\ \vdots & \vdots & \vdots \\ Q_{n1} & Q_{n2} & \cdots & Q_{nn} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$
Thus,
 $\begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$
Since Q is invertible, Q^{-1} exists and
 $\begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = Q^{-1}Q \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = Q^{-1}\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$
Thus, $C_1 = 0, C_2 = 0, \dots, C_n = 0$.

Thus
$$\delta = [W_{ij}, W_{ij}, ..., W_{n}]$$
 is a final linearly independent set.
Since δ contains a vectors and $\dim(V) = n$, we know δ is a basis for V .
By the definition of W_{j} , $Q = [I]_{\delta}^{R}$
Why? $W_{j} = \sum_{i=1}^{2} Q_{ij} V_{i}$
 $I(W_{j}) = W_{j} = \sum_{i=1}^{2} Q_{ij} V_{i}$
So the jth column of $[I]_{\delta}^{R}$ is $\begin{pmatrix} Q_{ij} \\ Q_{2j} \\ \vdots \\ Q_{nj} \end{pmatrix}$ which is the same as the jth column of Q .

