Review topic -
Review of determinants

Def: Let A be an $n \times n$ matrix with coefficients from a field F. Let $1 \leq i \leq n$ and $1 \leq j \leq n$.
The matrix $A_{i j}$ is defined to be the $(n-1) \times(n-1)$ matrix obtained by removing the i-th row and j-th column of A.

$$
\begin{array}{ll}
\text { Ex: } A=\left(\begin{array}{ccc}
1 & 5 & 7 \\
0 & -1 & 2 \\
3 & \pi & 10
\end{array}\right) \\
A_{32}=\left(\begin{array}{ll}
1 & 7 \\
0 & 2
\end{array}\right) & A_{13}=\left(\begin{array}{cc}
0 & -1 \\
3 & \pi
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & \$ & 7 \\
0 & -1 & 2 \\
3 & n & 10
\end{array}\right) & \left(\begin{array}{ccc}
1 & 5 & 7 \\
0 & -1 & 2 \\
3 & \pi & 19
\end{array}\right)
\end{array}
$$

Def: Let A be an $n \times n$ matrix with coefficients from a field F. Let $a_{i j}$ be the entry in the i-th row and j-th column of A.
(1) If $n=1$ and $A=\left(a_{11}\right)$ then $\operatorname{define} \operatorname{det}(A)=a_{11}$
(2) If $n=2$ and $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ then define $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$
(3) If $n \geqslant 3$, then $\operatorname{define} \operatorname{det}(A)$ as follows. Pick a column j where $1 \leq j \leqslant n$. Define

$$
\operatorname{det}(A)=\sum_{\begin{array}{c}
\text { sum over rows } i=1 \\
\text { column } j \text { is fixed }
\end{array}}^{\sum_{\begin{array}{c}
n \\
(n-1) \times(n-1) \\
\text { matrix }
\end{array}}^{n}(-1)^{i+j} a_{i j} \operatorname{det}(\underbrace{A_{i j}}_{\text {this is }})}
$$

This is called the expansion of the determinant along the j-th column

Note: One can also expand along a row in part (3) of the previous definition. To do this, pick a row i with $1 \leq i \leq n$ and replace

$$
\begin{aligned}
& \operatorname{step} \text { (3) with } \\
& \operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
\end{aligned}
$$

step (3) with

Sum over the columns j
row i is fixed
This is called the expansion of the determinant along row i.
Fact: This def is well-defined. One can show that the final result is the same no matter what row or column you expand on in step 3.

Notation: One can also use bars instead of det. For example,

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1 \\
\pi & 5 & 7
\end{array}\right)=\left|\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1 \\
\pi & 5 & 7
\end{array}\right|
$$

Ex: $\operatorname{det}(10)=10$
Ex: $\operatorname{det}\left(\begin{array}{cc}-1 & 0 \\ 3 & 7\end{array}\right)=(-1)(7)-(0)(3)=-7$
Ex: Let

$$
A=\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right)
$$

Expand on row $i=1$

$$
\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{det}(A)=\underbrace{(-1)^{1+1} a_{11} \operatorname{det}\left(A_{11}\right)}_{i=1, j=1}+\frac{(-1)^{1+2} a_{12} \operatorname{det}\left(A_{12}\right)}{i=1, j=2} \\
& +\frac{(-1)^{1+3} a_{13} \operatorname{det}\left(A_{13}\right)}{i=1, j=3}
\end{aligned}
$$

$$
\begin{aligned}
& =(3)[(-4)(-2)-(3)(4)]+(-1)[(-2)(-2)-(3)(5)]+0 \\
& =(3)(-4)-[-11]=-1
\end{aligned}
$$

So,

$$
\operatorname{det}\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right)=-1
$$

Useful tool

$$
\left.\left.\begin{array}{l}
\frac{\text { Useful tool }}{(-1)^{1+1}}\left(\begin{array}{ll}
(-1)^{1+2} & (-1)^{1+3} \\
(-1)^{2+1} & (-1)^{2+2}
\end{array}(-1)^{2+3}\right. \\
(-1)^{3+1} \\
(-1)^{3+2} \\
(-1)^{3+3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right), \begin{array}{l}
\text { put }+ \text { in top } \\
\text { left and } \\
\text { alternate }+/-
\end{array}\right] .
$$

Ex: Let $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2\end{array}\right)$
Lets expand on column 2 .

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
+\Theta+ \\
- \\
+ \\
+
\end{array}\right)\left(\begin{array}{lll}
\pm & - & + \\
- & \pm & - \\
+ & - & +
\end{array}\right)\left(\begin{array}{lll}
\pm & - & + \\
- & \pm & + \\
+ & \Theta
\end{array}\right) \\
& =(-1)[4-15]-4[-6-0]-4[9-0] \\
& =(-1)(-11)+24-36=35-36=-1
\end{aligned}
$$

Ex: Let $A=\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & -2 & -4 & 3 \\ 0 & 5 & 4 & -2\end{array}\right)$
Let's expand on column $j=1$

$$
\begin{aligned}
& (\underbrace{\left(\begin{array}{l}
+ \\
-+- \\
-+-+ \\
+ \\
-++-+ \\
+-+
\end{array}\right)}_{\text {gives the } i+j} \\
& (-1)^{i+j} \\
& \left.\underbrace{-}(-1)(0)\left|\begin{array}{ccc}
2 & -1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right|+\underbrace{\left(\begin{array}{lll}
(1)(0)
\end{array}\right)} \begin{array}{ccc}
2 & -1 & 0 \\
3 & 1 & 0 \\
5 & 4 & -2
\end{array}|+\underbrace{-(-1)(0)}| \begin{array}{ccc}
2 & -1 & 0 \\
3 & 1 & 0 \\
-2 & -4 & 3
\end{array} \right\rvert\, \\
& \left(\begin{array}{cccc}
1 & 2 & -1 & 0 \\
6 & 3 & 1 & 0 \\
0 & -2 & -4 & 3 \\
\phi & 5 & 4 & -2
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 3 & 1 & 0 \\
\phi & 2 & -4 & 3 \\
\phi & 5 & 4 & -2
\end{array}\right)\left(\begin{array}{l}
\phi \\
\phi \\
\phi
\end{array}\right. \\
& \left(\begin{array}{cccc}
2 & -1 & 0 \\
0 & 3 & 1 & 0 \\
0 & -2 & -4 & 3 \\
\phi & -5 & 4 & -2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left|\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right|}_{\begin{array}{c}
\text { calculated } \\
\text { previously }
\end{array}}+0+0+0 \\
& =-1
\end{aligned}
$$

Properties of the determinant
Let F be a field and A and B be $n \times n$ matrices with entries from F. Then:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) A is invertible iff $\operatorname{det}(A) \neq 0$

If A is invertible then

$$
\begin{aligned}
& \text { If } A \text { is invertible } \\
& \operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}
\end{aligned}
$$

