Topic 2-
Spanning, linear independence, bares, dimension

Def: Let V be a vector space over a field F. Let $v_{1}, v_{2}, \ldots, v_{n} \in V$.
(1) The span of $v_{1}, v_{2}, \ldots, v_{n}$ is defined to be

$$
\begin{aligned}
\operatorname{span} & \left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right) \\
= & \{\underbrace{\alpha_{1}, v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}}_{\text {is called a } \underbrace{}_{\text {lineal }}} \mid \alpha_{1}, \ldots, \alpha_{n} \in F\}
\end{aligned}
$$

combination of $v_{1}, v_{2}, \ldots, v_{n}$
(2) If $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$ then we say that $v_{1}, v_{2}, \ldots, v_{n}$ span V or we say that $v_{1}, v_{2}, \ldots, v_{n}$ is a spanning set for V.

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $V_{1}=(0,1)$.

$$
\begin{aligned}
& \text { Then, } \begin{aligned}
\operatorname{span}\left(\left\{v_{1}\right\}\right) & =\left\{\alpha_{1} v_{1} \mid \alpha_{1} \in \mathbb{R}\right\} \\
& =\left\{\alpha_{1}(0,1) \mid \alpha_{1} \in \mathbb{R}\right\} \\
& =\left\{\left(0, \alpha_{1}\right) \mid \alpha_{1} \in \mathbb{R}\right\}
\end{aligned}
\end{aligned}
$$

Then,

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $W_{1}=(1,0), W_{2}=(0,1)$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\operatorname{span} & \left(\left\{w_{1}, w_{2}\right\}\right)=\left\{\alpha_{1} w_{1}+\alpha_{2} \omega_{2} \mid \alpha_{1}, \alpha_{2} \in \mathbb{R}\right\} \\
& =\left\{\alpha_{1}(1,0)+\alpha_{2}(0,1) \mid \alpha_{1}, \alpha_{2} \in \mathbb{R}\right\} \\
& =\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1}, \alpha_{2} \in \mathbb{R}\right\} \\
& =\mathbb{R}^{2}
\end{aligned}
\end{aligned}
$$

So, \mathbb{R}^{2} is spanned by w_{1} and w_{2}.

Another way to say it:
Let $(a, b) \in \mathbb{R}^{2}$.
Then,

$$
\begin{aligned}
(a, b) & =(a, 0)+(0, b) \\
& =a \cdot(1,0)+b \cdot(0,1) \\
& =a \cdot w_{1}+b \cdot w_{2}
\end{aligned}
$$

Thus, $(a, b) \in \operatorname{span}(\{(1,0),(0,1)\})$.
$E x:$ Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $v_{1}=(2,1), v_{2}=(-1,1)$.
Do $V_{1}, v_{2} \operatorname{span} \mathbb{R}^{2} \mathbb{R}_{0}^{D}$
Let $(a, b) \in \mathbb{R}^{2}$.
always
The question is: Can we solve the following equation for c_{1}, c_{2} no matter what (a, b) is ?

$$
(a, b)=c_{1} \underbrace{(2,1)}_{V_{1}}+c_{2} \underbrace{(-1,1)}_{V_{2}}
$$

The above equation is equivalent to

$$
(a, b)=\left(2 c_{1}-c_{2}, c_{1}+c_{2}\right)
$$

This is equivalent to

$$
\begin{array}{r}
2 c_{1}-c_{2}=a \\
c_{1}+c_{2}=b
\end{array}
$$

13 operations for Gaussian elimination
(1) interchange two sows
(2) multiply a row by a non-zero constant
(3) Add a multiple of one row to another row.

$$
2550
$$

$$
\begin{aligned}
& \text { We had } 2 c_{1}-c_{2}=a \\
& c_{1}+c_{2}=b \\
& \left(\begin{array}{cc|c}
2 & -1 & a \\
1 & 1 & b
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
2 & -1 & a
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
0 & -3 & -2 b+a
\end{array}\right) \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 1 & b \\
0 & 1 & -\frac{1}{3} a+\frac{2}{3} b
\end{array}\right)
\end{aligned}
$$

This gives:

$$
\begin{align*}
c_{1}+c_{2} & =b \tag{1}\\
c_{2} & =-\frac{1}{3} a+\frac{2}{3} b \tag{2}
\end{align*}
$$

(2) Gives $c_{2}=-\frac{1}{3} a+\frac{2}{3} b$.

Sub into (1) to get

$$
\begin{aligned}
& \text { to (1) to get } \\
& \begin{aligned}
c_{1}=b-c_{2} & =b-\left(-\frac{1}{3} a+\frac{2}{3} b\right) \\
& =\frac{1}{3} a+\frac{1}{3} b .
\end{aligned}
\end{aligned}
$$

Thus, given any $(a, b) \in \mathbb{R}^{2}$ we can write

$$
\begin{aligned}
& \text { can write } \\
& (a, b)=\underbrace{\left(\frac{1}{3} a+\frac{1}{3} b\right)}_{c_{1}} \cdot \underbrace{(2,1)}_{V_{1}}+\underbrace{\left(-\frac{1}{3}+\frac{2}{3} b\right)}_{c_{2}} \cdot \underbrace{(-1,1)}_{V_{2}}
\end{aligned}
$$

for example,

$$
\begin{aligned}
& \text { or example, } \\
& (1,1)=\frac{2}{3}(2,1)+\frac{1}{3}(-1,1)
\end{aligned}
$$

We showed that

$$
\mathbb{R}^{2}=\operatorname{span}\{(2,1),(-1,1)\}
$$

Lemma: (How 1 \# $4 a$)
Let V be a vector space over a field F. Let \vec{O} be the zero vector of V and let O be the zero element of F.
Then, $O w=\vec{O}$ for all $w \in V$.
proof: We have that

$$
\begin{aligned}
& \text { roof: We have that } \\
& 0 w \stackrel{(18)}{=}(0+0) w \stackrel{(18)}{=} 0 w+0 w
\end{aligned}
$$

We know - (OW) exists in V by V4) 7

Thus,

$$
\underbrace{-(0 w)+0 w}_{\overrightarrow{0}}=\underbrace{-(0 w)+0 w}_{\overrightarrow{0}}+0 w
$$

So, $\vec{O}=\frac{\vec{O}+O \omega}{O \omega}$
Thus, $\vec{O}=O w$.

Theorem: Let V be a vector
space over a field F.
Let $v_{1}, v_{2}, \ldots, v_{n} \in V$.
Let

$$
\begin{aligned}
& \text { Let } \\
& \begin{aligned}
W & =\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right) \\
& =\left\{c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} \mid c_{1}, \ldots, c_{n} \in F\right\}
\end{aligned}
\end{aligned}
$$

Then:
(1) W is a subspace of V.
(2) W is the "smallest" subspace that contains $v_{1}, v_{2}, \ldots, v_{n}$. That is, if U is any subspace with $v_{1}, v_{2}, \ldots, v_{n} \in U$, then $W \subseteq U$.

proof:
(1) Let's show W is a subspace of V.
(i) If we set $c_{1}=c_{2}=\ldots=c_{n}=0$ then we have that

$$
\begin{aligned}
c_{1} v_{1} & +c_{2} v_{2}+\ldots+c_{n} v_{n}= \\
& =0 v_{1}+0 v_{2}+\cdots+0 v_{n} \\
& =\overrightarrow{0}+\overrightarrow{0}+\cdots+\overrightarrow{0} \\
& =\overrightarrow{0} .
\end{aligned}
$$

Thus, $\overrightarrow{0} \in W$.
$(i i)$ Let's show W is closed under. Let $w_{1}, w_{2} \in W$.
Then, $w_{1}=S_{1} v_{1}+S_{2} v_{2}+\cdots+S_{n} v_{n}$ and $w_{2}=t_{1} v_{1}+t_{2} v_{2}+\ldots+t_{n} v_{n}$ where $s_{1}, s_{2}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n} \in F$.

Then,

$$
\begin{aligned}
& \begin{array}{l}
w_{1}
\end{array}+w_{2}= s_{1} v_{1}+s_{2} v_{2}+\ldots+s_{n} v_{n} \\
&+t_{1} v_{1}+t_{2} v_{2}+\ldots+t_{n} v_{n} \\
&=(\underbrace{\left(s_{1}+t_{1}\right)}_{\text {in }} v_{1}+\underbrace{\left(s_{2}+t_{2}\right)}_{\text {in }} v_{2}+\ldots+\underbrace{\left(s_{n}+t_{n}\right)}_{\text {in }} v_{n} \\
& \text { (vi) Thus, } w_{1}+w_{2} \in W, \text { since } \\
&=(a+b) v \quad s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n} \in F .
\end{aligned}
$$

(iii) Let's show W is closed under scalar multiplication.
Let $z \in W$ and $\alpha \in F$.
We need to show that $\alpha z \in W$. Since $z \in W$ we know that

$$
z=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

for some $c_{1}, c_{2}, \ldots, c_{n} \in F$.

Then,

$$
\begin{align*}
& \alpha z=\alpha\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& \frac{1}{=} \alpha\left(C_{1} v_{1}\right)+\alpha\left(c_{2} v_{2}\right)+\cdots+\alpha\left(C_{n} V_{n}\right) \\
& =(\underbrace{\alpha c_{1}}) v_{1}+\underbrace{\left(\alpha c_{2}\right)}_{\text {in } F} V_{2}+\cdots+\underbrace{\left(\alpha c_{n}\right) V_{n}}_{i n F} \\
& =a v_{1}+a v_{2} \tag{F1}\\
& \text { in } F \tag{F1}
\end{align*}
$$

(v6)
$(a b) w=$
Thus, $\alpha z \in W$, because $a(b w)$ $\alpha c_{1}, \alpha c_{2}, \ldots, \alpha c_{n} \in F$.

By (i), (ii), (ïi)
W is a subspace of V.
(1)
(2) Let $W=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$

Let U be a subspace of V
where $v_{1}, v_{2}, \ldots, v_{n} \in U$
We want to show that $W \subseteq U$.
Let $x \in W$.
Then, $X=c_{1} V_{1}+c_{2} V_{2}+\cdots+c_{n} V_{n}$ where $c_{1}, c_{2}, \ldots, c_{n} \in F$.

Since $V_{1}, v_{2}, \ldots, v_{n} \in U$ and U is a subspace of V we know that $c_{1} v_{1}, c_{2} V_{2}, \ldots, c_{n} V_{n} \in U_{\text {. }} . \begin{gathered}\text { under } \\ \text { scalar } \\ \text { mull. }\end{gathered}$
Since $c_{1} v_{1}, c_{2} v_{2}, \ldots, c_{n} v_{n} \in U$ and V is a subspace of V we know that $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \in U$.
Thus, $x \in U$.
So, $W \subseteq V_{1}$
(2)

Def: Let V be a vector space over a field F. Let $v_{1}, v_{2}, \ldots, v_{n} \in V$.
We say that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent if there exists $c_{1}, c_{2}, \ldots, c_{n} \in F$, that are not all zero, such that

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}
\end{aligned}
$$

If there are no such $c_{1}, c_{2}, \ldots, c_{n}$ then we say that $V_{1}, V_{2}, \ldots, V_{n}$ are linearly independent.

Ex: Let $V=\mathbb{R}^{3}$ and $F=\mathbb{R}$.
Let

$$
\begin{align*}
& v_{1}=(1,0,1) \tag{16}\\
& v_{2}=(-1,2,1) \\
& v_{3}=(0,2,2)
\end{align*}
$$

Are v_{1}, v_{2}, v_{3} linearly dependent or linearly independent?
We want to see what the solutions are to

$$
\begin{aligned}
& \text { want are to } \\
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0}
\end{aligned}
$$

which is

This becomes

$$
\left(\begin{array}{l}
c_{1} \\
0 \\
c_{1}
\end{array}\right)+\left(\begin{array}{c}
-c_{2} \\
2 c_{2} \\
c_{2}
\end{array}\right)+\left(\begin{array}{c}
0 \\
2 c_{3} \\
2 c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This becomes

$$
\left(\begin{array}{l}
c_{1}-c_{2} \\
2 c_{2}+2 c_{3} \\
c_{1}+c_{2}+2 c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This becomes

$$
\begin{aligned}
c_{1}-c_{2} & =0 \\
2 c_{2}+2 c_{3} & =0 \\
c_{1}+c_{2}+2 c_{3} & =0
\end{aligned}
$$

Let's solve the system:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
1 & 1 & 2 & 0
\end{array}\right) \\
& \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

we get:

$$
\begin{align*}
& \left(\begin{array}{c}
c_{1}-c_{2}=0 \\
\left(c_{2}\right)+c_{3}=0
\end{array}\right. \\
& \begin{array}{l}
c_{1}=c_{2} \\
c_{2}=-c_{3}
\end{array} \text { (1) }
\end{align*}
$$

leading variables free ${ }^{\text {varia }}{ }^{2}$
solve for leading variables

Give free variables new name.
Let $c_{3}=t$
Solve (1) \& (2) by back substitution.
(2) gives $c_{2}=-c_{3}=-t$
(1) gives $c_{1}=c_{2}=-t$

Thus, the solutions to

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0}
$$

are:

$$
\begin{aligned}
& c_{1}=-t \\
& c_{2}=-t \\
& c_{3}=t
\end{aligned}
$$

where t is any real number

Thus,

$$
\begin{aligned}
& \text { hus, } \\
& -t v_{1}-t v_{2}+t v_{3}=\overrightarrow{0}
\end{aligned}
$$

for any $t \in \mathbb{R}$.

$$
\begin{aligned}
& \text { for any } t \in \mathbb{N} . \\
& \text { For example if } t=1, \\
& -V_{1}-V_{2}+V_{3}=\overrightarrow{0} \\
& \qquad \begin{array}{l}
V_{3}=V_{1}+V_{2} \\
\text { equation } \\
\text { for } \\
v_{1}, v_{2}, v_{3}
\end{array} \\
& \text { Thus, } v_{1}, v_{2}, V_{3} \text { are linearly dependent. }
\end{aligned}
$$

Ex: Let $V=P_{2}(\mathbb{R})$ and $F=\mathbb{R}$.
Let

$$
\begin{aligned}
& =\mathbb{R} \\
& w_{1}=-3+4 x^{2} \\
& w_{2}=5-x+2 x^{2} \\
& w_{3}=1+x+3 x^{2}
\end{aligned}
$$

Are w_{1}, w_{2}, w_{3} linearly dependent or linearly independent?
Consider the equation

$$
\begin{aligned}
& \text { sides the equation } \\
& c_{1} w_{1}+c_{2} w_{2}+c_{3} w_{3}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { This becomes } \\
& c_{1}\left(-3+4 x^{2}\right)+c_{2}\left(5-x+2 x^{2}\right) \\
& \quad+c_{3}\left(1+x+3 x^{2}\right)=0+0 x+0 x^{2} \\
& \text { This is equivalent to } \\
& \underbrace{}_{+(\underbrace{\left(-3 c_{1}+5 c_{2}+c_{3}\right)}+\underbrace{\left(-c_{2}+c_{3}\right) x})}=\underbrace{2}+3 c_{2}+3 c_{3}) x^{2}
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
-3 c_{1}+5 c_{2}+c_{3} & =0 \\
-c_{2}+c_{3} & =0 \\
4 c_{1}+2 c_{2}+3 c_{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solving we get } \\
& \left(\begin{array}{ccc|c}
-3 & 5 & 1 & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \xrightarrow{-\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{rrr|r}
1 & -\frac{5}{3} & \frac{-1}{3} & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \\
& \xrightarrow{-4 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{rrr|r}
1 & -\frac{5}{3} & -\frac{1}{3} & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{26}{3} & \frac{13}{3} & 0
\end{array}\right) \\
& \xrightarrow[3 R_{3} \rightarrow R_{3}]{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 26 & 13 & 0
\end{array}\right) \\
& \xrightarrow{-26 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 39 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{\frac{1}{39} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

This becomes

$$
\begin{aligned}
& \text { ais becomes } \\
& c_{1}-\frac{5}{3} c_{2}-\frac{1}{3} c_{3}=0 \\
& c_{2}-c_{3}=0 \\
& c_{3}=0
\end{aligned}
$$

leading Variables c_{1}, c_{2}, c_{3} no free variables

Solve for leading voniables:

$$
\begin{align*}
& c_{1}=\frac{5}{3} c_{2}+\frac{1}{3} c_{3} \tag{1}\\
& c_{2}=c_{3} \tag{2}\\
& c_{3}=0 \tag{3}
\end{align*}
$$

Back substitute.
(3) gives $C_{3}=0$
(2) gives $c_{2}=c_{3}=0$
(1) gives $c_{1}=\frac{5}{3} c_{2}+\frac{1}{3} c_{3}=\frac{5}{3}(0)+\frac{1}{3}(0)=0$

Thus the only solution to

$$
\begin{aligned}
& c_{1} w_{1}+c_{2} w_{2}+c_{3} w_{3}=\overrightarrow{0} \\
& \text { is } c_{1}=0, c_{2}=0, c_{3}=0 \text {. }
\end{aligned}
$$

Thus, w_{1}, w_{2}, w_{3} are linearly independent.

Summary:
You can always write

$$
\begin{aligned}
& n \text { can always write } \\
& 0 \cdot v_{1}+O v_{2}+\cdots+O v_{n}=\overrightarrow{0}
\end{aligned}
$$

If this is the only solution to $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}$
then $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent.
If there are more solutions then just the zero solution above then $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent.

Def: Let V be a vector space over a field F.
Let $v_{1}, v_{2}, \ldots, v_{n} \in V$.
We say that $V_{1}, V_{2}, \ldots, V_{n}$ form a basis for V if
(1) $\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)=V$
and (2) $V_{1}, V_{2}, \ldots, V_{n}$ are linearly independent.

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $v_{1}=\binom{1}{0}, v_{2}=\binom{0}{1}$.
Claim: v_{1}, v_{2} is a basis for $V=\mathbb{R}^{2}$
(1) Last class we showed that
proof:

$$
\begin{aligned}
& \text { Last class we }\left(\left\{v_{1}, v_{2}\right\}\right)=\mathbb{R}^{2} \\
& \operatorname{span}
\end{aligned}
$$

(2) Let's show that v_{1}, v_{2} are linearly in dependent.
suppose $c_{1} v_{1}+c_{2} v_{2}=\overrightarrow{0}$
That is, $c_{1}\binom{1}{0}+c_{2}\binom{0}{1}=\binom{0}{0}$
Then, $\binom{c_{1}}{c_{2}}=\binom{0}{0}$.
So, $c_{1}=0, c_{2}=0$ is the only solution to $c_{1} v_{1}+c_{2} v_{2}=\overrightarrow{0}$. Thus, v_{1}, v_{2} are lin. ind.
By (1) and (2), v_{1}, v_{2} are a basis for $V=\mathbb{R}^{2}$ over $F=\mathbb{R}$.

Ex: Let

$$
V=M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$ and $F=\mathbb{R}$.

$$
\begin{aligned}
& \text { Let } \\
& v_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), v_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), v_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), v_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=\left(001, v_{2}\right. \\
& \text { Let } \beta=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
\end{aligned}
$$

Claim: β is a basis for $M_{2,2}(\mathbb{R})$ proof of claim:
(1) Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2,2}(\mathbb{R})$.

$$
\begin{aligned}
&\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) \\
&=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \text { and }
\end{aligned}
$$

Then,

Thus, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{span}(\beta)$. So, β Spans $M_{2,2}(\mathbb{R})$
(2) Suppose

$$
\begin{aligned}
& \text { Suppose } \\
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\overrightarrow{0}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& c_{1}\left(\begin{array}{ll}
1 & 0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+c_{4}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Which becomes } \\
& \left(\begin{array}{ll}
c_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & c_{2} \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c_{3} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & c_{4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { becomes } \\
& \left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Which gives

$$
\begin{aligned}
& \text { ich gives } \\
& c_{1}=0, c_{2}=0, c_{3}=0, c_{4}=0 \text {. }
\end{aligned}
$$

Thus, $v_{1}, v_{2}, v_{3}, v_{4}$ are lin. ind.
$B y$ (1) and (2), $\beta=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ form a basis for $V=M_{2,2}(\mathbb{R})$ over $F=\mathbb{R}$.

Theorem: Let V be a vector space over a field F.
Let $\beta=\left\{V_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of V.
Then β is a basis for V if and only if every vector $x \in V$ can be expressed uniquely in the form

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

where $c_{1}, c_{2}, \ldots, c_{n} \in F$.
proof:
(\checkmark) Suppose every vector $x \in V$ can be written uniquely in the form $x=C_{1} v_{1}+C_{2} v_{2}+\ldots+C_{n} v_{n}$, where $c_{i} \in F$.
We want to show that β is a basis for V.
Since every $x \in V$ is of the form $x=c_{1} v,+\ldots+c_{n} v_{n}$ we know that

$$
\begin{aligned}
& \text { we know that } \\
& V=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{span}(\beta) \text {. }
\end{aligned}
$$

We now need to show that $v_{1}, v_{2}, \ldots, v_{n}$ are lin. ind.
Suppose we want to solve

$$
\begin{aligned}
& \text { pose we want } \\
& c_{1} V_{1}+c_{2} V_{2}+\cdots+c_{n} V_{n}=\vec{O} .
\end{aligned}
$$

We know we have

$$
O v_{1}+O v_{2}+\cdots+O v_{n}=\overrightarrow{0}
$$

By our initial assumption with $x=\overrightarrow{0}$ this must be the only solution to $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}$.

Thus, $v_{1}, v_{2}, \ldots, v_{n}$ are lineally independent.
So, $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis.
(\Rightarrow) Let β be a basis for $V_{\text {. }}$. Pick some $x \in V$.
Since β is a basis for V, β spans V.
Thus, there exist $c_{1}, c_{2}, \ldots, c_{n} \in F$ Where $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{1} .(*)$

Let's show this expression is unique.
Suppose we also had

$$
x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{n}^{\prime} v_{n}
$$

for some $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime} \in F$.
Computing $(*)-(* *)$ we get

$$
\begin{aligned}
& \text { Computing } \\
& \overrightarrow{0}=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+ \\
& \left(c_{n}-c_{n}^{\prime}\right)
\end{aligned}
$$

$$
\left(c_{n}-c_{n}^{\prime}\right) v_{n}
$$

Since $v_{1}, v_{2}, \ldots, v_{n}$ are lin. ind. we have $c_{1}-c_{1}^{\prime}=0, c_{2}-c_{2}^{\prime}=0$,

$$
\cdots, c_{n}-c_{n}^{\prime}=0
$$

Thus, $c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, \ldots, c_{n}=c_{n}^{\prime}$.
So, x can be written uniquely in the form $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$.

Notation for the next Theorem
Consider the system

$$
\begin{align*}
10 x_{1}-3 x_{2}+\frac{1}{3} x_{3} & =0 \tag{*}\\
5 x_{2}-x_{3} & =0 \\
-x_{1}+x_{2} & =0
\end{align*}
$$

Let

$$
\begin{aligned}
& A_{1}=\left(10,-3, \frac{1}{3}\right) \\
& A_{2}=(0,5,-1) \\
& A_{3}=(-1,1,0) \\
& X=\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Then $(*)$ can be rewritten as

$$
\begin{aligned}
& A_{1} \cdot X=0 \\
& A_{2} \cdot X=0 \\
& A_{3} \cdot X=0
\end{aligned} \quad \text { Same as }(*)
$$

Adding $\frac{1}{10} *($ row 1$)$ to (row 3)

$$
\begin{aligned}
10 x_{1}-3 x_{2}+\frac{1}{3} x_{3} & =0 \\
5 x_{2}-x_{3} & =0 \\
\frac{7}{10} x_{2}+\frac{1}{30} x_{3} & =0
\end{aligned}
$$

Which can be represented by

$$
\begin{gathered}
A_{1} \cdot X=0 \\
A_{2} \cdot X=0 \\
\left(\frac{1}{10} A_{1}+A_{3}\right) \cdot X=0
\end{gathered}
$$

Theorem: Let

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \tag{array}\\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{align*}
$$

be a system of m equations and n unknowns where $a_{i j} \in F$ where F is a field.
If $n>m$, then $(*)$ has a non-trivial solution.
[That is, there is a solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F^{n}$ to (*) with

$$
\begin{aligned}
& (*) \text { with } \\
& \left.\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq(0,0, \ldots, 0)\right]
\end{aligned}
$$

proof: We induct on m [the \# of
base case: Suppose $m=1$.
We also assume $n>m=1$. So, $n \geqslant 2$.
So, (*) becomes

$$
\begin{equation*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \tag{*}
\end{equation*}
$$

If $a_{11}=a_{12}=\ldots=a_{1 n}=0$, then an example of a nontrivial solution would be $x_{1}=x_{2}=\ldots=x_{n}=1$.
Suppose one of the constants isn't 0 .
Without loss of generality, assume $a_{11} \neq 0$.
means: the same proof
will work in other situations.
Then ($*$) becomes

$$
x_{1}=-a_{11}^{-1}\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)
$$

Set $x_{2}=x_{3}=\ldots=x_{n}=1$ and

$$
x_{1}=-a_{11}^{-1}\left(a_{12}+\cdots+a_{1 n}\right)
$$

This gives a non-trisial solution to (*).
Note we definitely used $n \geqslant 2$ to get the non-trivial solution.
So, the base case $m=1$ is true.

Induction hypothesis
Now assume the theorem is true for any linear system of $m-1$ equations with more than $m-1$ unknowns

Suppose we have a system ($*$) of m equations and n unknowns with $n>m>1$.

If all the $a_{i j}=0$, then set $x_{1}=x_{2}=\ldots=x_{n}=1$ and we get a non-trivial solution.
Now suppose some coefficient $a_{i j} \neq 0$. By renumbering the equations and variables we may assume $a_{11} \neq 0$.
set

$$
\begin{aligned}
& A_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right) \\
& A_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right) \\
& \vdots \\
& A_{n}=\left(a_{m 1}, a_{n 2}, \ldots, a_{m n}\right) \\
& X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Then ($*$) becomes

$$
\left.\begin{array}{c}
A_{1} \cdot x=0 \\
A_{2} \cdot x=0 \\
\vdots \\
A_{m} \cdot x=0
\end{array}\right\}(x *)
$$

By subtracting a multiple of the first row and adding it to the rows below it we can eliminate x_{1} in rows 2 through m. We get that

$$
\begin{aligned}
& 2 \text { through } \\
& (* *) \text { becomes } \\
& A_{1} \cdot x=0 \\
& \left(A_{2}-a_{21}, a_{11}^{-1} A_{1}\right) \cdot x=0 \\
& \vdots \\
& \vdots \\
& \left(A_{m}-a_{m 1} a_{11}^{-1} A_{1}\right) \cdot x=0
\end{aligned}
$$

no x_{1} in these rows

The last equations

$$
\left(A_{2}-a_{21} a_{11}^{-1} A_{1}\right) \cdot x=0 \quad \vdots \quad(* * *)
$$

are a system of $m-1$ equations with $n-1>m-1$ unknowns. Thus, by the induction hypothesis we can find a solution

$$
\begin{aligned}
& \text { we can find a so } \\
& \left(x_{2}, x_{3}, \ldots, x_{n}\right) \neq(0,0, \ldots, 0) \\
& \text { to }(* * *) \text {. }
\end{aligned}
$$

Now using this solution $\left(x_{2}, \ldots, x_{n}\right)$ to $\left(k_{*} *\right)$ we can also solve $A_{1} \cdot X=0$ by setting

$$
x_{1} \cdot x=-a_{11}^{-1}\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)
$$

[because $A_{1} \cdot x=0$ is

$$
\begin{aligned}
& 2 \text { cause } A_{1} \cdot x=0 \text { is } \\
& \left.a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{\text {in }} x_{n}=0 \text { and } a_{11} \neq 0\right]
\end{aligned}
$$

Set $X=\left(x_{1}, x_{2}, 000, x_{n}\right)$.
We have $A_{i} \cdot X=0$.
We also have that $i \geqslant 2$ then

$$
A_{i} \cdot x=a_{i 1} \cdot \underbrace{-1}_{0} \underbrace{A_{1}}_{1+*)} \cdot X=0
$$

Thus we have solved

$$
\begin{aligned}
A_{1} \cdot x & =0 \\
x & =0
\end{aligned}
$$

with a non solution.
$A_{2} \cdot x=0$
: trivial solution.

$$
A_{m} \cdot x=0
$$

Theorem: Let V be a vector space over a field F.
Let $V_{1}, V_{2}, \ldots, V_{m} \in V$ where

$$
V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)
$$

Let $w_{1}, w_{2}, \ldots, w_{n} \in V$.
If $n>m$, then $w_{1}, w_{2}, \ldots, w_{n}$ are linearly dependent.
proof: Since $V_{1}, v_{2}, \ldots, v_{m}$ span V we can write

For any $c_{1}, c_{2}, \ldots, c_{n} \in F$ we have that

$$
\begin{aligned}
& c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{n} w_{n}= \\
&= c_{1}\left(a_{11} v_{1}+a_{21} v_{2}+\ldots+a_{m 1} v_{m}\right) \\
&+c_{2}\left(a_{12} v_{1}+a_{22} v_{2}+\ldots+a_{m 2} v_{m}\right) \\
& \vdots \vdots \\
&+c_{n}\left(a_{1 n} v_{1}+a_{2 n} v_{2}+\ldots+a_{m n} v_{n}\right) \\
&=\left(c_{1} a_{11}+c_{2} a_{12}+\ldots+c_{n} a_{1 n}\right) v_{1} \\
&+\left(c_{1} a_{21}+c_{2} a_{22}+\ldots+c_{n} a_{2 n}\right) v_{2} \\
& \vdots \\
&+\left(c_{1} a_{m 1}+c_{2} a_{m 2}+\ldots+c_{n} a_{m n}\right) v_{m}
\end{aligned}
$$

From the theorem from Monday, since $n>m$ we know that

$$
\begin{gathered}
c_{1} a_{11}+c_{2} a_{12}+\ldots+c_{n} a_{1 n}=0 \\
c_{1} a_{21}+c_{2} a_{22}+\ldots+c_{n} a_{2 n}=0 \\
\vdots \\
c_{1} a_{m 1}+c_{2} a_{m 2}+\ldots+c_{n} a_{n n}=0
\end{gathered}
$$

has a non-trivial solution

$$
\begin{aligned}
& \text { has a nontrivial } \\
& \left(\hat{c}_{1}, \hat{c}_{2}, \ldots, \hat{c}_{n}\right) \neq(0,0, \ldots, 0) \text {. }
\end{aligned}
$$

Plugging this solution into the previous page we will get

$$
\begin{aligned}
& \hat{c}_{1} w_{1}+\widehat{c}_{2} w_{2}+\cdots+\hat{c}_{n} w_{n} \\
& =O v_{1}+O v_{2}+\cdots+O v_{m}=\overrightarrow{0}
\end{aligned}
$$

Thus, $w_{1}, w_{2}, \ldots, w_{n}$ are lin. dep.

Corollary: Let V be a vector space over a field F. Suppose $\beta_{1}=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ and
$\beta_{2}=\left\{w_{1}, w_{2}, \ldots, w_{b}\right\}$ are $b_{0}+t$
bases for V. Then $a=b$.
proof:
Since β_{1} is a basis for V we know that β_{1} spans V.
If $b>a$, then by the previous theorem, β_{2} would be a linearly dependent set of vectors.
But β_{2} is a basis, so the β_{2} is a set of linearly independent vectors.
Thus, $b \leq a$.

Now we show $a \leq b$.
Since β_{2} is a basis for V we know that β_{2} spans V.
If $a>b$, then by the previous theorem, β, would be a linearly dependent set of vectors.
But β_{1} is a basis, so the β_{1} is a set of linearly independent vectors.
Thus, $a \leq b$.

Since $b \leq a$ and $a \leq b$ we know that $a=b$.

The previous Corollary allows us to make the following definition.

Def: Let V be a vector space over a field F. We say that V is finite dimensional if it has a basis consisting of a finite number of elements.
If V has a basis with n elements then we say that V has dimension n and write $\underbrace{\operatorname{dim}(v)=n}_{\text {some write }}$ $\operatorname{dim}_{F}(V)=n$

A special case is when $V=\{\overrightarrow{0}\}$.
This vector space has no basis.
We define $V=\left\{\begin{array}{c}\overrightarrow{0}\end{array}\right\}$ to have dimension zero, that is $\operatorname{dim}(\{\overrightarrow{0}\})=0$.

Ex: Let F be a field and $V=F^{n}$ where $n \geqslant 1$. Recall $V=F^{n}$ is a vector space over F.
We now show that $\operatorname{dim}\left(F^{n}\right)=n$
proof: We will construct what is called the standard

Let v_{i} be the vector with a basis. 1 in the i-th spot and O^{\prime} 's everywhere else.
That is,

$$
\begin{aligned}
& \text { at is, } \\
& v_{1}=(1,0,0, \ldots, 0) \\
& v_{2}=(0,1,0, \ldots, 0) \\
& \vdots \\
& v_{n}=(0,0,0, \ldots, 1)
\end{aligned}
$$

Let $\beta=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$
We will now show that β is a basis for $V=F^{n}$ which will give us that $\operatorname{dim}\left(F^{n}\right)=n$.
(1) β spans $V=F^{n}$:

Let $x \in F^{n}$
Then, $x=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
where $f_{1}, f_{2}, \ldots, f_{n} \in F$.
So,

$$
\begin{aligned}
x= & \left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
= & \left(f_{1}, 0, \ldots, 0\right)+\left(0, f_{2}, \ldots, 0\right) \\
& \quad+\ldots+\left(0,0, \ldots, f_{n}\right) \\
= & f_{1}(1,0, \ldots, 0)+f_{2}(0,1, \ldots, 0) \\
& \quad+\ldots+f_{n}(0,0, \ldots, 1) \\
= & f_{1} v_{1}+f_{2} v_{2}+\ldots+f_{n} v_{n}
\end{aligned}
$$

Thus, $x \in \operatorname{span}(\beta)$.
Therefore, β spans $V=F^{n}$.
(2) β is linearly independent:

$$
\begin{aligned}
& \text { pose } \\
& c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=\overrightarrow{0} \\
& c_{n} \in F
\end{aligned}
$$

Suppose
where $c_{1}, c_{2}, \ldots, c_{n} \in F$.

$$
\begin{aligned}
& \text { hen, } \\
& \begin{array}{l}
c_{1}(1,0, \ldots, 0)+c_{2}(0,1, \ldots, 0) \\
\quad+\ldots .+c_{n}(0,0, \ldots, 1)=(0,0, \ldots, 0)
\end{array}
\end{aligned}
$$

So, $\left(c_{1}, 0, \ldots, 0\right)+\left(0, c_{2}, \ldots, 0\right)$
Then,

$$
\left.\begin{array}{rl}
\text { So, }\left(c_{1}, 0, \ldots, 0\right)+\left(0, c_{2}, \ldots,\right. \\
+\ldots & +\left(0,0, \ldots, c_{n}\right)
\end{array}\right)=(0,0, \ldots, 0) .
$$

So, $c_{1}=0, c_{2}=0, \ldots, c_{n}=0$.
Thence, $V_{1}, V_{2}, \ldots, V_{n}$ are lin. independent.

Ex: Let $F=\mathbb{R}$ or $F=\mathbb{C}$. (Si)
Let

$$
\begin{aligned}
& \text { Let } \\
& V=P_{n}(F)=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{i} \in F\right\}
\end{aligned}
$$

One can show that
is a basis for $P_{n}(F)$ over F.
So, $\operatorname{dim}\left(P_{n}(F)\right)=n+1$

Ex: Let F be a field and $V=M_{m, n}(F)$ be the set of $m \times n$ matrices with entries from F. One can show that

$$
\begin{aligned}
& \text { can show that } \\
& \operatorname{dim}\left(M_{m, n}(F)\right)=m \cdot n
\end{aligned}
$$

$$
\begin{aligned}
& \text { For example, } \\
& M_{3,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in \mathbb{R}\right\}
\end{aligned}
$$

A basis for $M_{3,2}(\mathbb{R})$ is

$$
\begin{aligned}
& \text { A basis for } M_{3,2}(\mathbb{R}) \text { is } \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \\
& (M,(\mathbb{R}))=3 \cdot 2=6
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \left.\left(\begin{array}{lll}
0 & 0
\end{array}\right) \right\rvert\, 00
\end{array}\right)=M_{3,2}(\mathbb{R})\right)=3 \cdot 2=6
$$

Theorem: Let V be a vector
space over a field F.
Suppose $\operatorname{dim}(V)=n>0$.
Then the following are true:
(1) Let $V_{1}, v_{2}, \ldots, v_{m} \in V$.
(a) If $m>n$, then $v_{1}, v_{2}, \ldots, v_{m}$ are linearly dependent.
(b) If $m<n$, then $v_{1}, v_{2}, \ldots, v_{m}$ do not span V.
(c) If $m=n$ and $v_{1}, v_{2}, \ldots, v_{m}$ span $V_{\text {, }}$, then $V_{1}, v_{2}, \ldots, v_{m}$ are also linearly independent and hence form a basis for V.
(d) If $m=n$ and $v_{1}, v_{2}, \ldots, v_{m}$ ore linearly independent, then $V_{1}, V_{2}, \ldots, V_{m}$ span V and hence form a basis for V.
(2) Let W be a subspace of V. Then W is finite-dimensional and $\operatorname{dim}(w) \leq \underbrace{n}_{\operatorname{dim}(v)}$
Moreover, $W=V$ if and only if $\operatorname{dim}(W)=\operatorname{dim}(V)$.

proof: We have that $\operatorname{dim}(V)=n$.
(1) Let $V_{1}, V_{2}, \ldots, V_{m} \in V$.
(a) Suppose that $m>n$.

Since $\operatorname{dim}(V)=n$ we know that V has a basis with n vectors.
So, V is spanned by n vectors.
From a previous theorem, since $m>n$ we know that $V_{1}, V_{2}, \ldots, V_{m}$ are lineally dependent.
(b) Suppose $m<n$.

Let's show that $v_{1}, v_{2}, \ldots, v_{m}$ du not span V.
Suppose instead that $V_{1}, V_{2}, \ldots, V_{m}$ did span V.

Then from our previous results, since $m<n$, and $v_{1}, v_{2}, \ldots, v_{m}$ span V, we would have that any set of n vectors must be linearly dependent.
But since $\operatorname{dim}(V)=n$ there must be a basis for V of size n.
So, there is a set of n vectors in V that are linearly independent.
Contradiction.
So, $V_{1}, V_{2}, \ldots, V_{m}$ do not span V.
(c) Suppose $m=n$ and
$V_{1}, V_{2}, \ldots, V_{m}$ span V
We want to show that $v_{1}, v_{2}, \ldots, v_{m}$
are linearly independent.
HW 2-\#7b
Suppose $V \neq\{\overrightarrow{0}\}$ is spanned by Some finite set S of vectors. S Prove that some subset of S is a basis for V

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
By this HW problem, there is a subset S^{\prime} of S that is a basis for V.
Since $\operatorname{dim}(V)=n$, every basis for V has n vectors in it.
So, S^{\prime} has $m=n$ vectors.
Thus, $S^{\prime}=S$. Thus, $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for V and is thus linearly independent.
(d) Suppose $m=n=\operatorname{dim}(v)$
and $V_{1}, V_{2}, \ldots, V_{m}$ are linearly independent.
We want to show that $v_{1}, v_{2}, \ldots, v_{m}$ span V and hence are a basis for V.
Let $W=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$.
So W is a subspace of V.
We will now show that $W=V$.
We know $\omega \subseteq V$.
We need to show
 that $V \subseteq W$.
Let $v \in V$.
Since $\operatorname{dim}(V)=n=m$ we know that the $n+1=m+1$ vectors $V_{1}, V_{2}, \ldots, V_{m}, V$ +1 vectors
are linearly dependent from
part (a).

Thus, there exist

$$
c_{1}, c_{2}, \ldots, c_{m}, c_{m+1} \in F
$$

not all equal to zero, where

$$
\begin{aligned}
& \text { not all equal to zeco, where } \vec{~} \\
& C_{1} V_{1}+C_{2} V_{2}+\ldots+C_{m} V_{m}+C_{m+1} V=\overrightarrow{0}
\end{aligned}
$$

If $c_{m+1}=0$, then

$$
\begin{aligned}
& f c_{m+1}=0 \text {, then } \\
& c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{m} v_{m}=\overrightarrow{0}
\end{aligned}
$$

with not all $c_{1}, c_{2}, \ldots, c_{m}$ equalling zero.

But this would contradict the fact that $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent.
Thus, $c_{m+1} \neq 0$.
So, we can solve for V in

$$
\begin{aligned}
& \text { we can solve for } \\
& c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{m} v_{m}+c_{m+1} v=\overrightarrow{0}
\end{aligned}
$$

and we get

$$
V=\underbrace{C_{1}}_{\substack{\text { exists } \\ \text { since } C_{m+1} \\ C_{m+1}^{-1}}}\left(-c_{1} v_{1}-C_{2} v_{2}-\ldots-C_{m} v_{n}\right)
$$

$$
\begin{aligned}
& \text { So, } \quad \begin{array}{c}
\text { since } \left.c_{m+1}+c_{m+1}^{-1} c_{1}\right) v_{1}+\left(-c_{m+1}^{-1} c_{2}\right) v_{2}+ \\
\ldots+\left(-c_{m+1}^{-1} c_{m}\right) v_{m} \\
\text { Thus, } v \in \operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)=W
\end{array}
\end{aligned}
$$

So, $V=W$ and $V_{1}, v_{2}, \ldots, V_{m}$
span V and are thus a basis for V.

Now for part 2 .
(2)

Let W be a subspace of V, We first will show that W is finite-dimensional and

$$
\operatorname{finite}(w) \leq n=\operatorname{dim}(V)
$$

If $W=\{\overrightarrow{0}\}$, then W is finite-dimensional and

$$
\begin{aligned}
& \text { finite-dimensional and } \\
& \operatorname{dim}(w)=0<n=\operatorname{dim}(V) \text {. } \\
& \text { 保 }
\end{aligned}
$$

Now suppose $\omega \neq\{\overrightarrow{0}\}$.
Then there exists $x_{1} \in W$ with

$$
x_{1} \neq \overrightarrow{0}
$$

Then, $\{x$, is a linearly independent set of vectors.
Because if $c_{1} x_{1}=\overrightarrow{0}$ then $c_{1}=0 \quad \begin{aligned} & \text { because } \\ & x_{1} \neq 0\end{aligned}$

Continue to add vectors from W to this set such that at each stage k, the vectors $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ are lineally independent.
Since $W \subseteq V$ and $\operatorname{dim}(V)=n$, by part (a), there must reach a stage $k_{0} \leqslant n$ where $S_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{0}}\right\}$ is linearly independent but adding any new vector from W to So will yield a linearly dependent set.

HW 2-7(a)
Let S be a finite ret of linearly independent vectors from V and let $x \in V$ with $x \notin S$.
Then $S \cup\{x\}$ is linearly dependent iff $x \in \operatorname{span}$ (s)

Let $x \in W$.
If $x \in S_{0}$, then $x \in \operatorname{span}\left(S_{0}\right)$.
If $x \notin S_{0}$, then by the construction of So we have that $S_{0} \cup\{x\}$ is linearly dependent. So by $H \omega 2,7(a), x \in \operatorname{span}\left(S_{0}\right)$.
Thus, if $x \in W$, then $x \in \operatorname{Span}\left(S_{0}\right)$. So, $W=\operatorname{span}\left(S_{0}\right)$.
since S_{0} is a lin. ind. set, S_{0} is a basis for w. Thus, $\operatorname{dim}(\omega)=k_{0} \leq n=\operatorname{dim}(V)$.

Now we show that $W=V$
iff $\operatorname{dim}(W)=\operatorname{dim}(V)$.
(a) If $V=W$, then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
$(<)$ Now suppose $\operatorname{dim}(W)=\operatorname{dim}(V)$.
Let's show that $W=V$.
Then W has a basis of $n=\operatorname{dim}(V)$ elements, call it $\beta=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$

So, $\omega=\operatorname{span}(\beta)$.
By part $1(d)$, since β is a set of n vectors that are linearly independent and $n=\operatorname{dim}(V)$, they must span V also!
So, β is a basis for V.
Thus, $\omega=\operatorname{span}(\beta)=V$.

