Topic 4-
The matrix of a linear transformation

HW 4 Topic
The Matrix of a linear Transformation
Def: Let V be a finite-dimensional vector space over a field F.
Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. We write
$\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ to mean that β is an ordered basis for V, that is, the order of the vectors in β is given and fixed.

Def: Let V be a vector space
over a field F with an ordered basis $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$.
Let $x \in V$.
Then we can write x uniquely in the form

$$
x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}
$$

We write

$$
\begin{gathered}
\text { Ne write } \\
{[x]_{\beta}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)}
\end{gathered}
$$

and call $[x]_{\beta}$ the coordinates of x with respect to β (or the coordinate vector of x with respect to β)

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Consider $\binom{1}{2},\binom{-1}{1}$
You can check that $\binom{1}{2},\binom{-1}{1}$ are linearly independent.
Since are two linearly independent vectors and $\operatorname{dim}(V)=\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$
We know that $\binom{1}{2},\binom{-1}{1}$ are a basis.
Thus, $\beta=\left[\binom{1}{2},\binom{-1}{1}\right]$ is an ordered basis.
Pick $x=\binom{5}{4}$.
Let's find $[x]_{\beta}$ We need to solve

$$
\underbrace{\binom{5}{4}}_{x}=\underbrace{c_{1}\binom{1}{2}+c_{2}\binom{-1}{1}}_{\text {coordinates for } x}
$$

This becomes

$$
\binom{5}{4}=\binom{c_{1}}{2 c_{1}}+\binom{-c_{2}}{c_{2}}
$$

Which becomes

$$
\binom{5}{4}=\binom{c_{1}-c_{2}}{2 c_{1}+c_{2}}
$$

This gives

$$
\begin{aligned}
& \begin{array}{l}
5=c_{1}-c_{2} \\
4=2 c_{1}+c_{2}
\end{array} \\
& \left(\begin{array}{rr|r}
1 & -1 & 5 \\
2 & 1 & 4
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -1 & 5 \\
0 & 3 & -6
\end{array}\right) \\
& \xrightarrow{\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{rr|r}
1 & -1 & 5 \\
0 & 1 & -2
\end{array}\right)
\end{aligned}
$$

This becomes $c_{1}-c_{2}=5$ $c_{2}=-2$

Thus, $c_{2}=-2$.
And, $c_{1}=5+c_{2}=S-2=3$.
So,

$$
\begin{aligned}
& \text { So, } \\
& \quad x=\binom{5}{4}=3 \cdot\binom{1}{2}-2 \cdot\binom{-1}{1} \\
& \text { Thus, } \\
& {[x]_{\beta}=\binom{3}{-2}}
\end{aligned}
$$

What if we Kept $x=\binom{5}{4}$ but changed to the standard basis

$$
\beta^{\prime}=\left[\binom{1}{0},\binom{0}{1}\right]
$$

Then, $x=\binom{5}{4}=5 \cdot\binom{1}{0}+4 \cdot\binom{0}{1}$
So, $[x]_{\beta^{\prime}}=\binom{5}{4}$

Ex: Let

$$
V=P_{2}(\mathbb{R})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}
$$

$$
F=\mathbb{R}
$$

Let

Consider

$$
V=2-x+3 x^{2}
$$

you can show that these 3 vectors are lin. ind. Since $\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3$ they must be a basis
Let's find $[v]_{\beta}$.
We need to solve

$$
\begin{aligned}
& \text { We need to } \\
& \underbrace{2-x+3 x^{2}}_{V}=c_{1} \cdot 1+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)
\end{aligned}
$$

V's courdinates with respect to β

This becomes

So we get

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =2 \\
c_{2}+c_{3} & =-1 \\
c_{3} & =3
\end{aligned}
$$

This is already a reduced system

We get

$$
\begin{aligned}
& c_{3}=3 \\
& c_{2}=-1-c_{3}=-1-3=-4 \\
& c_{1}=2-c_{2}-c_{3}=2-(-4)-3=3
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=2-c_{2}-(1+x)+3 \cdot\left(1+x+x^{2}\right) \\
& \text { Thus, } \\
& 2-x+3 x^{2}=3 \cdot 1-4 \cdot\binom{3}{-4}
\end{aligned}
$$

Thus,
And $\left[2-x+3 x^{2}\right]_{\beta}=\left(\begin{array}{c}3 \\ -4 \\ 3\end{array}\right)$

Def: Let $T: V \rightarrow W$ be a
linear transformation between two finite-dimensional vector spaces user a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordered basis for V and let γ be an ordered basis for W.

The matrix
is called the matrix of T with respect to β and γ.

If $V=\omega$ and $\beta=\gamma$, then we just write $[T]_{\beta}$ instead of $[T]_{\beta}^{\beta}$

Ex: Let $V=W=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
be defined by $L\binom{x}{y}=\binom{x+y}{2 x-y} \oiint$
You can check that L is a linear transformation.
Let $\beta=\left[\binom{1}{0},\binom{0}{1}\right] \leftarrow \begin{gathered}\text { stand ard } \\ \text { basis for }\end{gathered} \mathbb{R}^{2}$
Let's compute

$$
v=\mathbb{R}^{2} L, w=\mathbb{R}^{2}
$$

$$
\begin{aligned}
& {[L]_{\beta}=[L]_{\beta}^{\beta}}
\end{aligned} \begin{aligned}
& L\binom{1}{0}=\binom{1+0}{2-0}=\binom{1}{2}=1 \cdot\left(\begin{array}{l}
1 \\
0
\end{array} \left\lvert\,+2 \cdot\binom{0}{1}\right.\right. \\
& L\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\binom{0+1}{0-1}=\binom{1}{-1}=1 \cdot\binom{1}{0}-1 \cdot\left(\begin{array}{l}
\text { find the coordinates of } \\
\text { output in terms of basis for } \\
W=\mathbb{R}^{2}
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& {[L]_{\beta}=\left(\left.\left[L\binom{1}{0}\right]_{\beta} \right\rvert\,\left[L\binom{0}{1}\right]_{\beta}\right)} \\
& =\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)
\end{aligned}
$$

Let $\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right] \leftarrow$ check that a basis for \mathbb{R}^{2}
Let's find

$$
[L]_{\beta^{\prime}}=[L]_{\beta^{\prime}}^{\beta^{\prime}}
$$

Recall $L\binom{x}{y}=\binom{x+y}{2 x-y}$

$$
\begin{aligned}
& L\binom{1}{1}=\binom{1+1}{2-1}=\binom{2}{1}=a \cdot\binom{1}{1}+c \cdot\binom{-1}{1} \\
& L\binom{-1}{1}=\binom{-1+1}{-2-1}=\binom{0}{-3}=b \cdot\binom{1}{1}+d\binom{-1}{1}
\end{aligned}
$$

plug basis for $V=\mathbb{R}^{2}$ in to L
write output in terms of basis for $W=\mathbb{R}^{2}$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \binom{2}{1}=\binom{a-c}{a+c} \text { and }\binom{0}{-3}=\binom{b-d}{b+d}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { his becomes } \\
& 2=a-c \\
& 1=a+c
\end{aligned} \text { and } \begin{gathered}
0=b-d \\
-3=b+d
\end{gathered}
$$

If you solve these you will get

$$
\begin{aligned}
& \text { If you solve these you } \\
& a=\frac{3}{2}, c=-\frac{1}{2}, b=-\frac{3}{2}, d=-\frac{3}{2}
\end{aligned}
$$

So, $\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]$

$$
\begin{aligned}
& L\binom{1}{1}=\binom{2}{1}=\underbrace{\frac{3}{2}}_{a} \cdot\binom{1}{1}-\underbrace{\frac{1}{2}}_{b} \cdot\binom{-1}{1} \\
& L\binom{-1}{1}=\binom{0}{-3}=\underbrace{-\frac{3}{2}}_{d}\binom{1}{1}-\underbrace{\frac{3}{2}}_{d}\binom{-1}{1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& {[L]_{\beta^{\prime}}=[L]_{\beta^{\prime}}^{\beta^{\prime}}} \\
& =\left(\left[L\binom{1}{1}\right]_{\beta^{\prime}} \left\lvert\,\left[L\binom{-1}{1}\right]_{\beta^{\prime}}\right.\right) \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right)
\end{aligned}
$$

Let's calculate $[L]_{\beta^{\prime}}^{\beta}$

$$
\left.\begin{array}{l}
L\binom{1}{1}= \\
\underbrace{\binom{-1}{1}}_{\text {plug } \left.\beta^{\prime} \text { into } L \begin{array}{l}
2 \\
1
\end{array}\right)=2\binom{1}{0}+1\binom{0}{1}}=\binom{0}{-3}=0\binom{1}{0}-3\binom{0}{1} \\
\text { in terms of } \beta
\end{array}\right] .
$$

What do these matrices do?
Let's see with an example.
 these are the coordinates
of v using the standard basis

$$
L\binom{1}{2}=\binom{1+2}{2 \cdot 1-2}=\binom{3}{0}
$$

The matrix that does the above is

$$
\begin{aligned}
& \text { The matrix } \\
& {[L]_{\beta}=[L]_{\beta}^{\beta}=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let's see: } \\
& {[L]_{\beta}^{[}[v]_{\beta}=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \underbrace{\binom{1}{2}}_{4}=\binom{1+2}{2-2}} \\
& v=\binom{1}{0}=1 \cdot\binom{1}{0}+2 \cdot\binom{0}{1} \\
& L(v)=\binom{3}{0}=3 \cdot\binom{1}{0}+0 \cdot\binom{0}{1}
\end{aligned}
$$

Let's now see what $[L]_{\beta^{\prime}}=[L]_{\beta^{\prime}}^{\beta^{\prime}}$ does to V.
We will show that

$$
[L]_{\beta^{\prime}}[V]_{\beta^{\prime}}=[L(V)]_{\beta^{\prime}}
$$

So, $[L]_{\beta^{\prime}}=[L]_{\beta^{\prime}}^{\beta^{\prime}}$ wants β^{\prime} coordinates as its input and it computes L using the input and outputs the answer in β^{\prime} coordinates.
What are V^{\prime} s β^{\prime} coordinates? Need to solve:

$$
\begin{aligned}
& \text { Need to solve: } \\
& v=\binom{1}{2}=\frac{\alpha_{1}\binom{1}{1}+\alpha_{2}\binom{-1}{1}}{\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]}
\end{aligned}
$$

This becomes

$$
\binom{1}{2}=\binom{\alpha_{1}-\alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

This becomes

$$
\begin{aligned}
& 1=\alpha_{1}-\alpha_{2} \\
& 2=\alpha_{1}+\alpha_{2}
\end{aligned}
$$

adding giver

$$
\begin{aligned}
& 3=2 \alpha_{1} \\
& \alpha_{1}=3 / 2
\end{aligned}
$$

So, $\alpha_{2}=2-\alpha_{1}$
The solution is

$$
\begin{aligned}
& =2-\alpha_{1}=1 / 2 \\
& =2-2
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}=3 / 2 \\
& \alpha_{2}=1 / 2
\end{aligned}
$$

So, $V=\frac{3}{2}\binom{1}{1}+\frac{1}{2}\binom{-1}{1}$
Thus, $[v]_{\beta^{\prime}}=\binom{3 / 2}{1 / 2}$

$$
\begin{aligned}
& \text { Then, } \\
& {[L]_{\beta^{\prime}}[V]_{\beta^{\prime}}=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right)\binom{3 / 2}{1 / 2}} \\
& =\binom{(3 / 2)(3 / 2)-(3 / 2)(1 / 2)}{(-1 / 2)(3 / 2)-(3 / 2)\left(\frac{1}{2}\right)}=\binom{3 / 2}{-3 / 2}
\end{aligned}
$$

Then,

This should be $[L(U)]_{\beta^{\prime}}$.

Whose β^{\prime} coordinates are these?

$$
\begin{aligned}
3 / 2\binom{1}{1}-3 / 2\binom{-1}{1} & =\binom{3 / 2+3 / 2}{3 / 2-3 / 2} \\
& =\binom{6 / 4}{0}
\end{aligned}=\binom{3}{0} .
$$

So, $[L(V)]_{\beta^{\prime}}=\binom{3 / 2}{-3 / 2}$.
Thus, $[L]_{\beta^{\prime}}[v]_{\beta^{\prime}}=[L(v)]_{\beta^{\prime}}$
Now let's see what $[L]_{\beta}^{\beta}$, does.
I claim that

$$
\begin{aligned}
& \text { claim that } \\
& {[L]_{\beta^{\prime}}^{\beta}[V]_{\beta^{\prime}}=[L(V)]_{\beta} 4}
\end{aligned}
$$

So, $[L]_{\beta}^{\beta}$ wants β^{\prime} coordinates as input, and computes L, but gives the answer in β coordinates

We have that

$$
\begin{aligned}
& \text { We have that } \\
& \begin{aligned}
{[L]_{\beta^{\prime}}^{\beta}[V]_{\beta^{\prime}} } & =\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)\binom{3 / 2}{1 / 2} \\
& =\binom{(2)(3 / 2)+(0)(1 / 2)}{(1)(3 / 2)+(-3)(1 / 2)} \\
& =\binom{3}{0}=[L(v)]_{\beta}
\end{aligned}
\end{aligned}
$$

Theorem: Let V and W be finite-dimensional vector spaces over a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordered basis for V and $\beta^{\prime}=\left[w_{1}, w_{2}, \ldots, w_{m}\right]$ be an ordered basis for W.
Let $L: V \rightarrow W$ be a linear trans formation.

Then,

$$
[L]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[L(x)]_{\beta^{\prime}}
$$

for all $x \in V$.

proof: Let $x \in V$.
Since $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a basis for V, we may write

$$
\begin{aligned}
& V, \text { we may } \alpha_{1} V_{1}+\alpha_{2} V_{2}+\cdots+\alpha_{n} V_{n} \\
& \alpha_{n} \in F
\end{aligned}
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$.
Then, $[x]_{\beta}=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right)$
Since $\beta^{\prime}=\left[w_{1}, w_{2}, \ldots, w_{m}\right]$ is a basis for W we may write

$$
\begin{aligned}
& L\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2}+\ldots+a_{m 1} w_{m} \\
& L\left(v_{2}\right)=a_{12} w_{1}+a_{22} w_{2}+\ldots+a_{m 2} w_{m} \\
& \vdots \\
& L\left(v_{n}\right)=a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots+a_{m n} w_{m}
\end{aligned}
$$

where $a_{i j} \in F$.

Thus,

$$
\begin{aligned}
& \left.[L]_{\beta}^{\beta^{\prime}}=\left(\left[L\left(v_{1}\right)\right]_{\beta^{\prime}}\right)\left[L\left(v_{2}\right)\right]_{\beta^{\prime}}\right) \cdots\left(\left[L\left(v_{n}\right)\right]_{\beta^{\prime}}\right) \\
& \\
& =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
\end{aligned}
$$

Now let's get $[L(x)]_{\beta}$ ' and show that

$$
[L]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[L(x)]_{\beta^{\prime}}
$$

To get $[L(x)]_{\beta^{\prime}}$ we need to express $L(x)$ in terms of β !
We have that

$$
\begin{aligned}
L(x)= & L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}\right) \\
L_{\text {lis }}^{\text {linear }} & =\alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)+\ldots+\alpha_{n} L\left(v_{n}\right) \\
= & \alpha_{1}\left(v_{1}\left(v_{11} w_{1}+a_{21} w_{2}+\ldots+a_{m 1} w_{n}\right)\right. \\
& +\alpha_{2}(\underbrace{\left.a_{12} w_{1}+a_{22} \omega_{2}+\ldots+a_{m 2} w_{n}\right)}_{L\left(v_{2}\right)} \\
& +\ldots+\underbrace{a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots+a_{m n} w_{n}}_{L\left(v_{n}\right)}) \\
& +\alpha_{n} \\
= & =
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha_{1} a_{11}+\alpha_{2} a_{12}+\ldots+\alpha_{n} a_{1 n}\right) w_{1} \\
& +\left(\alpha_{1} a_{21}+\alpha_{2} a_{22}+\ldots+\alpha_{n} a_{2 n}\right) w_{2} \\
& +\ldots+ \\
& +\left(\alpha_{1} a_{m 1}+\alpha_{2} a_{m 2}+\ldots+\alpha_{n} a_{m n}\right) w_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \qquad \begin{array}{l}
{[L(x)]_{\beta}=\left(\begin{array}{c}
\alpha_{1} a_{11}+\alpha_{2} a_{12}+\ldots+\alpha_{n} a_{1 n} \\
\alpha_{1} a_{21}+\alpha_{2} a_{22}+\ldots+\alpha_{1} a_{2 n} \\
\vdots \\
\alpha_{1} a_{m 1}+\alpha_{2} a_{m 2}+\ldots \\
\alpha_{n} a_{m n}
\end{array}\right)} \\
=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
=\left[\begin{array}{l}
\beta^{\prime}[x
\end{array}\right]
\end{array}
\end{aligned}
$$

We can vie what we have developed to convect one coordinate system into another coordinate system,

We want a matrix that dies this coordinate conversion.

Theorem: Let V be a
finite-dimensional vector space over a field F. Let β and β^{\prime} be two ordered bases for V. Let $I: V \rightarrow V$ be the identity function, that is $I(x)=x$ for all $x \in V$. Then,

$$
[I]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[x]_{\beta^{\prime}}
$$

proof: We have that $I(x)=x$

$$
\begin{aligned}
& \text { proof: we have that } \\
& {[I]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[I(x)]_{\beta^{\prime}} \stackrel{ }{=}[x]_{\beta^{\prime}}} \\
& \text { thy from Weds or pg I today }
\end{aligned}
$$

the from Weds or pg I today
The matrix $[I]_{\beta}^{\beta}$ is called the change of basis matrix from β to β^{\prime}.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\beta=\left[\binom{1}{0},\binom{0}{1}\right] \leftarrow \begin{gathered}\text { standard } \\ \text { basis }\end{gathered}$

$$
\text { and } \beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]=\begin{gathered}
\text { we used } \\
\text { this basis } \\
\text { last week }
\end{gathered}
$$

Lets calculate $[I]_{\beta}^{\beta^{\prime}}$.
We have that

$$
\begin{aligned}
& \text { We have that } \\
& I\binom{1}{0} \stackrel{1}{=}\binom{1}{0}=a\binom{1}{1}+b\binom{-1}{1} \\
& I\binom{0}{1}=\binom{0}{1}=c\binom{1}{1}+d\binom{-1}{1}
\end{aligned}
$$

plug β into I
express in terms of β^{\prime}

$$
\begin{aligned}
& \text { This gives } \\
& \left.\begin{array}{l}
1 \\
0
\end{array}\right)=a\binom{1}{1}+b\binom{-1}{1} \longrightarrow\binom{1}{0}=\binom{a-b}{a+b} \\
& \binom{0}{1}=c\binom{1}{1}+d\binom{-1}{1} \rightarrow\binom{0}{1}=\binom{c-d}{c+d}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& 1=a-b \\
& 0=a+b
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 0=c-d \\
& 1=c+d
\end{aligned}
$$

If you solve these you will get

$$
a=\frac{1}{2}, b=-\frac{1}{2}, c=\frac{1}{2}, d=\frac{1}{2} \text {. }
$$

$$
\begin{aligned}
& {[I]_{\beta}^{\beta^{\prime}}=\left(\left.\left[I\left(\begin{array}{l}
1 \\
0
\end{array}\right]\right]_{\beta^{\prime}} \right\rvert\,\left[I\binom{0}{1}\right]_{\beta^{\prime}}\right)} \\
& =\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Thus,

Let's test this matrix.

$$
\begin{aligned}
& \text { Pick } v=\binom{2}{5} \leftrightarrow \left\lvert\, \begin{array}{l}
\text { random } \\
\text { vector } \\
\text { we picked }
\end{array}\right. \\
& {[v]_{\beta}=\binom{2}{5} \leftrightarrows} \\
& v=\binom{2}{5}=2 \cdot\binom{1}{0}+5 \cdot\binom{0}{1}
\end{aligned}
$$

$$
[V]_{\beta^{\prime}}=\underbrace{[I]_{\beta}^{\beta^{\prime}}[V]_{\beta}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)\binom{2}{5}}_{\substack{\text { this matrix } \\
\text { turns } \beta \text {-coordinates }}}
$$

into β^{\prime}-coordinates
this ${ }^{\prime}$-coordinates
in

$$
=\binom{\left(\frac{1}{2}\right)(2)+\left(\frac{1}{2}\right)(5)}{\left(-\frac{1}{2}\right)(2)+\left(\frac{1}{2}\right)(5)}=\binom{7 / 2}{3 / 2}
$$

Checking: $\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]$

$$
\frac{\text { Checking: }}{7 / 2\binom{1}{1}+3 / 2\binom{-1}{1}}=\binom{7 / 2-3 / 2}{7 / 2+3 / 2}=\binom{2}{5}=V
$$

What about $W=\binom{-3}{0}$
Then, $w=-3 \cdot\binom{1}{0}+0 \cdot\binom{0}{1}$.
So, $[\omega]_{\beta}=\binom{-3}{0}$
And,

$$
\begin{aligned}
& \text { And, } \left.\begin{array}{rl}
{[\omega]_{\beta}} & =[I]_{\beta}^{\beta^{\prime}}[\omega]_{\beta} \\
& =\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)\binom{-3}{0} \\
& =\binom{-3 / 2+0}{3 / 2+0}=\binom{-3 / 2}{3 / 2}
\end{array}\right)
\end{aligned}
$$

Thus,

$$
\binom{-3}{0}=w=-\frac{3}{2}\binom{1}{1}+\frac{3}{2}\binom{-1}{1}
$$

Def: Let V be a finitedimensional vector space over a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordered loasis for V.
So, $\operatorname{dim}(V)=n$. Define
$\Phi: V \rightarrow F^{n}$ by $\Phi(x)=[x]_{\beta}$
Note that Φ depends on the β that is chosen, so sometimes we will
write Φ_{p} instead of just Φ

We call Φ the canonical isomorphism between V and F^{n}.
$E x: V=P_{2}(\mathbb{R}), F=\mathbb{R}$
Let $\beta=\left[1, x, x^{2}\right] \in \begin{gathered}\text { standard } \\ \text { basis }\end{gathered}$
$\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3$
$\Phi: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$
Let $f_{1}=2-3 x+5 x^{2}$

$$
\Phi\left(f_{1}\right)=\left[f_{1}\right]_{\beta}=\left(\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right)
$$

Let $f_{2}=5-x^{2}$

$$
\Phi\left(f_{2}\right)=\left(\begin{array}{c}
5 \\
0 \\
-1
\end{array}\right)
$$

Note:
Do pages 33-36
if you have time. otherwise, skip.

Let's show that I really is an isomorphism
Let V be a finite dimensional vector space over a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, V_{n}\right]$ be an ordered basis for V.
Pick the standard basis for F^{n}, ie

$$
\begin{aligned}
& \beta_{i}^{\prime}=\left[\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { Then, } \\
\Phi\left(v_{1}\right)=\Phi\left(1 \cdot v_{1}+O v_{2}+\cdots+O v_{n}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
\Phi\left(v_{2}\right)=\Phi\left(0 \cdot v_{1}+\mid \cdot v_{2}+\cdots+0 v_{n}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
\vdots
\end{array}\right) \\
\vdots \\
\Phi\left(v_{n}\right)=\Phi\left(0 v_{1}+O v_{2}+\cdots+\mid v_{n}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)
\end{gathered}
$$

Also, if $x \in V$ and $x=\alpha_{1} V_{1}+\alpha_{2} V_{2}+\cdots+\alpha_{n} V_{n}$
then

$$
\begin{aligned}
& \text { then } \\
& \Phi(x)=\Phi\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}\right) \\
& \quad=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\alpha_{1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right)+\cdots+\alpha_{n}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

This is the formula we had in a previous theorem about constructing linear transformations. It shows that I is a linear transformation.

The theorem also said that since

$$
\begin{aligned}
& \left\{\Phi\left(v_{1}\right), \Phi\left(v_{2}\right), \ldots, \Phi\left(v_{n}\right)\right\} \\
& \left.\quad=\left\{\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right), \cdots\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)\right\}
\end{aligned}
$$

is a basis for F^{n}
We have that Φ is an isomorphism between V and F^{n}.

Commutative diagram
Let V and W be finile-dimensional vector spaces over a field F.
Let $L: V \rightarrow W$ be a linear transformation.
Let β be an ordered basis for V and
γ be an ordered basis for W.
Let $n=\operatorname{dim}(V)$ and $m=\operatorname{dim}(W)$.

Notes
We are now lack to What to cover after the pas. 33-36 maybe.

On the next pages decide how much to cover by how much time is left. Definitely at least state the theorems on UOT and T^{-1}

HF 4
finite-dimensional
(3) Let V,W,Z be ${ }^{V}$ vector spaces over a field F with ordered bases α, β, γ respectively. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations

Then, $U \circ T: V \rightarrow Z$ is a linear transformation.
Also, $[U \cdot T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$
Proof: HW

HoW 4
(4) Let V and W be finite-dimensional vector spaces over a field F. Let α and β be ordered bases for V and W. Let
$T_{1}: V \rightarrow W$ and $T_{2}: V \rightarrow W$ be linear transformations.

If $\left[T_{1}\right]_{\alpha}^{\beta}=\left[T_{2}\right]_{\alpha}^{\beta}$, then $T_{1}=T_{2}$.

HF 5
(2) Let V be a finite dimensional vector space over a field F. Let β be an ordered basis for V. Let $I_{V}: V \rightarrow V$ be the identity linear transformation.
That is, $I_{V}(x)=x$ for all $x \in V$.

Let $n=\operatorname{dim}(v)$,
Then, $\left[I_{v}\right]_{\beta}=I_{n}=\left(\begin{array}{ccccc}1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 1\end{array}\right)$
where I_{n} is the $n \times n$ identity matrix

Theorem: Let V and W be finite-dimensional vector spaces over a field F_{1} Let $T: V \rightarrow W$ be a linear transformation.
Let β and γ be ordered bases for V and W, respectively.
Then, T is an isomorphism ($\begin{array}{cc}\text { ie } & 1-1 \\ \text { and } & \text { onto }\end{array}$) if $[T]_{\beta}^{\gamma}$ is invertible.
Furthermore, if this is the case then $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$

Proof:
(\Rightarrow) Suppose T is an isomorphism.
Then T is one-torone and onto, and from a theorem
 in class, $\operatorname{dim}(V)=\operatorname{dim}(\omega)$.
So, β and γ both have the same number of elements, lets say n elements each.
Then, $[T]_{\beta}^{\gamma}$ is $n \times n$.

$$
\text { Let } I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$ columns, \# of elements in γ is the \# of rows

be the $n \times n$ identity matrix.

Let $I_{V}: V \rightarrow V$ be the identity linear transformation and $I_{W}: W \rightarrow W$ be the identity linear transformation

Because T is an isomorphism, $T^{-1}: W \rightarrow V$ exists and is a linear transformation (we did this in class).

Then,

$$
\begin{gathered}
{\left[T^{-1}\right]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}=\left[T^{-1} \circ T\right]_{\beta 4}^{\beta}=\left[I_{v}\right]_{\beta}=I_{n}} \\
T_{n}
\end{gathered}
$$

> and

$$
[T]_{\beta}^{\gamma}\left[T^{-1}\right]_{\gamma}^{\beta=}=\left[T_{0} T^{-1}\right]_{\gamma}^{\gamma} \overline{\bar{q}}\left[I_{w}\right]_{\gamma}^{=}=I_{n}
$$

$$
T \cdot T^{-1}=I_{w}
$$

Thus, $[T]_{\beta}^{\gamma}$ is invertible and

$$
\left([T]_{\beta}^{\gamma}\right)^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}
$$

(\bowtie) Suppose that $[T]_{\beta}^{\gamma}$ is invertible.
We want to show that T is an isomorphism.
We will show that T^{-1} exists.
Since $[T]_{\beta}^{\gamma}$ is invertible it is a square matrix.
Let $A=[T]_{\beta}^{\gamma}$.
Suppose A is $n \times n$.
Then $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and

$$
\begin{aligned}
& \text { en } \beta=\left[v_{1}, \ldots, w_{n}\right] \\
& \gamma=\left[w_{1}, w_{2}, \ldots, w^{2}\right.
\end{aligned}
$$

where $v_{1}, \ldots, v_{n} \in V$
and $w_{1}, \ldots, w_{n} \in W$.

Let $B=A^{-1}$.
So, B is $n \times n$ also.
Let $B=\left(\begin{array}{cccc}B_{11} & B_{12} & \cdots & B_{1 n} \\ B_{21} & B_{22} & \cdots & B_{2 n} \\ \vdots & \vdots & & \vdots \\ B_{n 1} & B_{n 2} & \cdots & B_{n n}\end{array}\right)$
From a previous theorem in class
we can construct a linear transformation $U: W \rightarrow V$ where

$$
\begin{aligned}
& U\left(w_{1}\right)=B_{11} V_{1}+B_{21} V_{2}+\cdots+B_{n 1} V_{n} \\
& \begin{array}{c}
U\left(\omega_{2}\right)=B_{12} v_{1}+B_{22} v_{2}+\cdots+B_{n 2} v_{n} \\
\vdots
\end{array} \vdots \quad \vdots \\
& U\left(w_{n}\right)=B_{1 n} v_{1}+B_{2 n} v_{2}+\cdots+B_{n n} v_{n} \\
& \text { So, }[U]_{\gamma}^{\beta}=B
\end{aligned}
$$

Then,

$$
[U \circ T]_{\beta}=[U \cdot T]_{\beta}^{\beta}=[U]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}
$$

$$
=B A=A^{-1} A=I_{n}=\left[I_{V}\right]_{\beta}
$$

Since $[U \cdot T]_{\beta}=\left[I_{V}\right]_{\beta}$, by HW

$$
U \circ T=I_{V} .
$$

Similarly,

$$
\begin{aligned}
& \text { Similarly, } \\
& {[T \cdot U]_{\gamma}=[T]_{\beta}^{\gamma}[U]_{\gamma}^{\beta}=A B=A A^{-1}=I_{n} } \\
&=\left[I_{\omega}\right]_{\gamma}
\end{aligned}
$$

So, by HW $T \circ U=I_{W}$.

Since $U 0 T=I_{V}$
and $T \cdot U=I_{w}$
we know that $U=T^{-1}$.
So, $T^{-1}: W \rightarrow V$ exists
and T is $1-1$ and onto.

Corollary: Let V be a finite dimensional vector space over a field F. Let β and β^{\prime} be ordered bases for V. Let $I: V \rightarrow V$ be the identity linear transformation $I(x)=x$ for all $x \in V]$ Let $Q=[I]_{\beta}^{\beta^{\prime}}$ be the change of basis matrix from β to β^{\prime}.
Then:
(1) Q is invertible and $Q^{-1}=[I]_{\beta}^{\beta}$,
(2) If $T: V \rightarrow V$ is a linear transformation then

$$
[T]_{\beta}=\frac{Q^{-1}[T]_{\beta^{\prime}} Q}{[I]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}[I]_{\beta}^{\beta^{\prime}}}
$$

proof:
(1) I is invertible and $I^{-1}=I$.
$[I: V \rightarrow V \quad I(x)=x$ for all $x \in V]$
The theorem for Weds says that $Q=[I]_{\beta}^{\beta^{\prime}}$ is invertible and

$$
\begin{aligned}
& Q=[I]_{\beta}^{\prime} \text { is invertible } \\
& Q^{-1}=\left([I]_{\beta}^{\beta^{\prime}}\right)^{-1}=\left[I^{-1}\right]_{\beta^{\prime}}^{\beta}=[I]_{\beta^{\prime}}^{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) We have that } \\
& \begin{aligned}
& Q^{-1}[T]_{\beta^{\prime}} Q=[I]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}^{\beta^{\prime}}[I]_{\beta}^{\beta^{\prime}} \\
&=[I]_{\beta^{\prime}}^{\beta}[T 0 I]_{\beta}^{\beta^{\prime}} \\
& {[U 0 T]_{\alpha}^{\gamma}=} \\
& {[U]_{\delta}^{\gamma}[T]_{\alpha}^{\delta}=[I]_{\beta^{\prime}}^{\beta}[T]_{\beta}^{\beta^{\prime}}=[I 0 T]_{\beta}^{\beta} } \\
&=[T]_{\beta}^{\beta}=[T]_{\beta}^{\alpha / 2}
\end{aligned}
\end{aligned}
$$

Def: Let A and B be $n \times n$ matrices with entries in a field F. We say that A and B are similar if there exists an $n \times n$ invertible matrix Q with entries from F Where $B=Q^{-1} A Q$

In the previous theorem we sum that $[T]_{\beta}$ and $[T]_{\beta^{\prime}}$ are similar matrices.

Theorem: Let V be a
finite-dimensional vector
space over a field F. Let β be an ordered basis for V. Let $T: V \rightarrow V$ be a linear transformation.
Suppose $n=\operatorname{dim}(V)$.
If A is an $n \times n$ matrix with entries from F that is similar to $[T]_{\beta}$, then $A=[T]_{\gamma}$ where γ is some ordered basis for V.
proof: We have $n=\operatorname{dim}(V)$.
Then $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ where

$$
v_{1}, v_{2}, \ldots, v_{n} \in V
$$

Also, $[T]_{\beta}$ is $n \times n$.
Since A is similar to $[T]_{\beta}$ we know that there exists a_{n} invertible matrix Q that is $n \times n$ and has entries in F and

$$
A=Q^{-1}[T]_{\beta} Q
$$

Let $Q_{i j}$ denote the entry in Q in row i and column j.

That is,

$$
Q=\left(\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 n} \\
Q_{21} & Q_{22} & \cdots & Q_{2 n} \\
\vdots & & & \\
Q_{n 1} & Q_{n 2} & \cdots & Q_{n n}
\end{array}\right)
$$

Define the vectors $w_{1}, w_{2}, \ldots, w_{n}$

$$
\begin{gathered}
\text { as follows: } \\
W_{1}=Q_{11} v_{1}+Q_{21} v_{2}+\cdots+Q_{n 1} v_{n} \\
W_{2}=Q_{12} v_{1}+Q_{22} v_{2}+\cdots+Q_{n 2} v_{n} \\
\vdots \\
W_{n}=Q_{1 n} v_{1}+Q_{2 n} v_{2}+\ldots+Q_{n n} v_{n} \\
S_{0,} W_{j}=\sum_{i=1}^{n} Q_{i j} v_{i} \leftarrow \begin{array}{l}
\text { this sum } \\
\text { runs down } \\
\text { the j -th } \\
\text { column } \\
\text { of } Q
\end{array}
\end{gathered}
$$

Let $\gamma=\left[\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right]$
We will now show that γ is a basis for V.
Let's show γ is a linearly independent set

Suppose

$$
\begin{aligned}
& \text { Suppose } \\
& c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{n} w_{n}=\overrightarrow{0}
\end{aligned}
$$

where $c_{1}, c_{2}, \ldots, c_{n} \in F$.

$$
\begin{aligned}
& \text { Then, }\left(\frac{w_{1}}{c_{1}\left(Q_{11} v_{1}+Q_{21} v_{2}+\cdots+Q_{n 1} v_{n}\right)}\right. \\
& +c_{2}\left(Q_{12} v_{1}+Q_{22} v_{2}+\cdots+Q_{n 2} v_{n}\right) \\
& +\cdots+ \\
& +c_{n}\left(w_{n} v_{1 n}+Q_{2 n} v_{2}+\cdots+Q_{n n} v_{n}\right)
\end{aligned}
$$

Then,

Rearranging we get that

$$
\begin{aligned}
& \left(c_{1} Q_{11}+c_{2} Q_{12}+\ldots+c_{n} Q_{1 n}\right) V_{1} \\
& +\left(c_{1} Q_{21}+c_{2} Q_{22}+\ldots+c_{n} Q_{2 n}\right) V_{2} \\
& +\ldots+ \\
& +\left(c_{1} Q_{n 1}+c_{2} Q_{n 2}+\ldots+c_{n} Q_{n n}\right) V_{n}=\overrightarrow{0}
\end{aligned}
$$

Since $\beta=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$ is a linearly independent set we have that

$$
\begin{gathered}
c_{1} Q_{11}+c_{2} Q_{12}+\ldots+c_{n} Q_{1 n}=0 \\
c_{1} Q_{21}+c_{2} Q_{22}+\ldots+c_{n} Q_{2 n}=0 \\
\vdots \\
\vdots \\
c_{1} Q_{n 1}+c_{2} Q_{n 2}+\ldots+c_{n} Q_{n n}=0
\end{gathered}
$$

Rewriting this as a matrix equation we get that

$$
\left(\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 n} \\
Q_{21} & Q_{22} & \cdots & Q_{2 n} \\
\vdots & \vdots & & \vdots \\
Q_{n 1} & Q_{n 2} & \cdots & Q_{n n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Thus,

$$
Q\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since Q is invertible, Q^{-1} exists and

$$
\begin{aligned}
& \text { Since } Q \text { is invertible, } \\
& \left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\underbrace{Q^{-1} Q}_{I_{n}}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
\end{aligned}
$$

Thus, $c_{1}=0, c_{2}=0, \ldots, c_{n}=0$.

Thus $\gamma=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ is a linearly independent set.
Since γ contains n vectors and $\operatorname{dim}(V)=n$, we know γ is a basis for V.
By the definition of $w_{j}, Q=[I]_{\gamma}^{\beta}$
Why? $W_{j}=\sum_{i=1}^{n} Q_{i j} V_{i}$

$$
I\left(w_{j}\right)=w_{j}=\sum_{i=1}^{n} Q_{i j} v_{i}
$$

So the j th column of $[I]_{\gamma}^{\beta}$ is $\left(\begin{array}{c}Q_{1 j} \\ Q_{2 j} \\ \vdots \\ Q_{n j}\end{array}\right)$ which is the same as the jth column of Q.

Thus,

$$
Q^{-1}=\left([I]_{\gamma}^{\beta}\right)^{-1}=\left[I^{-1}\right]_{\beta}^{\gamma}=[I]_{\beta}^{\gamma}
$$

So,

$$
\begin{aligned}
A & =Q^{-1}[T]_{\beta} Q \\
& =[I]_{\beta}^{\gamma}[T]_{\beta}[I]_{\gamma}^{\beta} \\
& =[T]_{\gamma}
\end{aligned}
$$

