Topic 1 -
Vector Spaces

Def: A field F is a set with two binary operations denoted by + and \cdot, such that the following me true.
(F1) For every $a, b \in F$, there exist unique elements $a+b$ and $a \cdot b$ in F
(F2) For every $a, b, c \in F$ we have

(F3) There exists elements
0 and 1 in F where
$a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$ for all a in F.
(F4) For every $a \in F$ there exists $d \in F$ where $a+d=d+a=0$.
(F5) For every $a \in F$ with $a \neq 0$, there exists $f \in F$ where

$$
a \cdot f=f \cdot a=1
$$

$H W: 0,1, d, f$ from
(F3)/F4/FS are unique.
We call O the additive identity of F.
We call 1 the multiplicative identity of F.
We denote d in F4 as $-a$ and call it the additive inverse of a.
We denote f in FS as a^{-1} and call it the multiplicative inverse of a.

Ex: $F=\mathbb{R}$ the set of real numbers is a field.

$$
a=\frac{1}{2},-a=-\frac{1}{2} \quad \begin{aligned}
& \text { additive } \\
& \text { inverse })
\end{aligned}
$$

$$
a=\pi, \quad a^{-1}=\frac{1}{\pi}
$$

Ex: $F=\mathbb{R}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$

$$
\begin{aligned}
& =\left\{-1,0,1,10, \frac{1}{2}, \frac{-3}{7}, 000\right\}
\end{aligned}
$$

is a field.
$\left[\begin{array}{c}\text { rational } \\ \text { numbers }\end{array}\right]$

$$
a=-\frac{3}{7},-a=\frac{3}{7}, a^{-1}=-\frac{7}{3}
$$

Ex:

$$
\left.\begin{array}{l}
\begin{array}{rl}
F & =\mathbb{C}
\end{array}=\{x+i y \mid x, y \in \mathbb{R}\} \\
\\
=\{1=1+0 i, 0=0+0 i, \\
{\left[i^{2}\right.}
\end{array}=-1\right]^{\left.\frac{1}{2}=\frac{1}{2}+0 i, 1+i, \ldots\right\}} 又 \$
$$

\mathbb{C} is a field.

Ex: If p is a prime, then

$$
\mathbb{Z}_{p}=\{\overline{0}, T, \overline{2}, \ldots, \overline{p-1}\}
$$

is a field. $\left[\mathbb{Z}_{p}\right.$ is called the integers modulo p.] $\left[\right.$ We won't use \mathbb{Z}_{p} in this iss $]$

Def: Let F be a field.
A vector space over F is a set V with two operations. The first operation is addition which takes two elements $V_{1}, V_{2} \in V$ and produces a unique element $v_{1}+v_{2} \in V$.
The second operation is called scalar multiplication, which takes one element $a \in F$ and one element $v \in V$ and produces a unique element $a v \in V$.
The set V is sometimes called the set of "vectors" and F is sometimes called the "scalars"
The following properties must hold:
(vi) For all $V_{1}, V_{2} \in V$ we have $V_{1}+V_{2}=V_{2}+V_{1} . \quad\left[\begin{array}{c}\text { commutative } \\ \text { property }\end{array}\right]$
(v2) For every $v_{1}, v_{2}, v_{3} \in V$ we have $v_{1}+\left(v_{2}+v_{3}\right)=\left(v_{1}+v_{2}\right)+v_{3}$ [associative property]
(13) There exists an element $\overrightarrow{0}$ in V where $\vec{O}+W=W+\vec{O}=W$ for all $w \in V$.
(vi) For every $w \in V$ there exists $z \in V$ with

$$
\begin{aligned}
& \text { xists } z \in V \quad w, \overrightarrow{0} \\
& w+z=z+w=
\end{aligned}
$$

(V5) For each $w \in V$ we have $1 \omega=\omega \quad[$ Here 1 is from F]
(v6) For every $a, b \in F$ and $w \in V$ we have

$$
\begin{aligned}
& \in V \text { we have } \\
& (a b) w=a(b w)
\end{aligned}
$$

(V7) For all $a \in F$ and $v_{1}, v_{2} \in V$ we have

$$
a\left(v_{1}+v_{2}\right)=a v_{1}+a v_{2}
$$

(18) For all $a, b \in F$ and $w \in V$
we have $(a+b) w=a w+b w$

Note: Later we will show that $\overrightarrow{0}$ from $\sqrt{ } 3$ and the z from (V4) are unique.
\vec{O} is called the zero vector in V z is called the add ifive inverse of ω and will be written $z=-w$

Ex: $F=\mathbb{R}$,

$$
V=\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}
$$

Then $V=\mathbb{R}^{2}$ is a vector space over $F=\mathbb{R}$.

$$
\begin{aligned}
& \text { Where } \\
& (a, b)+(x, y)=(a+x, b+y) \leftarrow \begin{array}{l}
\text { vector } \\
\text { addition }
\end{array} \\
& \alpha(x, y)=(\alpha x, \alpha y) \leftarrow \underbrace{\begin{array}{l}
\text { scalar } \\
\text { multiplication }
\end{array}}_{\alpha=\text { alpha }}
\end{aligned}
$$

Where

Vectors
scalan/field

Example: $(5,-1)+(2,7)=(7,6)$

$$
3(5,-1)=(15,-3)
$$

Ex: Let F be a field.
Let

$$
V=F^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}, x_{2}, \ldots, x_{n} \in F\right\}
$$

where $n \geqslant 1$.
Then $V=F^{n}$ is a vector space over F using the following operations.
Let $\alpha \in F$ and

$$
\begin{aligned}
& v=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& w=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

define vector addition as

$$
\begin{aligned}
& \text { e fine vector addition as } \\
& v+w=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, b_{n}\right) \\
&
\end{aligned}
$$

and scala multiplication as

$$
\alpha v=\left(\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right)
$$

proof: Let $\alpha, \beta \in F$ and $V, w, z \in V=F^{n}$ where

$$
\begin{aligned}
& \text { and } v, w, z \in v=\left(v_{1}, v_{2}, \ldots, v_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
& v=z)
\end{aligned}
$$

and $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.
(vi) We have that

$$
\begin{aligned}
& \text { (vi) We have that } \\
& \begin{aligned}
v+w & =\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(w, w_{2}, \ldots, w_{n}\right) \\
& =\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right) \\
& =\left(w_{1}+v_{1}, w_{2}+v_{2}, \ldots, w_{n}+v_{n}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } F=\left(w_{1}+v_{1}, w_{2}\right. \\
& \text { is a } \\
& \text { field }
\end{aligned}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)+\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

$$
a+b=b+a
$$

$$
\left.\begin{gathered}
a+b=b+a \\
\forall a, b \in F
\end{gathered} \right\rvert\,=W+V
$$

(F2) prop
(v2) We have that

$$
\begin{aligned}
& v+(w+z)=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& +\left[\left(w_{1}, w_{2}, \ldots, w_{n}\right)+\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right] \\
& =\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(w_{1}+z_{1}, w_{2}+z_{2}, \ldots, w_{n}+z_{n}\right) \\
& =\left(v_{1}+\left(w_{1}+z_{1}\right), v_{2}+\left(w_{2}+z_{2}\right), \ldots, v_{n}+\left(w_{1}+z_{n}\right)\right) \\
& =\left(\left(v_{1}+w_{1}\right)+z_{1},\left(v_{2}+w_{2}\right)+z_{2}, \ldots,\left(v_{n}+w_{n}\right)+z_{n}\right) \\
& =\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right)+\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
& =\left[\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right] \\
& +\left(z_{1}, z_{21} \ldots, z_{n}\right) \\
& =[v+w]+z
\end{aligned}
$$

(F2) prop

$$
\begin{aligned}
& \text { (F2) } p \text { rop } \\
& a+(b+c)=(a+b)+c
\end{aligned}
$$

$$
\forall a, b, c \in F
$$

(V3) Define

$$
\vec{O}=(0,0, \ldots, 0)
$$

where O is the zero element of F.

$$
\begin{aligned}
& \text { hen, } \vec{O}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)+(0,0, \ldots, 0) \\
& z+\left(1+0, z_{2}+0, \ldots, z_{n}+0\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(z_{1}, \tau_{2}, \ldots, z_{n}+0\right) \\
& =\left(z_{1}+0, z_{2}+0, \ldots, z_{n}\right)
\end{aligned}
$$

(Ff)

$$
\begin{aligned}
& =\left(z_{1}+0, t_{2}+\ldots, z_{n}\right) \\
& \geqslant\left(z_{1}, z_{2}, \ldots, z^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { prop } \\
& a+0=0+a=a
\end{aligned}
$$

$\forall a \in F$
and

$$
\begin{aligned}
\overrightarrow{0}+z & \text { and } \\
& =(0,0, \ldots, 0)+\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
& =\left(0+z_{1}, 0+z_{2}, \ldots, 0+z_{n}\right) \\
& =\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
& =z
\end{aligned}
$$

(V4) Given $v=\left(v_{1}, v_{2}, \ldots, V_{n}\right)$ consider, $-V=\left(-V_{1},-V_{2}, \ldots,-V_{n}\right)$
Where $-v_{i}$ is the additive inverse $\$$ of V_{i} in F.

Using (F4
Then,

$$
\begin{aligned}
& \text { and } \\
&(-v)+v=\left(-V_{1}+V_{1},-V_{2}+v_{2}, \ldots,-v_{n}+v_{n}\right) \\
&=(0,0, \ldots, 0)=\overrightarrow{0}
\end{aligned}
$$

and
(V5) Let 1 be the multiplicative identity of F.
Then,

$$
\begin{aligned}
1 \cdot v & =1 \cdot\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& =\left(1 v_{1}, 1 v_{2}, \ldots, 1 v_{n}\right) \\
& =\left(v_{1}, v_{2}, \ldots, v_{n}\right)=v
\end{aligned}
$$

(vG) We have that

$$
\begin{aligned}
& (\alpha \beta) \omega=(\alpha \beta)\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
& =\left((\alpha \beta) w_{1},(\alpha \beta) w_{2}, \ldots 0(\alpha \beta) \omega_{n}\right) \\
& \pm\left(\alpha\left(\beta \omega_{1}\right), \alpha\left(\beta w_{2}\right), \ldots, \alpha\left(\beta \omega_{n}\right)\right) \\
& =\alpha\left(\beta \omega_{1}, \beta \omega_{2}, \ldots, \beta \omega_{n}\right) \\
& =\alpha\left[\beta\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)\right] \\
& \begin{array}{l}
=\alpha[\beta w]
\end{array}
\end{aligned}
$$

(v7) We have that

$$
\begin{aligned}
& \alpha(V+w) \\
& =\alpha\left[\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right] \\
& =\alpha\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right) \\
& =\left(\alpha\left(v_{1}+w_{1}\right), \alpha\left(v_{2}+w_{2}\right), \ldots, \alpha\left(v_{n}+w_{n}\right)\right) \\
& =\left(\alpha v_{1}+\alpha w_{1}, \alpha v_{2}+\alpha w_{2}, \ldots, \alpha v_{n}+\alpha w_{n}\right) \\
& =\left(\alpha v_{1}, \alpha v_{2}, \ldots, \alpha v_{n}\right)+\left(\alpha w_{1}, \alpha w_{2}, \ldots, \alpha w_{n}\right) \\
& =\alpha\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\alpha\left(w, w_{2}, \ldots, w_{n}\right) \\
& (F 2)=\alpha v+\alpha w \\
& a(b+c)=\{=\alpha
\end{aligned}
$$

$$
a b+a c
$$

$$
\forall a, b, c \in F
$$

(vi) We have that

$$
\begin{aligned}
&(\alpha+\beta) w=(\alpha+\beta)\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
&=\left.(\alpha+\beta) w_{1},(\alpha+\beta) w_{2}, \ldots,(\alpha+\beta) w_{n}\right) \\
& \sum\left(\alpha w_{1}+\beta w_{1}, \alpha w_{2}+\beta w_{2}, \ldots, \alpha w_{n}+\beta w_{n}\right) \\
&=\left(\alpha w_{1}, \alpha w_{2}, \ldots, \alpha w_{n}\right) \\
&+\left(\beta w_{1}, \beta w_{2}, \ldots, \beta w_{n}\right) \\
&(a+b) c= \\
&= \alpha\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
&+\beta\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
& \forall a c+b, b, c \in F= \alpha w+\beta w
\end{aligned}
$$

Since (V1) - (V8) are true, $V=F^{n}$ is a vector space over F.

Ex:
$V=\mathbb{R}^{5}$ is a vector space over $F=\mathbb{R}$
$V=Q^{10,000,000}$ is a
vector space oven $F=\mathbb{Q}$

Ex: Let F be a field.
Let $V=M_{m, n}(F)$ be the set of all $m \times n$ matrices with entries from F. Then one can show that V is a vector space over F where vector addition is defined as

$$
\begin{aligned}
& \text { addition is defined } \\
& \text { as } \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
\end{aligned}
$$

$[$ more on next page $] \rightarrow$
and scalar multiplication is defined as

$$
\begin{aligned}
& \alpha\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1 n} \\
\alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2 n} \\
\vdots & \vdots & & \vdots \\
\alpha a_{m 1} & \alpha a_{m 2} & \cdots & \alpha a_{m n}
\end{array}\right)
\end{aligned}
$$

Where

$$
\overrightarrow{0}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

proof: Simile to last example.
$E x: \quad F=\mathbb{R}$

$$
\begin{aligned}
& V=M_{2,3}(\mathbb{R})=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, \begin{array}{lll}
a, b, c, d, \\
e, f \in \mathbb{R}
\end{array}\right\} \\
& \vec{O}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example of computation is

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & -1 \\
3 & 2 & 1
\end{array}\right)+\left(\begin{array}{ccc}
5 & 3 & 1 \\
2 & 0 & \pi
\end{array}\right) \\
=\left(\begin{array}{ccc}
6 & 3 & 0 \\
5 & 2 & 1+\pi
\end{array}\right)
\end{gathered}
$$

$$
\frac{1}{2}\left(\begin{array}{ccc}
3 & 0 & 1 \\
\pi & \sqrt{2} & 5
\end{array}\right)=\left(\begin{array}{ccc}
\frac{3}{2} & 0 & 1 / 2 \\
\frac{\pi}{2} & \frac{\sqrt{2}}{2} & \frac{5}{2}
\end{array}\right)
$$

Ex: Let $F=\mathbb{R}$ or $F=\mathbb{C}$.
Let $n \geqslant 0$ be an integer.
Define

$$
\begin{aligned}
& \text { Define } \\
& P_{n}(F)=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \mid a_{i} \in F\right\}
\end{aligned}
$$

So, $P_{n}(F)$ me all polynomials of degree $\leq n$ with coefficients from the field F.
One can show that $V=P_{n}(F)$ is a vector space over F where vector addition is given by:

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right) \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

and scalar multiplication is given by (22)

$$
\begin{aligned}
& \alpha\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right) \\
& =\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\cdots+\left(\alpha a_{n}\right) x^{n}
\end{aligned}
$$

Note: In $P_{n}(F)$, the zero vector is $\quad \overrightarrow{0}=0+0 x+\cdots+0 x^{n}$.

Equality:
We define equality as follows:
Let $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$.
We define $f=g$ if f

$$
a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{n}=b_{n}
$$

Ex: Let $F=\mathbb{R}$.
Consider

$$
\begin{aligned}
V= & P_{4}(\mathbb{R}) \\
= & \left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \mid a_{i} \in \mathbb{R}\right\} \\
= & \begin{cases}0, & \left.\pi+3 x^{2}-x^{4}, x^{4}, \ldots\right\} \\
4 & 45=5+0 x+0 x^{2}+0 x^{3}+0 x^{4}\end{cases} \\
& 0=0+0 x+0 x^{2}+0 x^{3}+0 x^{4}
\end{aligned}
$$

example of adding:

$$
\begin{aligned}
& \left(\pi+3 x^{2}-x^{4}\right)+\left(1-x^{2}+x^{3}\right) \\
& =(\pi+1)+2 x^{2}+x^{3}-x^{4}
\end{aligned}
$$

example of scaling:

$$
\begin{aligned}
& \text { Example of scaling: } \\
& \frac{1}{2}\left(1-6 x^{2}+x^{4}\right)=\frac{1}{2}-3 x^{2}+\frac{1}{2} x^{4}
\end{aligned}
$$

$P_{y}(\mathbb{R})$ is like \mathbb{R}^{5}

$$
\begin{gathered}
1+x-x^{2}+5 x^{3}-7 x^{4} \leftarrow \underbrace{p_{1}}_{p_{4}(\mathbb{R})} \\
(1,1,-1,5,-7) \leftarrow i_{\mathbb{R}^{5}}
\end{gathered}
$$

Theorem: Let V be a vector space (25) over a field F.
(1) The element \vec{O} from (V3) is unique. That is, there is only one vector \vec{O} in V that satisfies $\vec{O}+w=w+\vec{O}=w$ for all $w \in V$.
(2) Given we, the element
z from $\sqrt{ } 14$ where $w+z=z+w=\overrightarrow{0}$ is Unique.
[Recall we write z as -w]
proof:
(1) Suppose $\overrightarrow{0}_{1}, \overrightarrow{0}_{2} \in V$ where

$$
\begin{aligned}
& \text { (1) Suppose } \\
& \vec{O}_{1}+w=w+\vec{O}_{1}=w \\
& \text { and } \vec{O}_{2}+w=w+\vec{O}_{2}=w \\
& \text { for all w w . } \\
& \text { for }, \\
& \text { so } \vec{O}_{2} \\
& \text { and both } \\
& \text { zero } \\
& \text { vectors. }
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \overrightarrow{O_{1}}=\vec{\perp} \vec{O}_{1}+\vec{O}_{2}=\overrightarrow{O_{2}} \\
& w=w+\vec{O}_{2} \quad \overrightarrow{O_{1}}+w=w
\end{aligned}
$$

Thus, $\overrightarrow{O_{1}}=\overrightarrow{O_{2}}$.
So there can be only one zero vector.
(2) Let $\omega \in V$.

Suppose $z_{1}, z_{2} \in V \underset{\rightarrow}{\text { where }} \underset{\rightarrow}{\text { wo, }}\left(\begin{array}{l}\text { so } \\ z_{1}\end{array}, z_{2}\right.$

$$
\begin{aligned}
\text { Suppose } z_{1} & =\overrightarrow{0} \\
w+z_{1}=z_{1}+w & =\overrightarrow{0} \\
\text { and } w+z_{2}=z_{2}+w & \rightarrow
\end{aligned}
$$ inverses

We have $w+z_{1}=\overrightarrow{0}$.
Add z_{2} to both sides to get

$$
z_{2}+\left(w+z_{1}\right)=z_{2}+\overrightarrow{0}
$$

Thus, using associativity we have

$$
\underbrace{\left(z_{2}+w\right)}_{\overrightarrow{0}}+z_{1}=z_{2}
$$

Thus, $\vec{O}+z_{1}=z_{2}$.
So, $z_{1}=z_{2}$.
Ergo, there is only one additive inverse for w.

Def: Let V be a vector space over a field F.
Let $W \subseteq V$. We say that W is a subspace of V if W is a vector space over F using the same vector addition and scalar multiplication as in V

Theorem: Let V be a vector space over a field F. Let W be a subset of V.
W is a subspace of V if and only if the following three conditions hold:
(1) $\overrightarrow{0} \in W$
(2) If $W_{1}, W_{2} \in W$, you can actually just show $W \neq \phi$ then $w_{1}+w_{2} \in W$. $\}$ under t
(3) If $\alpha \in F$ and $\omega \in W$, then $\alpha \omega \in W\}$
\} W is closed
proof: Homework.

PICTURE OF (1), (2),(3)

Ex: Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Let

$$
\begin{aligned}
W & =\{(0, b, c) \mid b, c \in \mathbb{R}\} \\
& =\{(0,1, \pi),(0,-1, \sqrt{2}), \ldots\}
\end{aligned}
$$

Is W a subspace of V ?
It is!
Let's prove it.
(1) Setting $b=0, c=0$ gives $(0, b, c)=(0,0,0)$ is in W.
So, $\vec{o} \in W$.
(2) Let $w_{1}, w_{2} \in W$.

Then, $w_{1}=\left(0, b_{1}, c_{1}\right)$ and
$w_{2}=\left(0, b_{2}, c_{2}\right)$ where $b_{1}, c_{1}, b_{2}, c_{2}$ are in \mathbb{R}.

Then,

$$
w_{1}+w_{2}=\left(0, b_{1}+b_{2}, c_{1}+c_{2}\right)
$$

which is in W, since $b_{1}+b_{2}, c_{1}+c_{2} \in \mathbb{R}$
(3) Let $\alpha \in \mathbb{R}$ and $\omega \in W$.

Then, $w=(0, b, c)$ where $b, c \in \mathbb{R}$.
And $\alpha w=(0, \alpha b, \alpha c)$ which is still in W, since $\alpha b, \alpha c \in \mathbb{R}$.

By (1), (2), and (3)
W is a subspace of $V=\mathbb{R}^{3}$.

Ex: Let
$V=P_{2}(\mathbb{R})$ and $F=\mathbb{R}$
Let

$$
\text { et } \begin{aligned}
W & =\{1+b x \mid b \in \mathbb{R}\} \\
& =\{1+2 x, 1-3 x, \ldots\}
\end{aligned}
$$

Is W a subspace of $P_{2}(\mathbb{R})$?
No. For example

$$
1+2 x, 1-3 x \in W
$$

but

$$
(1+2 x)+(1-3 x)=2-x \notin w
$$

not 1
Also: $\cdot \overrightarrow{0}=0+0 \times \notin \omega$
. $1+x \in w$, but $5 \cdot(1+x)=5+5 x \notin \omega$

Note: Let V be a vector
space over F.
V has at least these subspaces:

$$
W=\{\overrightarrow{0}\} \quad \leftarrow\left[\begin{array}{c}
\text { trivial } \\
\text { subspace } \\
\text { of } v
\end{array}\right]
$$

$$
W=V
$$

