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ABSTRACT

Modeling Intervention Strategies in Epidemic Disease Outbreaks

By

Israel Tellez

Mathematical modeling is an essential tool in epidemiology. Models are con-

structed to describe the spread of an infectious disease in a population. This thesis

focuses on deterministic compartmental models in which population is divided into

distinct compartments depending on the state of infection of an individual throughout

the course of an outbreak. The most basic model uses three compartments: Suscep-

tible (S), Infected (I), and Recovered (R) as building blocks. We study improved

SIR-type models involving more compartments to accommodate different states of

infection, enabling response strategies to control the spread of a specific disease.

Epidemics depend heavily on transmissibility of the disease, which can be mea-

sured by the basic reproduction number. We derive the basic reproduction number for

each SIR-type model and use it to analyze the epidemic behavior. Response strategies

to the spread of an infectious disease in a population often focus on containment and

isolation of infected individuals as well as different types of vaccination programs. We

use mathematical models and numerical simulations to predict the effect of vaccina-

tion and quarantine strategies on the spread of a disease in a homogeneous population.

We conclude that a combination of intervention steps with highest priority on mass

vaccination generate the best outcome in reducing and shortening the outbreak.
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CHAPTER 1

Introduction

The threat of infectious diseases has been a global concern throughout history. Thou-

sands of people, especially those in areas with scarce resources, die every year from

a wide variety of diseases. For this reason, it is important to study disease dynamics

and management methods such as interventions and treatment. This is one of the

main motivations in the effort to construct mathematical models which describe dis-

ease dynamics. Such models allow scientists to conduct theoretical experiments that

simulate real world situations. A mathematical model is constructed based on certain

hypotheses about how a particular disease spreads; these hypotheses are drawn from

historical records of specific disease epidemics. The work of Daniel Bernoulli in 1790 is

one of the earliest accounts of the development of a mathematical model for a disease

epidemic [3]. Later in 1927, O.W. Kermack and A.G. McKendrick formulated a com-

partmental model which successfully predicted disease behavior. The contributions

of Bernoulli, Kermack and McKendrick served as a catalyst for the advancement of

modern epidemiology.

Mathematical modeling is an essential tool in understanding the transmis-

sion of infectious diseases and assessing the effects of different interventions such as

vaccination, quarantine and behavioral changes of the population [2, 7, 10, 17, 21].

Modeling intervention strategies is particularly useful when there is a limited amount
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of resources available, so that priority can be given to the most effective one. Small-

pox is one such disease that motivates the modeling of intervention strategies due to

its short latent period and high transmission rate. The World Health Organization

(WHO) has declared the eradication of smallpox in 1980 following its global immu-

nization campaign. However, after the 9/11 terrorist attack, the possibility of using

biological agents such as smallpox as a weapon for bio-terrorist attack cannot be con-

sidered negligible [7, 10, 13, 16, 18, 22]. In this paper we study general mathematical

models focusing primarily on intervention strategies and their effect on the spread of

an infectious disease.

This thesis is organized as follows. In Chapter 2 we discuss the development

of basic SIR (Susceptible, Infected, Recovered) and SEIR (Susceptible, Exposed, In-

fected, Recovered) models. We employ the Next Generation Method (NGM) tech-

nique developed by Diekmann et al. [11] to calculate the basic reproduction number

R0 of the model when finitely many different categories of individuals are recognized.

The basic reproduction number provides a way to measure of disease transmissibil-

ity. We further analyze the threshold value that determines the occurrence of the

epidemic in the basic SIR-type model. Chapter 3 will detail the construction of in-

tervention models which include quarantine and two types of vaccination programs,

namely mass and ring vaccinations, and their qualitative behavior. In Chapter 4,

we numerically solve the models using the Fourth-Order Runge-Kutta method and

the built-in MATLAB ODE solver, ode45. The detailed discussion and derivation

of the Fourth-Order Runge-Kutta method is given in Appendix A. We analyze our

simulation results and conduct sensitivity analysis of model parameters. Lastly, in

2



Chapter 5 we test the model against specific epidemic data of a smallpox outbreak

and obtain a good qualitative agreement, indicating the predictive potential of the

model for disease dynamics and the implementation of intervention strategies.
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CHAPTER 2

Basic Epidemic Models

In compartmental models, we group the individuals in a population into distinct

classes according to their disease stage at a given time. The basic model consists

of three classes: Susceptible (S), Infected (I) and Recovered (R). This model from

now on is referred to as the SIR model. In this and the next chapter, we study the

basic SIR model and several improvements which include the Exposed (E), Vaccinated

(V ) and Quarantined (Q) compartments. The choice of these different compartments

depends on the characteristics of the particular disease being modeled. For each of the

models that we study, we also calculate their basic reproduction number, commonly

denoted by R0. The basic reproduction number is the average number of secondary

infections caused by a single infected individual in an entirely susceptible population

[24]. These secondary infections are often regarded in a demographic sense as new

generations of infectious individuals, purely for the analogy of seeing new infections as

“births”. For this reason the basic reproduction number can be used to measure the

transmissibility of the infection and to further predict the final size of the epidemic.

2.1 SIR Model

In the SIR model, S(t) represents the number of individuals who are susceptible to

the disease at time t. An individual who is susceptible has not yet been infected

by the disease. We denote those who have been infected at time t by I(t). The
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infected class is capable of spreading the disease to the susceptible class. Typically,

individuals who are in the susceptible class progress into the infected class as they

come in contact with the disease, and then onto the recovered class. Those who have

recovered at a time t or died due to the disease are then represented by R(t). For

this reason, it should be noted that the recovered class should be considered as those

who have been “removed” and thus no longer susceptible. The values of S(t), I(t)

and R(t) are fractions of respective classes in the total population.

Figure 2.1: SIR flow dynamics with infection and recovery rates.

Figure 2.1 shows the flow of individuals from one class to the next. The flow

in this SIR model is in one direction and hence the recovered individuals are assumed

to be immune and can no longer get infected.

We now state several assumptions that are used in the basic SIR model:

(1) The disease spreads in a closed population in the sense that there is no emigra-

tion or immigration and the course of the disease is short enough to disregard

births and disease-unrelated deaths. The population therefore remains constant,

so that S(t) + I(t) +R(t) = N , where N = 1 is the total population.

(2) There is homogeneous mixing among individuals in the population, which means

all individuals are identical with respect to their susceptibility, infectiousness,

and immunity.

5



(3) Disease spreads through human-to-human contacts only, which is also assumed

to be uniform among individuals in the population.

Based on the above assumptions, we construct the following system of ordi-

nary differential equations (ODEs) to model the rate of change of each population

compartment:

dS

dt
= −βSI (2.1)

dI

dt
= βSI − γI (2.2)

dR

dt
= γI (2.3)

In the above model, the infection rate β is the per capita rate at which two

individuals (an infected and a susceptible) come into effective contact that is sufficient

to lead to infection. Thus, during the time interval ∆t, the number of newly infected

individuals ∆I(t) is given by

∆I(t) = I(t+∆t)− I(t) = βSI∆t.

Taking the limit as ∆t → 0, we obtain the term βSI in (2.2) and −βSI in (2.1).

In this basic SIR model, we assume β to be constant. However, in a more realistic

setting, β may depend on several factors, such as age, time at which the outbreak

takes place, environmental conditions, and behaviors of individuals in the population

[24].

The recovery rate γ is also assumed to be uniform and constant. The term

6



γI∆t gives the number of individuals who recover from or die because of the disease

during the time interval ∆t. Using the fact that the rate at which an event occurs is

given by the inverse of the duration of the event, we note that the average duration

of infection is given by 1
γ
. Knowing the duration of infectiousness we can quickly

calculate the recovery rate and vice versa.
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Figure 2.2: SIR Model, equations (2.1)-(2.3) with S(0) = 0.99, I(0) = 0.01, R(0) =
0, β = 0.3, γ = 0.1.

The rates β and γ are positive constants in the SIR model. Since dS
dt

< 0 in

(2.1) and dR
dt

> 0 in (2.3), the number of susceptible individuals will decrease and

the number of recovered individuals will increase over time. We numerically solve the

system (2.1)-(2.3) using different values for β. Figure 2.2 shows the plots for S, I, and

R versus time t with β = 0.3, γ = 0.1. The initial values are S(0) = 0.99, I(0) = 0.01

and R(0) = 0 indicating that initially almost the entire population is susceptible

and only 1% are infected. The average duration of infection is 1
γ
= 1

0.1
= 10 days.
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In Figure 2.2 we can see that the susceptible population quickly decreases to zero,

while the infected population increases, reaching the maximum value of approximately

0.3038 at around 26.8 days, and decreases back to zero. This scenario shows the

occurrence of the epidemic. We again solve the system (2.1)-(2.3) taking β = 0.08
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Figure 2.3: SIR model with β=0.08.

and keeping the other parameter and initial values the same. Figure 2.3 shows the

solution curves for the susceptible and infected populations separately; for this reason

it is advisable to pay particular attention to the scale of each individual plot. We

notice that the number of susceptibles slightly decreases and the number of infected

individuals decreases to 0 and never increases. In this case, the disease fails to invade

the population.

2.1.1 Threshold Value and Basic Reproduction Number

One goal in epidemic modeling is to know what can be done to control an outbreak.

Note that, intuitively, an epidemic will occur if the number of infected persons in-

creases and is high relative to the overall number of persons in the population. Since

the input for I comes from the S compartment (Figure 2.1), we are interested in dis-
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covering the threshold value in the susceptible population that allows the epidemic

to occur.

From equation (2.2), we observe the following

dI

dt
= βSI − γI > 0

⇔ I(βS − γ) > 0

⇔ S >
γ

β
.

Similarly, dI
dt

< 0 whenever S < γ
β
. This implies that for the epidemic to occur

the fraction of susceptibles in the population needs to be greater than γ/β. We call

S∗ = γ
β
the threshold value for the susceptible population in the SIR model.

The calculation of the basic reproduction number R0 for the SIR model is

rather straight forward. Recall that by definition, R0 is the number of secondary

infections caused by one infectious individual when introduced to a totally susceptible

population, that is, S(0) ≈ 1. Since we assume that all rates are constant, we see

that the duration of infection is simply given by γ−1 and that

R0 = (βS)

(
1

γ

)
≈ β

γ
(2.4)
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We rewrite equation (2.2) with S ≈ 1 as follows

dI

dt
= (β − γ)I

= (
β

γ
− 1)γI

= (R0 − 1)γI.

Then it is easy to see that if R0 < 1 then dI
dt

< 0. Conversely, if R0 > 1 then dI
dt

> 0.

This result tells us that if one infected can only replace itself with no more than one

infected, then I(t) decreases and there is no epidemic. However, if one infected can

infect more than one susceptible, then I(t) increases and an epidemic occurs. For

this reason, R0 is often called the contact number or replacement number when the

disease invasion begins [17].

The threshold value in the susceptible population, expressed as

S∗ =
γ

β
=

1

R0

,

indicates that the number of susceptibles must be kept at less than 1/R0 to prevent

the epidemic from occuring. In other words, the number of immune individuals must

be greater than 1− (1/R0) to acquire the herd immunity. As a consequence, diseases

with smaller R0 can be eradicated more easily than diseases with higher R0. As

an example, basic reproduction numbers for measles and smallpox are 16 and 6,

respectively [24]. The herd immunity threshold for measles is about 94% and 83%

for smallpox. Since it is easier to achieve a herd immunity of 83% than on of 94%,

10



this explains the fact that measles still persists to this day, while smallpox has been

eradicated in 1970s.

2.1.2 Phase Plane Analysis

Under the assumption that the population is closed, we can write R(t) = 1−S(t)−I(t)

and further analyze the behavior of the epidemic from the SI-plane. Note that

dI
dt
dS
dt

=
dI

dS
=

βSI − γI

−βSI
= −1 +

γ

βS
. (2.5)

By separation of variables we get

dI =

(
−1 +

γ

βS

)
dS

=⇒
∫

dI =

∫ (
−1 +

γ

βS

)
dS

=⇒ I(S) = −S +
γ

β
ln(S) + c,

where c is an integration constant. Using the initial values I(0) = I0 and S(0) = S0,

we obtain

I0 = −S0 +
γ

β
ln(S0) + c

⇒ c = I0 + S0 −
γ

β
ln(S0)

and hence the solution curve is given by

I(S) = I0 + (S0 − S) +
γ

β
ln
( S

S0

)
. (2.6)
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Figure 2.4: Phase portrait for the SIR Model with β = 0.3, γ = 0.1.

Figures 2.4 and 2.5 show the SI phase portraits and solution curves given by

(2.6) with average infection period 1/γ = 10 days, and infection rate β = 0.3 and

β = 0.08, respectively. By looking at these solution curves we can predict the size

of the epidemic Imax (the maximum number of infection cases) and the final size of

the susceptible population S∞ (the fraction of susceptible population that does not

get infected) for various combinations of initial values S0 and I0. In Figure 2.4, the

threshold value S∗ = γ
β
= 0.1/0.3 = 1/3 is shown by the vertical line and the vectors

in the phase plane at this value are horizontal. If S0 > S∗, then I increases for all

t ≥ 0, and decreases otherwise. The particular solution for which S0 = 0.99 and

I0 = 0.01 is shown in bold in Figure 2.4. Other solution curves with different initial

conditions but same the parameter values are shown in thin lines.

The values Imax and S∞ can also be computed analytically given the initial
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Figure 2.5: Phase portrait for the SIR Model with β = 0.08, γ = 0.1.

values S0 and I0 as well as some estimates of β and γ. From (2.6)

Imax = I(S∗)

= I(γ/β)

= I0 + (S0 − γ/β) + (γ/β) ln
(γ/β

S0

)
.

The final size of susceptible population can be obtained from (2.6) by setting I(S∞) =

0, that is, S∞ will be the root of the equation

I0 + (S0 − S∞) + (γ/β) ln
(S∞

S0

)
= 0.

The root is unique on the interval (0, S∗) as shown in Figure 2.4.
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2.2 SEIR Model

In the basic SEIR Model, the population is divided into four compartments: Suscep-

tible (S), Exposed (E), Infected (I) and Recovered (R). In contrast to the SIR model,

individuals first progress into an “exposed” class E before becoming infected; that

is, individuals in the exposed class have come in contact with an infected individual

but are not yet infectious themselves. The exposed state encompasses two different

periods of infection. The latent period, the time from infection to the time that an

individual is able to transmit the disease, is one such period. The other is the incuba-

tion period, defined as the time from infection to the onset of symptoms that would

classify the individual as clinically infected. Incubation period is easier to observe

and predict, however, some diseases may spread even though the infected individuals

have not shown any symptoms. The “Exposed” compartment in the SEIR model

technically represents the number of individuals who are in the latent period, but

the SEIR model can still be generally applied to diseases with different latent and

incubation periods such as HIV, smallpox, measles, mumps, and rubella [14, 16, 22].

We let β denote the infection rate, σ is the rate at which exposed individuals become

infectious and γ is the recovery rate. We once again assume that the population

remains constant, that is, S(t) + E(t) + I(t) +R(t) = N = 1.

Figure 2.6: SEIR flow dynamics with infection and recovery rates.
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Under the same assumption as before that the time scale of the disease is small

enough to allow us to disregard birth and disease-unrelated death rates, we have the

following system of ODEs:

dS

dt
= −βSI (2.7)

dE

dt
= βSI − σE (2.8)

dI

dt
= σE − γI (2.9)

dR

dt
= γI (2.10)

2.2.1 Reproduction Number

Recall that the reproduction number, R0, is defined as the expected number of sec-

ondary cases of infections that arise from a single infected individual. The calculation

of R0 is not as straight-forward here as in the SIR model, and we will use the Next

Generation Matrix (NGM) approach as described in [11] to calculate it. The terms

“Next Generation” serve as an analogy to the demographic idea of a generation. Epi-

demiologically, new infections caused by disease transmission are seen as “births”,

therefore contributing to a new consecutive generation of infected individuals.

We begin by considering those equations in the system (2.7)-(2.10) which de-

scribe new infections and the changes in states of infected individuals. The disease-

carrying equations in the SEIR model are Equations (2.8) and (2.9). Evaluating this

sub-system at the infection-free steady state (S = 1) allows us to observe the poten-
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tial for initial spread of infection when a disease is introduced into a fully susceptible

population. Linearizing the infected sub-system in this way, with small E and I, we

arrive at the system

dE

dt
= βI − σE (2.11)

dI

dt
= σE − γI (2.12)

We call these equations the infected sub-system of the SEIR equations, which can be

written in the form ẋ = (T − Σ)x where x =

(
E
I

)
. The matrix T corresponds

to transmissions in the epidemiological sense and it consists of elements that leads

to the production of new infections. The matrix Σ corresponds to transitions and

it consists of elements describing changes in state of infected individuals. The term

βI in (2.11) describes the production of new infections and hence belongs to matrix

T , while all other terms in (2.11)-(2.12) belong to matrix Σ. We rewrite the above

sub-system as follows

(
Ė

İ

)
=

[( 0 β
0 0

)
︸ ︷︷ ︸

T

−
(

σ 0
−σ γ

)
︸ ︷︷ ︸

Σ

]( E
I

)
. (2.13)

The element Ti,j describes the rate at which new infections in state i occur due

to contacts with the infectives in state j. Intuitively then, Ti,j = 0 tells us that no

new cases in state i can arise from individuals in state j. To illustrate this, let i, j = 1

correspond to the E (Exposed) state and i, j = 2 to the I (Infected) state. Then the

element T1,1 is the number of new cases in the E (Exposed) state caused by individuals
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in the E (Exposed) state. Since new infections can only be caused by contacts with

an infected individual in state I, we have T1,1 = 0. Similarly, the element T2,1 is

the number of new cases in the I (Infected) state produced by individuals in the E

(Exposed) state. Again T2,1 = 0 as an individual in the E (Exposed) state is not yet

infectious and thus cannot spread the disease.

The next generation matrix (NGM) is defined as G = TΣ−1 and R0 can be

shown to be the dominant eigenvalue of G. From (2.13), we construct the matrix

Σ−1 =
1

σγ

(
γ 0
σ σ

)

and therefore

TΣ−1 =

(
0 β
0 0

)(
1/σ 0
1/γ 1/γ

)
=

( β
γ

β
γ

0 0

)
.

Since TΣ−1 is an upper triangular matrix, the eigenvalues are the entries in the main

diagonal, and the dominant eigenvalue is R0 =
β
γ
.

It is worth mentioning that calculating Σ−1 can be computationally expensive

for large systems. However, understanding the epidemiological interpretation of the

elements in Σ−1 can make the calculation of its entries much easier. The entry Σ−1
i,j

is the expected time that an individual in state j will spend in state i for the entire

remaining course of infection. For the matrix above we see that individuals who are

presently in the exposed state will stay exposed for 1/σ days, this value corresponds

to the entry Σ−1
1,1. Furthermore, individuals who are presently infected cannot return

to the exposed state and so Σ−1
1,2 = 0. Lastly, those in exposed and infected states
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will spend 1/γ days in infected state, yielding Σ−1
2,1 = Σ−1

2,2 = 1/γ. Thus, we have fully

defined Σ−1 using the purely epidemiological approach.

We notice that the values of R0 for the SIR and SEIR models are the same.

The same analysis also holds true for the reproduction number of the SEIR model.

That is, if R0 > 1 then the spread of the disease causes an epidemic, whereas if

R0 < 1 then the disease dies out and no epidemic occurs.
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Figure 2.7: SEIR model with β = 0.3, σ = 0.5 and γ = 0.1.

We solve the SEIR model (equations (2.7)-(2.10)) numerically using the same

initial and parameter values as in the SIR model: S(0) = 0.99, I(0) = 0.01, E(0) =

R(0) = 0, γ = 0.1. We take the latent period to be 1/σ = 2 days. Figure 2.7 shows

the simulation result for β = 0.3, that is, R0 = 3 > 1. Here we see similar behavior

to that of the SIR model (Fig. 2.2) in which the number of susceptible individuals

drops, while the number of recovered individuals rises as time goes on. The number

of exposed and infected individuals will initially rise and then drop towards zero. The
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course of outbreak takes longer (100 days) in SEIR model than in the SIR model (80

days). However, Imax in the SEIR model is slightly smaller than in the SIR model.

Likewise, for β = 0.08 and R0 = 0.8 < 1, the number of infected individuals

never increases. Also, the numbers of exposed and recovered individuals slightly

increase, then decrease towards 0 or plateau at a maximum value, respectively. See

Figure 2.8, where we have omitted the Susceptible curve for display purposes.
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Figure 2.8: SEIR model with β = 0.08, σ = 0.5 and γ = 0.1.
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CHAPTER 3

Modeling Interventions on Disease Transmission

The construction of a mathematical model is done to meet certain objectives that will

help in understanding the dynamics of an infectious disease. For the simple models,

those objectives are often to describe the spread of the disease through a susceptible

population, calculate new and accumulated cases of infection, and predict the final

size of the epidemic[22]. The modeling of infectious diseases, however, is in no way

limited to these aforementioned objectives. In order to obtain more realistic results,

crude models such as the SIR and SEIR models are improved to better describe the

behavioral characteristics of individuals in human-to-human disease transmission, as

well as the intervention strategies for controlling an outbreak. The model constructed

by Gonçalves et al. [14] considers both the different stages of the smallpox disease

and the mobility of infected persons. Ferguson et al. [13] illustrate the complexities

of mathematical models by considering different types of model structures as well as

the effects of various control methods. In addition, the form in which an infectious

disease is introduced and where it is introduced will adversely affect the spread of that

disease, as detailed by Bozzette et al. [4]. In this chapter we will discuss extensions of

the SEIR model discussed in Chapter 2 which include some intervention strategies,

such as vaccination and quarantine of infected individuals.
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3.1 SEIRV Vaccination Model

A vaccination program is an effective tool for preventing infection and is often a

much better strategy for disease control as compared to treating symptoms of already

infected persons. This argument agrees with the analysis of the threshold value of

the susceptible population of the SIR model in Section 2.1.1 of Chapter 2 which

indicates that the epidemic can be prevented if the fraction of susceptibles in the

population is below γ/β. One way to achieve this is by vaccinating enough susceptible

population. For diseases with latent period (SEIR model), vaccinating those who have

been exposed to the disease but are not yet infectious can also prevent the epidemic.

To understand the impact of vaccination on the dynamics of the system, we add the

Vaccinated compartment V (t) into the model. Individuals who are susceptible to the

disease and those who have been exposed but are not yet infectious can be vaccinated

and moved into the V compartment. Under the same assumption of the homogeneous

mixing of the population, we let ν1 and ν2 be the rates at which individuals in the S

and E compartments, respectively, are vaccinated as a preventive measure.

Figure 3.1: SEIRV flow dynamics.

We obtain the following system:
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dS

dt
= −βSI − ν1S (3.1)

dE

dt
= βSI − (σ + ν2)E (3.2)

dI

dt
= σE − γI (3.3)

dR

dt
= γI (3.4)

dV

dt
= ν1S + ν2E (3.5)

3.1.1 Reproduction Number

We calculate the reproduction number for the SEIRV model using the NGM approach

as before. The infected sub-system consists of the equations (3.2)-(3.3). Evaluating

the system at the disease-free steady state, we can write the sub-system as follows:

(
Ė

İ

)
=

[( 0 β
0 0

)
︸ ︷︷ ︸

T

−
(

σ + ν2 0
−σ γ

)
︸ ︷︷ ︸

Σ

]( E
I

)
(3.6)

Lastly, multiplying the matrices T and Σ−1 gives us the NGM matrix

G = TΣ−1 =

(
0 β
0 0

)( 1
σ+ν2

0
σ

γ(σ+ν2)
1
γ

)
=

( σβ
γ(σ+ν2)

β
γ

0 0

)

with dominant eigenvalue R0 = σβ
γ(σ+ν2)

. Again we have that if R0 > 1 then an

epidemic occurs and the disease dies out otherwise (see Appendix A in [11]).
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3.1.2 Ring Vaccination vs. Mass Vaccination

In the event of a disease outbreak it would be necessary to verify the suspected cases,

as well as investigate the source of infection and anybody who they may have come

into contact with and exposed to the disease. This information would allow scien-

tists and public health organizations to determine the scope of the outbreak and thus

make decisions about whether to formulate focused or large-scale vaccination strate-

gies. Localized confirmed cases could indicate that vaccination could be focused on

a smaller number of persons; while multiple cases across different cities could specify

the need of a mass vaccination of the entire population to combat the intentional

introduction of the virus. Mass vaccination would require a large enough stockpile of

vaccines to be readily available.

The ring vaccination strategy is one such method that in the past has proven to

be the most successful in stopping certain outbreaks such as smallpox. This strategy

involves tracing people who have come into close contact with an infected person

(and therefore have been exposed to the virus) and vaccinating them as well as their

own (secondary) close contacts. Doing so would create a “ring” of individuals around

an infected person who have been vaccinated, thus halting further transmission of

the disease. This strategy maximizes the effectiveness of the vaccination by focusing

mainly on those who are at highest risk of becoming infected. Ring vaccination also

requires a close monitoring of the primary and secondary contacts as well as the

immediate isolation of infected persons [20]. This method was proven to be notably

effective in the case of smallpox eradication in the 1970’s.
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Figure 3.2: Ring vaccination schematic.

In contrast to the previous strategy, the mass vaccination strategy involves

vaccinating large groups of persons who have not yet been exposed to the disease.

While this strategy helped protect people from the virus, it was not infallible and

presented certain notable risks. Some of these risks were that once vaccinated, per-

sons who were not previously exposed to the disease still became infected after later

exposure due to vaccine failure or waning immunity. Also, people refusing to get vacci-

nated and those who were difficult to reach in order to vaccinate could still spread the

disease. Most notably, adverse effects of vaccinations in the form of life-threatening

complications often could lead to vaccine-related deaths [19]. The strength of mass

vaccination in the simulations comes from particular assumptions which set up a

best-case scenario. These assumptions are that vaccination grants absolute immu-

nity for the duration of the outbreak, there are no vaccine-related deaths, and that

vaccination is not refused by anyone in the susceptible population.
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The difference between ring and mass vaccinations from a modeling perspective

lies in the parameter values ν1 and ν2. In ring vaccination, we vaccinate the individuals

who have had primary or secondary contact with an infectious individuals. In other

words, they have been exposed to the disease and are in the E compartment. Hence,

in the diagram shown in Figure 3.1, we set the rates ν1 = 0, ν2 > 0 to model a ring

vaccination policy. On the other hand, mass vaccination is given to those individuals

who are still susceptible and have not yet been exposed to the disease. Thus, ν1 > 0

and ν2 = 0 in mass vaccination.

We run simulations to compare the effectiveness of each strategy. In all simu-

lations shown below, the parameter and initial values are as follows:

Parameter/initial condition Value
β 0.3
σ 0.5
γ 0.1

S(0) 0.99
E(0) 0
I(0) 0.01
R(0) 0
V (0) 0

Table 3.1: Parameter and initial values for SEIRV simulation.

We simulate the following five scenarios for vaccination policy:

(1) Mass vaccination only (MV)

(2) Ring vaccination only (RV)

(3) Combined mass and ring vaccinations with higher mass vaccination rate (ν1 >

ν2)

(4) Combined mass and ring vaccinations with higher ring vaccination rate (ν1 < ν2)

(5) Combined mass and ring vaccinations with equal rates (ν1 = ν2)
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with parameter values for the rates ν1 and ν2 shown in Table 3.2.

ν1 (mass vacc. rate) ν2 (ring vacc. rate)
MV 0.03 0
RV 0 0.03

MV,RV 0.02 0.01
MV,RV 0.01 0.02
MV,RV 0.015 0.015

Table 3.2: Vaccination rates for five different policies.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25
Vaccination strategies

Days

In
fe

ct
ed

 in
di

vi
du

al
s

 

 
MV only
RV only
Combined (ν

1
 > ν

2
)

Combined (ν
1
 < ν

2
)

Combined (ν
1
 = ν

2
)

Figure 3.3: Infected (I) curves for five scenarios of vaccination policies.

In Figure 3.3 we look at the peak of infection curve I(t) and the time when

it is attained. Moreover, due to the fact that the recovered population R is made

of individuals who got the disease and have recovered from it as well as those who

died from the disease, one can look at the size of the recovered population at the end

of the outbreak to measure the severity of the epidemic (Figure 3.4). We observe

that in all cases, the total number of infected individuals is less than that in the

case of no interventions (SEIR Model, Figure 2.7). Further, we see that employing

RV on its own is the least effective strategy due to the fact that it targets mainly
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Figure 3.4: Recovered (R) curves for five scenarios of vaccination policies.

those in the exposed state (E), failing to minimize the interactions between infected

and susceptible individuals. Similarly, combined interventions showed that the most

effective policy was that in which the MV rate was higher. Lastly, Figure 3.3 shows

that employing MV on its own has the greatest positive effect on the number of

infected individuals; surely, the model prediction for this scenario is less realistic

because of the factors described previously. We will discuss this in greater details in

Chapter 5.

These results might lead one to believe that an effective vaccination program is

sufficient to reduce the spread of an infectious disease below the threshold needed for

an epidemic to occur. This of course has been disproved in many literary works pub-

lished on this topic [2, 21]. It is important to point out that in the above construction,

we assume that there is no failed vaccination (best case scenario). However, it is often

likely that vaccine efficacy along with a high number of initially infected persons can
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still lead to an epidemic; moreover, a partially effective vaccination program can still

allow an epidemic to occur as well [21]. One should also take into consideration that

the aggressiveness in coverage, success rate and vaccine efficacy must all be relatively

high to make a significant positive impact on an outbreak.

Lastly, it is worth mentioning a possible improvement to the vaccination model.

Note that the populations receiving mass vaccination (susceptibles) and those receiv-

ing ring vaccination (exposed) are very different in terms of size. Then if there are a

fixed number of vaccinations, X, that can be administered during the time period ∆t,

it would be more realistic to weigh the vaccination rates by their target population

size at time t, so that X = ν1S(t) + ν2E(t). This would be done so that the vaccina-

tion rates can be varied as the population sizes change over time. As a consequence,

this model with variable vaccination rates would allow for ν1 and ν2 to increase or

decrease as time goes on in order to administer the desired X amount of vaccinations.

3.2 SEIRQ Quarantine Model

Another method of intervention commonly employed for infectious diseases with la-

tent periods is quarantine. Quarantine involves isolating infected individuals from the

population, as an attempt to reduce the number of encounters between susceptible

and infected persons. Once an individual has gone through the disease’s incuba-

tion period and entered the infected state I they are considered to be a confirmed

case of that disease, displaying all clinical symptoms of the disease and having been

identified by some health organization. This organization, employing a quarantine

protocol, then orders that the infected individual be isolated to confined quarters
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either at home, at a hospital, or designated location depending on the severity of the

symptoms. Once in quarantine the individual will remain there until they are fully

recovered and no longer infectious, namely 1/γ days. Thus, those in the quarantined

state enter the recovered state R at the rate γ. To simulate the effects of quarantine

on disease transmission, we allow individuals in the infected class I to be placed into

a Quarantined class, Q(t), at a rate κ.

Figure 3.5: SEIRQ flow dynamics.

With the assumptions of homogeneous mixing and constant population we obtain the

system

dS

dt
= −βSI (3.7)

dE

dt
= βSI − σE (3.8)

dI

dt
= σE − (γ + κ)I (3.9)

dR

dt
= γ(I +Q) (3.10)

dQ

dt
= κI − γQ (3.11)

The solution curves are shown in Figure 3.6 with the same initial and parameter

values as shown in Table 3.1 along with the quarantine rate κ = 0.03 and Q(0) = 0.
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Figure 3.6: SEIRQ model with β = 0.3, σ = 0.5, γ = 0.1, κ = 0.03.

3.2.1 Reproduction Number

We use the NGM approach as before to calculate the reproduction number R0 for

the SEIRQ model. However, note that we now have another infectious state Q to

account for since those in quarantine still can become infectious even if no new cases

arise from them. For this reason our NGM will be a 3 × 3 matrix. The infected

sub-system consists of the equations (3.8), (3.9) and (3.11). Evaluating the system

at the disease-free steady state (S = 1), we can write the sub-system as follows:

 Ė

İ

Q̇

 =

[ 0 β 0
0 0 0
0 0 0


︸ ︷︷ ︸

T

−

 σ 0 0
−σ γ + κ 0
0 −κ γ


︸ ︷︷ ︸

Σ

] E
I
Q



To avoid actually computing the inverse of Σ we derive it using purely the

epidemiological interpretation. The (i, j)-th entry of Σ−1 matrix corresponds to the
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amount of time that an individual in state j will spend in state i. The index values

i, j = 1, 2, 3 refer to the exposed, infected and quarantined classes, respectively. Thus,

the entry Σ−1
1,1 corresponds to the time an individual currently in the exposed state E

will spend in exposed state E, so that

Σ−1
1,1 =

1

σ
.

Similarly, we have that

Σ−1
1,2 = Σ−1

1,3 = Σ−1
2,3 = 0

since infected and quarantined persons cannot go back to the exposed state, and

quarantined individuals cannot go back to the infected state, respectively. The entries

Σ−1
2,1 and Σ−1

2,2 describe the time an exposed or infected individual will spend in infected

state for the remainder of the outbreak, respectively. In other words, the rate at which

an infected person leaves the infected state is γ + κ so that the amount of time spent

in infected state is given by

Σ−1
2,1 =

1

γ + κ
= Σ−1

2,2.

Now, Σ−1
3,1 and Σ−1

3,2 describe the amount of time an exposed or infected person will

spend in quarantine for the remainder of the outbreak. Note that in this case, a person

in state E needs to first make it to state I, then goes to state Q. The probability that

an individual in E goes to I is 1, while the probability that an individual in I will

proceed to Q is κ/(κ+ γ). Upon reaching Q, this individual will spend 1/γ days in
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that state. Hence, the amount of time an exposed individual will spend in quarantine

is given by

Σ−1
3,1 =

κ

κ+ γ
· 1
γ
=

κ

γ(κ+ γ)
.

Also,

Σ−1
3,2 =

κ

γ(κ+ γ)

by similar reasoning. Finally,

Σ−1
3,3 =

1

γ

since this entry describes the amount of time a quarantined person will spend in

quarantined state for the remainder of the outbreak. Putting this together, we have

the lower triangular matrix

Σ−1 =

 1
σ

0 0
1

γ+κ
1

γ+κ
0

κ
γ(γ+κ)

κ
γ(γ+κ)

1
γ

 .

Lastly, multiplying the matrices T and Σ−1 gives us the next-generation matrix

G = TΣ−1 =

 0 β 0
0 0 0
0 0 0

 1
σ

0 0
1

γ+κ
1

γ+κ
0

κ
γ(γ+κ)

κ
γ(γ+κ)

1
γ

 =

 β
γ+κ

β
γ+κ

0

0 0 0
0 0 0


with a dominant eigenvalue of

R0 =
β

γ + κ
.

The effectiveness of this intervention is due to the protocols implemented. In

other words, the fact that the flow into the quarantined class Q comes directly from

the infected class I means that there are fewer infectious individuals making effective
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contact with susceptible individuals. Regardless, by referring to the infected curve in

Figures 3.3 and 3.6 it can still be seen that the quarantine intervention only beats RV

in reducing the maximum number of infected persons, while all other combinations

of vaccination strategies remain more effective in reducing the maximum number of

infected persons than quarantine. It can be inferred then that quarantine could best

be used as a means of enhancing other strategies such as vaccination.

3.3 SEIRVQ Combined Intervention Model

We have seen two intervention strategies commonly used to control an epidemic. The

methods of ring vaccination, mass vaccination and quarantine all proved to make a

notable impact on the spread of an infectious disease in a population. In most cases,

however, the impact of the strategies alone were not enough to drastically reduce the

size of the epidemic. Naturally, the next step is to analyze a combination of all three

strategies. The model is constructed by combining the SEIRV and SEIRQ models.

For this model, we assume that a combination of MV, RV and quarantine

interventions are employed. The reason for this follows from the results in the vac-

cination model (SEIRV), which tell us that a (closer to) realistic program should

include a combination of interventions for which MV has a higher vaccination rate.

Figure 3.7: SEIRVQ flow dynamics.
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These details are discussed further in the next chapter. The system describing the

model is given by:

dS

dt
= −βSI − ν1S (3.12)

dE

dt
= βSI − (σ + ν2)E (3.13)

dI

dt
= σE − (γ + κ)I (3.14)

dR

dt
= γ(I +Q) (3.15)

dV

dt
= ν1S + ν2E (3.16)

dQ

dt
= κI − γQ (3.17)

We simulate the model using the initial and parameter values given in Table 3.1 along

with Q(0) = 0, ν1 = 0.02, ν2 = 0.01 and κ = 0.03. The solution curves are shown in

Figure 3.8.

Upon comparison to the SEIR model simulation (Figure 2.7), we see that

the size of the epidemic is significantly reduced when a combination of ring/mass

vaccination and quarantine interventions are employed.

3.3.1 Reproduction Number

To further illustrate the effect of multiple intervention strategies for controlling an

epidemic we calculate R0 for the SEIRVQ model. As before we use the NGM ap-

proach. This time the infected sub-system consists of the equations (3.13), (3.14) and

(3.17). Evaluating the system at the disease-free steady state (S = 1), we can write
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Figure 3.8: SEIRVQ model; β = 0.3, σ = 0.5, γ = 0.1, ν1 = 0.02, ν2 = 0.01, κ = 0.03.

the sub-system as follows:

 Ė

İ

Q̇

 =

[ 0 β 0
0 0 0
0 0 0


︸ ︷︷ ︸

T

−

 ν2 + σ 0 0
−σ γ + κ 0
0 −κ γ


︸ ︷︷ ︸

Σ

] E
I
Q



Again we calculate Σ−1 using purely epidemiological interpretation. The entry Σ−1
1,1

corresponds to the time an individual currently in exposed state E will spend in

exposed state E. Since such an individual now can leave with combined rate of σ+ν2

to either state I or V , the amount of time he/she spends in E will be equal to

Σ−1
1,1 =

1

σ + ν2
.
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Similarly, the entry Σ−1
2,2 describes the time an infected person stays in the infectious

state I and is given by

Σ−1
2,2 =

1

γ + κ
.

The entries

Σ−1
1,2 = Σ−1

1,3 = Σ−1
2,3 = 0

since infected and quarantined persons cannot go back to the exposed state, and

quarantined individuals cannot go back to infected state, respectively. The entry

Σ−1
2,1 represents the time an exposed individual will spend in infected state for the

remainder of the outbreak, that is,

Σ−1
2,1 =

(
σ

σ + ν2

)
·
(

1

γ + κ

)
=

σ

(σ + ν2)(γ + κ)
.

The first factor σ/(σ + ν2) is the probability that an exposed individual will not

be vaccinated, while the second factor 1/(γ + κ) is the duration of infectiousness of

that person upon becoming infectious. Further, Σ−1
3,1 describes the amount of time an

exposed individual will spend in quarantine for the remainder of the outbreak. As

before, a person in state E goes to state I with probability σ/(σ + ν2), then gets

quarantined with probability κ/(κ+ γ) and spends 1/γ in quarantine state. Hence,

Σ−1
3,1 =

( σ

σ + ν2

)
·
( κ

κ+ γ

)
· 1
γ
=

σκ

γ(σ + ν2)(κ+ γ)
.
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With similar reasoning, the amount of time an infected person spends in quarantine

is given by

Σ−1
3,2 =

( κ

κ+ γ

)
· 1
γ
=

κ

γ(κ+ γ)
.

Finally,

Σ−1
3,3 =

1

γ

since this entry describes the amount of time a quarantined person will spend in

quarantined state for the remainder of the outbreak.

Multiplying the matrices T and Σ−1 gives the NGM

G = TΣ−1 =

 0 β 0
0 0 0
0 0 0




1
σ+ν2

0 0
σ

(σ+ν2)(γ+κ)
1

γ+κ
0

σκ
γ(σ+ν2)(γ+κ)

κ
γ(κ+γ)

1
γ


=

 βσ
(σ+ν2)(γ+κ)

β
γ+κ

0

0 0 0
0 0 0


with dominant eigenvalue

R0 =
βσ

(σ + ν2)(γ + κ)
.

From the expression for R0 above, one can further observe that

βσ

(σ + ν2)(γ + κ)
=

βσ

σ(1 + ν2
σ
)γ(1 + κ

γ
)

=
β

γ

1

(1 + ν2
σ
)(1 + κ

γ
)

<
β

γ
.
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The basic reproduction number for the SEIR model is β/γ. Using the same parameter

values chosen earlier, the R0 for the SEIR model without interventions is β/γ =

0.3/0.1 = 3, while the SEIRVQ model has the basic reproduction number R0 =

(0.3)(0.5)
(0.5+0.01)(0.1+0.03)

≈ 2.26. This implies that for the same infection rate β and recovery

rate γ, any control strategies can theoretically reduce the spread of the disease. The

vaccination strategies would reduce the number of susceptibles, while the quarantine

would reduce the number of infectives. As a consequence, the effective contacts

between susceptible and infected persons would be reduced.

38



CHAPTER 4

Simulation Results

We have considered the intervention strategies of mass and ring vaccination (MV and

RV) as well as quarantine for epidemic disease outbreaks. Each strategy was modeled

and simulated on its own and in combination with other strategies. All simulations

assume there are 1% initially infectious individuals (I(0)=0.01) in a fully susceptible

population. The infection, incubation, and recovery rates remain the same for all

simulations to maintain consistency, that is, β = 0.3, σ = 0.5 and γ = 0.1 respectively.

For the vaccination strategies, we compare the combination of MV and RV in which

ν1 > ν2 and ν1 = ν2 since they had the most significant effects on the epidemic.

Figure 4.1 shows the number of infected individuals over time corresponding to each

intervention strategy. It can be seen that the number is higher when no intervention is

implemented, and that cumulative number is decreased as interventions are employed

individually and in combination.

We simulate the mass and ring vaccination strategies in combination with each

other, to illustrate their effectiveness when one program has higher vaccination rate

than the other. For these strategies, we see that MV has the greatest effect on the total

number of infected individuals. This is mainly due to the term ν1S in equation (2.7).

It can be seen that this term reduces the overall “flow” of susceptible individuals to

the exposed state, and in turn lowers the number of individuals that transition from
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Figure 4.1: Number of infected individuals for various intervention strategies.

exposed to infected state. Conversely, RV focuses its efforts on tracing the contacts of

infected persons who are thus considered to be in the exposed state. However, RV has

little effect on the number of susceptible persons still coming into effective contact with

an infectious person. That is, the term βSI in equation (3.3) is ungoverned by the

intervention; since this term comes directly from interactions between susceptible and

infected persons, the overall “flow” of individuals from susceptible (S) to exposed (E)

state remains relatively unhindered, telling us that the number of infected individuals

will remain relatively high. In fact, the total number of infected individuals remains

higher than that of the mass vaccination strategy.

The quarantine intervention strategy is also simulated as before. Here we have

that the term βSI is affected by the intervention, therefore reducing the number of

effective contacts that occur between susceptible and infected individuals. However,

the results show that even though this strategy directly targets individuals in the
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infected state (I), the maximum number of individuals that still become infected

remains higher than that of all combinations of vaccination strategies. This is mainly

due to the rate at which persons are quarantined. Surely one could argue that a

higher quarantine rate could have a more significant effect on I. Yet realistically one

must also consider the capacity, the availability of resources and the effectiveness of

the facilities being used for quarantine.

For each of the interventions the basic reproduction number, R0, is calculated.

This is done to establish the validity of our argument that the value of R0 decreases

as intervention strategies are implemented and combined. The R0 values for each

different strategy are shown in Table 4.2 along with the peak of infected population

Imax, the total number of infected individuals R∞ and the total number of days until

the end of the epidemic (days until I(t) < 0.01). Note that R∞ is found by the relation

1−S∞−V∞ ≈ R∞ where V∞ = 0 for the case of no intervention and quarantine only.

For these models, no distinction is made between disease-related deaths and those

who recovered successfully from the disease; both cases are grouped in the recovered

compartment R.

Parameter Value Initial Values
β 0.3 S(0) = 0.99
σ 0.5 E(0) = 0
γ 0.1 I(0) = 0.01
ν1 0.02 or 0.015 R(0) = 0
ν2 0.01 or 0.015 V (0) = 0
κ 0.03 Q(0) = 0

Table 4.1: Combined intervention simulation values.

Table 4.1 shows the values of the parameters and initial conditions for the

combined intervention model where ν1 and ν2 vary depending on the intervention
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Intervention R0 Imax R∞ Length of outbreak (days)
None 3 0.251 0.9351 91.3
Combined vacc. (ν1 > ν2) 2.94 0.0768 0.3447 78.2
Combined vacc. (ν1 = ν2) 2.91 0.0989 0.442 83.9
Quarantine 2.31 0.1645 0.8556 88.7
Combined (ν1 > ν2) 2.26 0.0402 0.234 64.6

Table 4.2: Numerical simulation results for intervention strategies.

combinations. It is important to mention that even though combined vaccinations

with ν1 > ν2 was more effective than when ν1 = ν2 in reducing the total number

of infected individuals, the value for R0 is larger in the case of high MV rate than

in the case of equal rates. This is due to the expression for R0 in the vaccination

strategies, R0 = σβ
γ(σ+ν2)

. Both MV and RV strategies were simulated together and

the overall vaccination rate (ν1+ ν2) remained fixed for all vaccination scenarios. For

this reason, we have that when MV has a higher rate (ν1 > ν2) the expression for R0

has a smaller denominator versus when the rates are equal (ν1 = ν2). The smaller

denominator in the case of a high MV rate makes the value of R0 larger, whereas a

larger denominator in the case of equal rates makes the value for R0 slightly smaller.

To further illustrate the results from our numerical simulations, we can con-

sider looking at the cumulative number of individuals in the recovered state R as

before. Figure 4.2 shows the number of recovered persons for each intervention strat-

egy. As before, when no intervention is used, the total number of infected persons will

be high and in turn so will the number of recovered persons. Similarly, quarantine

Intervention R0 Value
None β/γ 3
Vacc. (ν1 > ν2) βσ/ (γ(σ + ν2)) 2.94
Vacc. (ν1 = ν2) βσ/ (γ(σ + ν2)) 2.91
Quarantine β/ (γ + κ) 2.31
Combined (ν1 > ν2) βσ/ ((γ + ν2)(γ + κ)) 2.26

Table 4.3: Expressions and values of R0 for intervention strategies.
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has less of an effect on the epidemic and the number of recovered individuals remains

high. Lastly, MV, RV and a combination of all strategies have the least amount of

recovered individuals, indicating that the cumulative number of infected persons was

low.
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Figure 4.2: Number of recovered individuals for various intervention strategies.

4.1 Sensitivity Analysis

Because the parameters used in these models and simulations were rough estimates

from epidemiological data, there is a degree of flexibility and uncertainty in their

values which remains to be explored. The goal is to determine which parameter

affects the result the most. Also in the case of having limited resources, sensitivity

analysis can help deduce which intervention should be implemented with highest

priority. Varying the values of the parameters showed that the all of the models

discussed were sensitive to changes in the parameters as well as initial values.
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The basic reproduction number R0 describes the average number of secondary

cases of infection arising from one infectious individual. It was seen in the previous

section that the implementation of intervention strategies in most cases reduces the

value of R0, this is due to the changes made to its expression according to each

strategy. In particular, as combinations of interventions are made, the expression for

R0 describes a growing denominator value which of course leads to R0 decreasing in

overall value since all rates are positive.

The number of initially infected individuals has a profound impact on an

epidemic. Considering the basic SIR model we can refer to Figure 2.4 in which the

different solution curves shown correspond to varying initially infected individuals.

Increasing the number of initial cases while keeping all parameters fixed reduces the

duration of the epidemic but also tends to increase the peak of the epidemic curve. For

example we consider the initial values I(0)=0.4 so that S(0)=0.6. For this simulation

we have that the number of infected persons reaches a max of I(4.3)≈ 0.4707, and

the epidemic dies out by day 40. Conversely, when I(0) = 0.99 and S(0)=0.01 a max

of I(26)≈ 0.3038 is reached and the epidemic dies out by day 77.

The infection rate β is a major governing parameter not only forR0 but for the

epidemic overall. As we increased the value of β (while keeping all other parameters

fixed) we saw a significant rise in the number of infected individuals as well as higher

values for R0 in all models including those with intervention strategies. For example,

in the SEIR model with β = 0.4 we have that R0 = 4 and I(29) ≈ 0.33. Conversely,

when β = 0.2 we have a smaller reproduction number, R0 = 2, and an infected max of

I(57)≈ 0.13. The incubation rate was increased to illustrate the effect of diseases with
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longer incubation/latent periods while all other parameters remained fixed. This had

the effect of not only reducing the maximum number of infected but also prolonging

the duration of the epidemic, namely I(76)≈ 0.13 when σ = 0.08 as opposed to I(38)≈

0.25 when σ = 0.5 for the SEIR model.

Vaccination rates were varied by ±5% and ±10% while all other parameters

remained fixed. The baseline reference simulation shows the effect when 100% of the

current vaccination rates are used for each individual strategy. Vaccination rate sim-

ulations were run to show the effect of variations in use and availability of resources,

and we can deduce from the results shown in Table 4.4 that the models are sensitive

to changes in ν1.

Scenario value of ν1 Imax % of population infected
90% 0.018 0.0857 38.4 %
95% 0.019 0.08117 36.38 %
100% 0.02 0.0768 34.47 %
105% 0.021 0.07296 32.67 %
110% 0.022 0.0693 30.98 %

Table 4.4: Sensitivity of mass vaccination rate ν1.

Similarly, we vary the vaccination rate ν2 by ±5% and ±10% while keeping all other

parameters fixed. The results in Table 4.5 show that the models are only slightly

sensitive to changes in the values of ν2.

Percentage used value of ν2 Imax % of population infected
90% 0.018 0.1311 56.9 %
95% 0.019 0.1304 56.69 %
100% 0.02 0.1298 56.49 %
105% 0.021 0.1291 56.28 %
110% 0.022 0.1284 56.08 %

Table 4.5: Sensitivity of ring vaccination rate ν2.

Quarantine rate κ was also varied in the same way as ν1 and ν2. From the results

shown in Table 4.6 we see that the models are only slightly sensitive to changes in
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the quarantine rate as well. The conclusion can be made that in the case of a limited

amount of resources, priority should be given to the mass vaccination strategy and

resources should be allocated accordingly.

Percentage used value of κ Imax % of population infected
90% 0.027 0.1719 86.5 %
95% 0.0285 0.1682 86.04 %
100% 0.03 0.1645 85.56 %
105% 0.0315 0.1609 85.08 %
110% 0.033 0.1574 84.6 %

Table 4.6: Sensitivity of quarantine rate κ.
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Figure 4.3: Sensitivity plot for ν1.
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Figure 4.4: Sensitivity plot for ν2.
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Figure 4.5: Sensitivity plot for κ.
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CHAPTER 5

Comparing the Models to Case Studies

In order to test the intervention models we compare the output of the model to a

case study using historical data published by the World Health Organization (WHO).

It is necessary to test the models to determine how capable they are in predicting

epidemics. Due to limited availability of detailed historical data on these epidemics,

we consider a case study for which the susceptible population is relatively small and

found in less developed areas. The method for testing the model against data collected

from a case report of a smallpox outbreak in Nigeria is described below.

We begin by defining values such as total population size, average pre-infectious

days (incubation period), average duration of infectiousness, R0, and the initial num-

ber of infected individuals. These values are estimated directly from [8, 23] as well as

[12]. The incubation period for smallpox has been historically reported as lasting from

10-14 days; for this reason we take the incubation period to be 12 days. The duration

of infectiousness for smallpox varies, depending on factors such as prior vaccination,

so we estimate this time to be roughly 20 days. The value of R0 for smallpox also

varies with the literature [7, 8, 10, 12], and so for this reason we take the value of

R0 = 6.87 calculated in [12] specifically for this case report. Using these values, the

contact rate β, infectious rate σ and recovery rate γ are estimated and the model is
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run. The expressions used to estimate each parameter are defined in [24] as follows:

β =
R0

(duration of infectiousness)(total susceptible population)

σ =
1

average pre-infectious period

γ =
1

duration of infectiousness

The reasoning behind these expressions can be shown with our previous understanding

of the definition for R0 and the biological interpretations of each parameter.

We begin with β, which is defined as the rate at which two specific individuals

come into effective contact per unit time. Here, “effective contact” is defined as a

contact between a susceptible and infected individual sufficient enough to lead to the

infection of the susceptible person. Let D = 1/γ be the duration of infection, then R0

D

is the number of effective contacts made by each person per unit time. From this it

follows that
R0
D

N
is the number of per capita effective contacts made by an individual

per unit time. That is,
R0
D

N
= R0

ND
= β. Similarly, we know that σ is defined as the

average rate of onset of infectiousness per unit time and γ is the average recovery

rate per unit time, just as they are defined above.

5.1 Abakaliki, Nigeria: A Smallpox Epidemic Case Study

In the last weeks of May of 1967 a case of smallpox was reported in Abakaliki, an

urban trading town in Nigeria. Abakaliki was the site of a mass vaccination program

which successfully vaccinated at least 88.5% of the entire population in February of

that same year. The striking occurrence of a case of smallpox was elucidated by
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the fact that it occurred among a religious group, Faith Tabernacle, a group which

steadfastly refuses any preventative or curative health services [23]. Thirty of the

thirty-two cases reported during the twelve week period occurred among members of

the Faith Tabernacle group. Because of their religious beliefs, the group members

remained somewhat isolated from the rest of the community with which they resided.

The origins of this outbreak were traced back to a ten-year-old girl who was

brought from a nearby village where a severe smallpox outbreak had occurred just

months before; when she reached Abakaliki she was showing symptoms of a fever.

Over the course of the next two to three weeks she developed the pustular rashes

which are the clinical signs of a case of smallpox. Approximately two weeks later,

an individual living in the same housing compound developed similar symptoms and

rashes. The disease first spread among family members, those in close contact with

infected individuals, and then progressed to secondary contacts at church meetings

or during interactions in the town market. Over the course of roughly twelve weeks

the outbreak spread to nine other housing compounds in Abakaliki and 32 confirmed

cases were reported overall.

Week: 1 2 3 4 5 6 7 8 9 10 11 12
Cases reported: 1 0 1 2 5 1 5 3 6 4 3 1

Table 5.1: Weekly reported cases of smallpox in 1967 in Abakaliki, Nigeria.

To fit the intervention models to the recorded data from this outbreak we

consider a delayed intervention approach in three stages. In accordance with the case

report, the quarantine intervention did not begin until the 11th case was discovered

and vaccination did not begin until the 21st case. We consider that a small percentage
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of infected individuals initially remained isolated in their households during the first

stage and so we begin the model with a low quarantine rate κ. We use the data

generated by the model as initial values for the second stage model with high κ, indi-

cating when the WHO discovered the 11th case and implemented a strict quarantine

intervention. Similarly, the output data from the second stage model is used as ini-

tial values for the combined intervention model (third stage) in which vaccination is

implemented along with quarantine. The values β ≈ 0.011565657, σ ≈ 0.0833333333,

and γ ≈ 0.05 remain the same for all three stages. In Stage two, we have that

Q(0) ≈ 21.24 (90% of infected persons at day 38). Similarly, in Stage three we have

that V (0) ≈ 158.4 (90% of 176 susceptible non-Faith Tabernacle Church members

living in compounds with church members) as specified in the case report.

The case data is shown as a cumulative number of cases and is displayed

as a bar graph in Figure 5.1 along with the model predictions. We see that the

models predict the recorded data closely; see Table 5.3 for case study data. The

discrepancies in the recorded data and model prediction arise from several factors.

One of these is the non-homogeneity in the population due to the fact that Faith-

Tabernacle Church members lived together in clusters and only encountered non-

members in marketplaces and other public places. Furthermore, the fact that some

of the first people to become infected recovered by day 50 explains the gap between

the second stage model prediction and the recorded data.

Some important things to note about this case are the spread of the disease

and its behavior in regards to intervention strategies. As individuals became infected

they were advised to remain in their homes. This, however, was simply advice and
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Figure 5.1: Abakaliki Smallpox outbreak.

was not enforced by any health organization. Furthermore, infectious persons who

remained at home still posed a threat to those who resided in the household and

compound. It was not until the WHO began intervening that newly infected persons

were strictly isolated in hospitals. This was the only intervention to which Faith

Tabernacle Church members conceded. Though a few individuals living in the com-

pounds in which smallpox cases occurred were previously vaccinated, the frequency of

close contact with those infected still lead them to become infected themselves. This

suggests that transmission could still occur in a population where the overall number

of vaccinated individuals is high, given that there is a small group of poorly-protected

individuals among them. For this reason, it is not advisable to accept any percentage

of vaccination coverage of a population as being high enough to stop the spread of

smallpox when there is non-homogenous mixing within the population [23].
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Parameter values Initial values
S(0) = 297

ν1 = 0 E(0) = 0
Stage 1 ν2 = 0 I(0) = 1

κ = 0.02 R(0) = 0
V (0) = 0
Q(0) = 0

S(0) ≈ 269.35
ν1 = 0 E(0) ≈ 14.83

Stage 2 ν2 = 0 I(0) ≈ 7.90
κ = 0.125 R(0) ≈ 4.78

V (0) = 0
Q(0) ≈ 21.24
S(0) ≈ 193

ν1 = 0.025 E(0) ≈ 34.04
Stage 3 ν2 = 0.015 I(0) ≈ 14.69

κ = 0.125 R(0) ≈ 49.82
V (0) ≈ 158.4
Q(0) ≈ 26.96

Table 5.2: Case study simulation values.

Date Cases Reported Total Infected Intervention
Apr 5 1 1 Low Quarantine
Apr 18 1 2 .
Apr 25 1 3 .
Apr 27 1 3 .
Apr 30 3 6 .
May 1 1 7 .
May 5 1 8 .
May 10 1 8 .
May 13 1 9 High Quarantine
May 15 2 11 .
May 17 2 12 .
May 22 1 8 .
May 25 1 9 .
May 26 1 9 .
May 30 2 11 .
May 31 2 12 Vaccination/Quarantine
Jun 1 1 13 .
Jun 2 1 14 .
Jun 4 2 15 .
Jun 5 1 14 .
Jun 7 1 13 .
Jun 10 2 15 .
Jun 15 1 14 .
Jun 20 1 12 .

Table 5.3: Case study data.
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APPENDIX A

Numerical Solution to Ordinary Differential Equations

In this appendix we discuss some well-known numerical methods for solving a system

of ordinary differential equations (ODEs) with some initial values, also known as

initial value problems (IVP). It is important to note that the numerical methods used

to solve IVPs do not yield a continuous solution but rather approximations to the

solution are found at certain equally spaced points.

A.1 Euler’s Method

Euler’s method is the most elementary approximation technique for solving an IVP

[5]. We will take advantage of the simplicity of its derivation as a basis for discussing

more advanced methods.

The main goal of Euler’s method is to obtain numerical approximations to the IVP

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α (A.1)

As stated before, the approximations will be obtained at specific equally spaced points

in the interval [a, b] on which our function is being considered. We define each specific

point by

ti = a+ h, for all i = 0, 1, 2, . . . , N (A.2)
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where h is the step size, or distance between each points, defined by h = (b− a)/N .

Denote the solution to (A.1) by y(t) and suppose that y(t) has continuous second

derivatives on the interval [a, b]. Then by Taylor’s Theorem we have that

y(ti+h) = y(ti) + (ti+h − ti)y
′(ti) +

(ti+h − ti)
2

2!
y′′(ξi), ξi ∈ (ti, ti+1).

Furthermore,

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi) (A.3)

since y(t) is the solution to (A.1).

Now, let ωi be an approximate solution at ti, that is

ωi ≈ y(ti), for all i = 0, 1, 2, . . . , N. (A.4)

Assuming that h is small, we omit the remainder term h2

2
y′′(ξi) and obtain Euler’s

method:

ω0 = α,

ωi+1 = ωi + hf(ti, wi) for all i = 0, 1, . . . , N − 1. (A.5)

The remainder term τ = h2

2
y′′(ξi) is also known as the local truncation error. In other

words, τ is the error committed at each step and it is proportional to h2. Recall that

the number of steps is determined by t−t0
h

, which is proportional to 1/h. Then we
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have that the global truncation error is proportional to h2

h
= h. This tells us that the

truncation error grows linearly and so we say that Euler’s method has order O(h).

By retaining more terms in the Taylor series expansion of the solution y(t) to an IVP

we can derive methods that have a higher order of accuracy.

A.2 Runge-Kutta Methods

One of the goals in using numerical methods for solving IVPs is to obtain accurate

solutions that are computationally inexpensive. Runge-Kutta methods are among

the best known methods for solving IVP due to the fact that they do not require

the computation and evaluation of derivatives of the function f(t, y), as opposed to

Taylor methods [5]. Runge-Kutta methods were first studied by Carle Runga and

Martin Kutta around the year 1901, with more modern developments brought about

by John Butcher in the 1960’s [6].

A.2.1 Second Order Runge-Kutta Method

Consider a system of ODEs

y′(t) = f(t,y(t)). (A.6)

As before, we begin with the Taylor expansion

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +O(h3). (A.7)
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Differentiating (A.6) and using substitution we have

y′′(t) = ft(t,y) + fy(t,y)y
′(t)

= ft(t,y) + fy(t,y)f(t,y)

where fy is the partial derivative of f with respect to y. We then obtain

y(t+ h) = y(t) + hf(t,y) +
h2

2
[ft(t,y) + fy(t,y)f(t,y)] +O(h3)

= y(t) +
h

2
f(t,y) +

h

2
[f(t,y) + hft(t,y) + hfy(t,y)f(t,y)] +O(h3) (A.8)

Now, considering the multi-variable Taylor expansion

f(t+ h,y+ k) = f(t,y) + hft(t,y) + kfy(t,y) +
1

2
[h2ftt(t,y) + 2hkfty(t,y) + k2fyy(t,y)] + . . .

we can rewrite (A.6) as

f(t+ h,y+ hf(t,y)) = f(t,y) + hft(t,y) + hfy(t,y)f(t,y) +O(h2)

and therefore

y(t+ h) = y(t) +
h

2
f(t,y) +

h

2
f(t+ h,y+ hf(t,y)) +O(h3)
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or more simply

yn+1 = yn +
h

2
(k1 + k2) (A.9)

where

k1 = f(tn,yn)

k2 = f(tn+1,yn + hk1).

The numerical method (A.9) is known as the classical second-order Runge-Kutta

method.

A.2.2 Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method (RK4) can be derived using the same approach

as the second-order method. This time, however, we define

yn+1 = yn + h

[
k1
6

+
k2
3

+
k3
3

+
k4
6

]
(A.10)
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where

k1 = f(tn,yn)

k2 = f

(
tn +

h

2
,yn + k1

h

2

)
k3 = f

(
tn +

h

2
,yn + k2

h

2

)
k4 = f(tn+1,yn + k3h).

The global error for RK4 is O(h4). Since the goal of many numerical methods is to

obtain a desired accuracy to the solution of an IVP with the fewest number of com-

putations, it makes sense that RK4 is a more desirable method in contrast to Euler’s

method. This is further reinforced by the fact that RK4 allows the use of a larger

step size h that still satisfies accuracy conditions but results in fewer computations,

even though RK4 requires more function evaluations per step.
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APPENDIX B

MATLAB Code

1 %%%%%%%%%%%%%%%%%%%%%% sir.m %%%%%%%%%%%%%%%%%%%%%%
2 function sir = sir(t,y)
3 % infection rate
4 beta = 0.3;
5 % beta = 0.08;
6 % recovery rate
7 gamma = .1;
8 %dS/dt
9 sir(1) = -beta*y(1)*y(2);

10 %dI/dt
11 sir(2) = beta*y(1)*y(2)-gamma*y(2);
12 %dR/dt
13 sir(3) = gamma*y(2);
14 sir = [sir(1), sir(2), sir(3)]';
15 end

1 %%%%%%%%%%%%%%%%%%%%%% SIRmodel.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 % INITIAL [Susceptible, Infected, Recovered]
5 yo = [0.99,0.01,0];
6 %%%%%%%%%%%%%%%%%%% 4th Order Runge-Kutta %%%%%%%%%%%%%%%%%%%
7 [t, w] = RK4E(0,80,1000,yo);
8 plot(t,w(1,:),'r','LineWidth',1.5);
9 hold on

10 plot(t,w(2,:),'g','LineWidth',1.5);
11 plot(t,w(3,:),'b','LineWidth',1.5);
12 %%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%
13 title('SIR Model')
14 xlabel('Days')
15 ylabel('Population')
16 legend ('Susceptible','Infected','Recovered' )

1 %%%%%%%%%%%%%%%%%%%%%% pplaneSIR.m %%%%%%%%%%%%%%%%%%%%%%
2 figure;
3 %%%% Vector field %%%%
4 [x,z]=meshgrid(0:.05:1,0.001:.05:1);
5 dx = -(0.3).*x.*z;
6 dz = (0.3).*x.*z - (0.1).*z;
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7 dxn = dx./sqrt(dx.ˆ2 + dz.ˆ2);
8 dzn = dz./sqrt(dx.ˆ2 + dz.ˆ2);
9 q = quiver(x,z,dxn,dzn);

10 xlabel('Susceptible')
11 ylabel('Infected')
12 title('Phase Plane for SIR model')
13 xlim([0 1]);
14 ylim([0 1]);
15 %%%% Solution Curves %%%%
16 hold on
17 to = 0;
18 tf = 100;
19 %%% Initial Values
20 %%% Ro > 1
21 yo = [.99, .001, .2];
22 vo = [.4, .6, 0];
23 wo = [.75, .25, 0];
24 so = [.25, .75 , 0];
25 uo = [.6, .4, 0];
26 %%% Ro < 1
27 % uo=[0.2, 0.8, 0];
28 % vo=[0.4, 0.6, 0];
29 % wo=[0.6, 0.4, 0];
30 % so=[0.8, 0.2, 0];
31 % yo=[0.5, 0.5, 0];
32 %%% Different initial values, same infection and recovery rates
33 [t, s] = ode45('sir', [to, tf], so);
34 [t, u] = ode45('sir', [to, tf], uo);
35 [t, v] = ode45('sir', [to, tf], vo);
36 [t, w] = ode45('sir', [to, tf], wo);
37 [t, y] = ode45('sir', [to, tf], yo);
38 %%% Plots
39 p = plot(y(:,1),y(:,2),'r','LineWidth',1.5);
40 m = plot(u(:,1),u(:,2),'r');
41 n = plot(v(:,1),v(:,2),'r');
42 l = plot(w(:,1),w(:,2),'r');
43 j = plot(s(:,1),s(:,2),'r');
44 k = plot([1 0],[0 1],'k');
45 %%% Threshold value line
46 r = plot([.3333 .3333],[0 .6670],'b--', 'LineWidth',1.5);
47 legend([q,p,m,r],'direction vectors','Infected vs. ...

Susceptible','other solutions','threshold value')
48 % legend([q,p,m],'direction vectors','Infected vs. ...

Susceptible','other solutions')

1 %%%%%%%%%%%%%%%%%%%%%% seir.m %%%%%%%%%%%%%%%%%%%%%%
2 function seir = seir(t,u)
3 %infection rate
4 beta = 0.3;
5 %incubation rate
6 sigma = 0.5;
7 %recovery rate
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8 gamma = 0.1;
9 %initial population size

10 N = 1;
11 %dS/dt
12 seir(1) = - beta*((u(1)*u(3))/N);
13 %dE/dt
14 seir(2) = beta*(u(1)*u(3))/N - sigma*u(2);
15 %dI/dt
16 seir(3) = sigma*u(2) - gamma*u(3);
17 %dR/dt
18 seir(4) = gamma*u(3);
19

20 seir = [seir(1), seir(2), seir(3), seir(4)]';
21 end

1 %%%%%%%%%%%%%%%%%%%%%% SEIRmodel.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 % INITIAL [Susceptible, Exposed, Infected, Recovered]
5 yo = [0.99, 0, 0.01, 0];
6 %%%%%%%%%%%%%%%%%%% 4th Order Runge-Kutta %%%%%%%%%%%%%%%%%%%
7 [t, w] = RK4E(0,100,1000,yo);
8 plot(t,w(1,:),'r','LineWidth',1.5);
9 % hold on;

10 plot(t,w(2,:),'g','LineWidth',1.5);
11 hold on
12 plot(t,w(3,:),'b','LineWidth',1.5);
13 plot(t,w(4,:),'c','LineWidth',1.5);
14 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
15 %%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%
16 title('SEIR Model')
17 xlabel('Days')
18 ylabel('Population')
19 % legend ('Susceptible','Exposed','Infected','Recovered')
20 legend ('Exposed','Infected','Recovered')

1 %%%%%%%%%%%%%%%%%%%%%% SEIRVmodel.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 to = 0;
5 tf = 100;
6 % INITIAL [Susceptible, Exposed, Infected, Recovered, Vaccinated]
7 yo = [0.99, 0, 0.01, 0, 0];
8 %%%%%%%%%%%%%%%%%%% ODE45 %%%%%%%%%%%%%%%%%%%
9 [t, y] = ode45('massvacc', [to, tf], yo);

10 % [t, y] = ode45('ringvacc', [to, tf], yo);
11 plot(t,y(:,1),'r','LineWidth',1.5);
12 hold on;
13 plot(t,y(:,2),'g','LineWidth',1.5);
14 plot(t,y(:,3),'b','LineWidth',1.5);
15 plot(t,y(:,4),'c','LineWidth',1.5);
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16 plot(t,y(:,5),'m','LineWidth',1.5);
17 %%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%
18 title('SEIRV Model')
19 xlabel('Days')
20 ylabel('Population')
21 legend ('Susceptible','Exposed','Infected','Recovered', 'Vaccinated')

1 %%%%%%%%%%%%%%%%%%%%%% equalvacc.m %%%%%%%%%%%%%%%%%%%%%%
2 function equalvacc = equalvacc(t,a)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (equal)

10 nu1 = 0.015;
11 nu2 = 0.015;
12 %initial population size
13 N = 1;
14 %dS/dt
15 equalvacc(1) = - beta*((a(1)*a(3))/N) - nu1*(a(1));
16 %dE/dt
17 equalvacc(2) = beta*((a(1)*a(3))/N) - a(2)*(sigma + nu2);
18 %dI/dt
19 equalvacc(3) = sigma*a(2) - gamma*a(3);
20 %dR/dt
21 equalvacc(4) = gamma*a(3);
22 %dV/dt
23 equalvacc(5) = nu1*a(1) + nu2*a(2);
24

25 equalvacc = [equalvacc(1), equalvacc(2), equalvacc(3), ...
equalvacc(4), equalvacc(5)]';

26 end

1 %%%%%%%%%%%%%%%%%%%%%% massvacc.m %%%%%%%%%%%%%%%%%%%%%%
2 function massvacc = massvacc(t,b)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher mass vaccination)

10 nu1 = 0.02;
11 nu2 = 0.01;
12 %initial population size
13 N = 1;
14 %dS/dt
15 massvacc(1) = - beta*((b(1)*b(3))/N) - nu1*(b(1));
16 %dE/dt
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17 massvacc(2) = beta*((b(1)*b(3))/N) - b(2)*(sigma + nu2);
18 %dI/dt
19 massvacc(3) = sigma*b(2) - gamma*b(3);
20 %dR/dt
21 massvacc(4) = gamma*b(3);
22 %dV/dt
23 massvacc(5) = nu1*b(1) + nu2*b(2);
24

25 massvacc = [massvacc(1), massvacc(2), massvacc(3), massvacc(4), ...
massvacc(5)]';

26 end

1 %%%%%%%%%%%%%%%%%%%%%% Massonly.m %%%%%%%%%%%%%%%%%%%%%%
2 function Massonly = Massonly(t,d)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (mass vacc only)

10 nu1 = 0.03;
11 nu2 = 0;
12 %initial population size
13 N = 1;
14 %dS/dt
15 Massonly(1) = - beta*((d(1)*d(3))/N) - nu1*(d(1));
16 %dE/dt
17 Massonly(2) = beta*((d(1)*d(3))/N) - d(2)*(sigma + nu2);
18 %dI/dt
19 Massonly(3) = sigma*d(2) - gamma*d(3);
20 %dR/dt
21 Massonly(4) = gamma*d(3);
22 %dV/dt
23 Massonly(5) = nu1*d(1) + nu2*d(2);
24

25 Massonly = [Massonly(1), Massonly(2), Massonly(3), Massonly(4), ...
Massonly(5)]';

26 end

1 %%%%%%%%%%%%%%%%%%%%%% ringvacc.m %%%%%%%%%%%%%%%%%%%%%%
2 function ringvacc = ringvacc(t,c)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher ring vaccination)

10 nu2 = 0.02;
11 nu1 = 0.01;
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12 %initial population size
13 N = 1;
14 %dS/dt
15 ringvacc(1) = - beta*((c(1)*c(3))/N) - nu1*(c(1));
16 %dE/dt
17 ringvacc(2) = beta*((c(1)*c(3))/N) - c(2)*(sigma + nu2);
18 %dI/dt
19 ringvacc(3) = sigma*c(2) - gamma*c(3);
20 %dR/dt
21 ringvacc(4) = gamma*c(3);
22 %dV/dt
23 ringvacc(5) = nu1*c(1) + nu2*c(2);
24

25 ringvacc = [ringvacc(1), ringvacc(2), ringvacc(3), ringvacc(4), ...
ringvacc(5)]';

26 end

1 %%%%%%%%%%%%%%%%%%%%%% Ringonly.m %%%%%%%%%%%%%%%%%%%%%%
2 function Ringonly = Ringonly(t,e)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (ring vacc only)

10 nu1 = 0;
11 nu2 = 0.03;
12 %initial population size
13 N = 1;
14 %dS/dt
15 Ringonly(1) = - beta*((e(1)*e(3))/N) - nu1*(e(1));
16 %dE/dt
17 Ringonly(2) = beta*((e(1)*e(3))/N) - e(2)*(sigma + nu2);
18 %dI/dt
19 Ringonly(3) = sigma*e(2) - gamma*e(3);
20 %dR/dt
21 Ringonly(4) = gamma*e(3);
22 %dV/dt
23 Ringonly(5) = nu1*e(1) + nu2*e(2);
24

25 Ringonly = [Ringonly(1), Ringonly(2), Ringonly(3), Ringonly(4), ...
Ringonly(5)]';

26 end

1 %%%%%%%%%%%%%%%%%%%%%% Vaccs.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 to = 0;
5 tf = 100;
6 %initial conditions
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7 bo = [0.99, 0, 0.01, 0, 0];
8

9 [t, d] = ode45('Massonly', [to, tf], bo);
10 plot(t,d(:,4),'--b','LineWidth',1.5);
11 hold on;
12 [t, e] = ode45('Ringonly', [to, tf], bo);
13 plot(t,e(:,4),'--c','LineWidth',1.5);
14 [t, b] = ode45('massvacc', [to, tf], bo);
15 plot(t,b(:,4),':r','LineWidth',1.5);
16 [t, c] = ode45('ringvacc', [to, tf], bo);
17 plot(t,c(:,4),':m','LineWidth',1.5);
18 [t, a] = ode45('equalvacc', [to, tf], bo);
19 plot(t,a(:,4),'g','LineWidth',1.5);
20

21 title('Vaccination strategies')
22 xlabel('Days')
23 ylabel('Recovered individuals')
24 legend ('MV only','RV only','Combined (\nu 1 > \nu 2)','Combined ...

(\nu 1 < \nu 2)','Combined (\nu 1 = \nu 2)')

1 %%%%%%%%%%%%%%%%%%%%%% seirq.m %%%%%%%%%%%%%%%%%%%%%%
2 function seirq = seirq(t,x)
3 %infection rate
4 beta = 0.3;
5 % beta = 0.0011565657; % Abakaliki
6 %rate at which exposed becomes infected
7 sigma = 0.5;
8 % sigma = 0.0833333333; % Abakaliki
9 %recovery rate

10 gamma = 0.1;
11 % gamma = 0.05; % Abakaliki
12 %quarantine rate
13 kappa = 0.03;
14 % kappa = 0.4; % Abakaliki
15 %initial population size
16 N = 1;
17 %dS/dt
18 seirq(1) = - beta*((x(1)*x(3))/N);
19 %dE/dt
20 seirq(2) = beta*((x(1)*x(3))/N) - sigma*x(2);
21 %dI/dt
22 seirq(3) = sigma*x(2) - (gamma + kappa)*x(3);
23 %dR/dt
24 seirq(4) = gamma*(x(3) + x(5));
25 %dQ/dt
26 seirq(5) = kappa*x(3) - gamma*x(5);
27 seirq = [seirq(1), seirq(2), seirq(3), seirq(4), seirq(5)]';
28 end

1 clear all;
2 format long;

70



3 % INITIAL [Susceptible, Exposed, Infected, Recovered, Quarantined]
4 yo = [0.99, 0, 0.01, 0, 0];
5 %%%%%%%%%%%%%%%%%%% 4th Order Runge-Kutta %%%%%%%%%%%%%%%%%%%
6 [t, w] = RK4E(0, 100, 1000, yo);
7 plot(t,w(1,:),'r','LineWidth',1.5);
8 hold on;
9 plot(t,w(2,:),'g','LineWidth',1.5);

10 plot(t,w(3,:),'b','LineWidth',1.5);
11 plot(t,w(4,:),'c','LineWidth',1.5);
12 plot(t,w(5,:),'k','LineWidth',1.5);
13 %%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%
14 title('SEIRQ Model')
15 xlabel('Days')
16 ylabel('Population')
17 legend ('Susceptible','Exposed','Infected','Recovered', ...

'Quarantined')

1 %%%%%%%%%%%%%%%%%%%%%% seirvq.m %%%%%%%%%%%%%%%%%%%%%%
2 function seirvq = seirvq(t,z)
3 %infection rate
4 beta = 0.3;
5 % beta = 0.0011565657; % Abakaliki
6 %rate at which E becomes I
7 sigma = 0.5;
8 % sigma = 0.0833333333; % Abakaliki
9 %recovery rate

10 gamma = 0.1;
11 % gamma = 0.05; % Abakaliki
12 %vaccination rates
13 nu1 = 0.02;
14 nu2 = 0.01;
15 % nu1 = 0.4; % Abakaliki
16 % nu2 = 0.25; % Abakaliki
17 %quarantine rate
18 kappa = 0.03;
19 % kappa = 0.3; % Abakaliki
20 %initial population size
21 N = 1;
22 %dS/dt
23 seirvq(1) = - beta*((z(1)*z(3))/N) - z(1)*nu1;
24 %dE/dt
25 seirvq(2) = beta*((z(1)*z(3))/N) - z(2)*(sigma + nu2);
26 %dI/dt
27 seirvq(3) = sigma*z(2) - (gamma + kappa)*z(3);
28 %dR/dt
29 seirvq(4) = gamma*(z(3) + z(6));
30 %dV/dt
31 seirvq(5) = nu1*z(1) + nu2*z(2);
32 %dQ/dt
33 seirvq(6) = kappa*z(3) - gamma*z(6);
34
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35 seirvq = [seirvq(1), seirvq(2), seirvq(3), seirvq(4), seirvq(5), ...
seirvq(6)]';

36 end

1 %%%%%%%%%%%%%%%%%%%%%% SEIRVQmodel.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 % INITIAL [Susceptible, Exposed, Infected, Recovered, Vaccinated, ...

Quarantined]
5 yo = [0.99, 0, 0.01, 0, 0, 0];
6 %%%%%%%%%%%%%%%%%%% 4th Order Runge-Kutta %%%%%%%%%%%%%%%%%%%
7 [t, w] = RK4E(0, 100, 1000, yo);
8 plot(t,w(1,:),'r','LineWidth',1.5);
9 hold on;

10 plot(t,w(2,:),'g','LineWidth',1.5);
11 plot(t,w(3,:),'b','LineWidth',1.5);
12 plot(t,w(4,:),'c','LineWidth',1.5);
13 plot(t,w(5,:),'m','LineWidth',1.5);
14 plot(t,w(6,:),'k','LineWidth',1.5);
15 %%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%
16 title('SEIRVQ Model')
17 xlabel('Days')
18 ylabel('Population')
19 legend ...

('Susceptible','Exposed','Infected','Recovered','Vaccinated','Quarantined')

1 %%%%%%%%%%%%%%%%%%%%%% Interventions.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 to = 0;
5 tf = 100;
6 % Initial Conditions
7 ao = [0.99, 0, 0.01, 0];
8 bo = [0.99, 0, 0.01, 0, 0];
9 do = [0.99, 0, 0.01, 0, 0, 0];

10 % Solve each model
11 [t, a] = ode45('seir', [to, tf], ao);
12 plot(t,a(:,4),':r','LineWidth',1.5);
13 hold on;
14 [t, b] = ode45('massvacc', [to, tf], bo);
15 plot(t,b(:,4),'--g','LineWidth',1.5);
16 [t, c] = ode45('equalvacc', [to, tf], bo);
17 plot(t,c(:,4),'--c','LineWidth',1.5);
18 [t, d] = ode45('seirq', [to, tf], bo);
19 plot(t,d(:,4),'-.m','LineWidth',1.5);
20 [t, e] = ode45('seirvq', [to, tf], do);
21 plot(t,e(:,4),':b','LineWidth',1.5);
22

23 xlabel('Days')
24 ylabel('Infected individuals')
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25 legend ('No intervention','MV+RV (\nu 1 > \nu 2)','MV+RV (\nu 1 = ...
\nu 2)','Quarantine','Combined interventions')

1 %%%%%%%%%%%%%%%%%%%%%% Sensitivity.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 to = 0;
5 tf = 100;
6 %initial conditions
7 bo = [0.99, 0, 0.01, 0, 0];
8 % [t, a] = ode45('mv1', [to, tf], bo);
9 [t, u] = ode45('q1', [to, tf], bo);

10 plot(t,u(:,3),':g','LineWidth',1.5);
11 hold on;
12

13 % [t, c] = ode45('mv2', [to, tf], bo);
14 [t, v] = ode45('q2', [to, tf], bo);
15 plot(t,v(:,3),'--b','LineWidth',1.5);
16

17 % [t, b] = ode45('ringvacc', [to, tf], bo);
18 [t, x] = ode45('seirq', [to, tf], bo);
19 plot(t,x(:,3),'r','LineWidth',1.5);
20

21 % [t, d] = ode45('mv3', [to, tf], bo);
22 [t, w] = ode45('q3', [to, tf], bo);
23 plot(t,w(:,3),'-.c','LineWidth',1.5);
24

25 % [t, e] = ode45('mv4', [to, tf], bo);
26 [t, y] = ode45('q4', [to, tf], bo);
27 plot(t,y(:,3),':m','LineWidth',1.5);
28

29 xlabel('Days')
30 ylabel('Infected individuals')
31 legend ('90%','95%','100%','105%','110%')

1 %%%%%%%%%%%%%%%%%%%%%% mv1.m %%%%%%%%%%%%%%%%%%%%%%
2 function mv1 = mv1(t,a)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher mass vaccination)

10 nu2 = 0.018;
11 nu1 = 0.01;
12 %initial population size
13 N = 1;
14 %dS/dt
15 mv1(1) = - beta*((a(1)*a(3))/N) - nu1*(a(1));
16 %dE/dt
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17 mv1(2) = beta*((a(1)*a(3))/N) - a(2)*(sigma + nu2);
18 %dI/dt
19 mv1(3) = sigma*a(2) - gamma*a(3);
20 %dR/dt
21 mv1(4) = gamma*a(3);
22 %dV/dt
23 mv1(5) = nu1*a(1) + nu2*a(2);
24

25 mv1 = [mv1(1), mv1(2), mv1(3), mv1(4), mv1(5)]';
26 end

1 %%%%%%%%%%%%%%%%%%%%%% mv2.m %%%%%%%%%%%%%%%%%%%%%%
2 function mv2 = mv2(t,c)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher mass vaccination)

10 nu2 = 0.019;
11 nu1 = 0.01;
12 %initial population size
13 N = 1;
14 %dS/dt
15 mv2(1) = - beta*((c(1)*c(3))/N) - nu1*(c(1));
16 %dE/dt
17 mv2(2) = beta*((c(1)*c(3))/N) - c(2)*(sigma + nu2);
18 %dI/dt
19 mv2(3) = sigma*c(2) - gamma*c(3);
20 %dR/dt
21 mv2(4) = gamma*c(3);
22 %dV/dt
23 mv2(5) = nu1*c(1) + nu2*c(2);
24

25 mv2 = [mv2(1), mv2(2), mv2(3), mv2(4), mv2(5)]';
26 end

1 %%%%%%%%%%%%%%%%%%%%%% mv3.m %%%%%%%%%%%%%%%%%%%%%%
2 function mv3 = mv3(t,d)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher mass vaccination)

10 nu2 = 0.021;
11 nu1 = 0.01;
12 %initial population size
13 N = 1;
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14 %dS/dt
15 mv3(1) = - beta*((d(1)*d(3))/N) - nu1*(d(1));
16 %dE/dt
17 mv3(2) = beta*((d(1)*d(3))/N) - d(2)*(sigma + nu2);
18 %dI/dt
19 mv3(3) = sigma*d(2) - gamma*d(3);
20 %dR/dt
21 mv3(4) = gamma*d(3);
22 %dV/dt
23 mv3(5) = nu1*d(1) + nu2*d(2);
24

25 mv3 = [mv3(1), mv3(2), mv3(3), mv3(4), mv3(5)]';
26 end

1 %%%%%%%%%%%%%%%%%%%%%% mv4.m %%%%%%%%%%%%%%%%%%%%%%
2 function mv4 = mv4(t,e)
3 %infection rate
4 beta = 0.3;
5 %rate E becomes I
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %vaccination rates (higher mass vaccination)

10 nu2 = 0.022;
11 nu1 = 0.01;
12 %initial population size
13 N = 1;
14 %dS/dt
15 mv4(1) = - beta*((e(1)*e(3))/N) - nu1*(e(1));
16 %dE/dt
17 mv4(2) = beta*((e(1)*e(3))/N) - e(2)*(sigma + nu2);
18 %dI/dt
19 mv4(3) = sigma*e(2) - gamma*e(3);
20 %dR/dt
21 mv4(4) = gamma*e(3);
22 %dV/dt
23 mv4(5) = nu1*e(1) + nu2*e(2);
24

25 mv4 = [mv4(1), mv4(2), mv4(3), mv4(4), mv4(5)]';
26 end

1 %%%%%%%%%%%%%%%%%%%%%% q1.m %%%%%%%%%%%%%%%%%%%%%%
2 function q1 = q1(t,x)
3 %infection rate
4 beta = 0.3;
5 %rate at which exposed becomes infected
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %quarantine rate

10 kappa = 0.027;
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11 %initial population size
12 N = 1;
13 %dS/dt
14 q1(1) = - beta*((x(1)*x(3))/N);
15 %dE/dt
16 q1(2) = beta*((x(1)*x(3))/N) - sigma*x(2);
17 %dI/dt
18 q1(3) = sigma*x(2) - (gamma + kappa)*x(3);
19 %dR/dt
20 q1(4) = gamma*(x(3) + x(5));
21 %dQ/dt
22 q1(5) = kappa*x(3) - gamma*x(5);
23

24 q1 = [q1(1), q1(2), q1(3), q1(4), q1(5)]';
25 end

1 %%%%%%%%%%%%%%%%%%%%%% q2.m %%%%%%%%%%%%%%%%%%%%%%
2 function q2 = q2(t,x)
3 %infection rate
4 beta = 0.3;
5 %rate at which exposed becomes infected
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %quarantine rate

10 kappa = 0.0285;
11 %initial population size
12 N = 1;
13 %dS/dt
14 q2(1) = - beta*((x(1)*x(3))/N);
15 %dE/dt
16 q2(2) = beta*((x(1)*x(3))/N) - sigma*x(2);
17 %dI/dt
18 q2(3) = sigma*x(2) - (gamma + kappa)*x(3);
19 %dR/dt
20 q2(4) = gamma*(x(3) + x(5));
21 %dQ/dt
22 q2(5) = kappa*x(3) - gamma*x(5);
23

24 q2 = [q2(1), q2(2), q2(3), q2(4), q2(5)]';
25 end

1 %%%%%%%%%%%%%%%%%%%%%% q3.m %%%%%%%%%%%%%%%%%%%%%%
2 function q3 = q3(t,x)
3 %infection rate
4 beta = 0.3;
5 %rate at which exposed becomes infected
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %quarantine rate
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10 kappa = 0.0315;
11 %initial population size
12 N = 1;
13 %dS/dt
14 q3(1) = - beta*((x(1)*x(3))/N);
15 %dE/dt
16 q3(2) = beta*((x(1)*x(3))/N) - sigma*x(2);
17 %dI/dt
18 q3(3) = sigma*x(2) - (gamma + kappa)*x(3);
19 %dR/dt
20 q3(4) = gamma*(x(3) + x(5));
21 %dQ/dt
22 q3(5) = kappa*x(3) - gamma*x(5);
23

24 q3 = [q3(1), q3(2), q3(3), q3(4), q3(5)]';
25 end

1 %%%%%%%%%%%%%%%%%%%%%% q4.m %%%%%%%%%%%%%%%%%%%%%%
2 function q4 = q4(t,x)
3 %infection rate
4 beta = 0.3;
5 %rate at which exposed becomes infected
6 sigma = 0.5;
7 %recovery rate
8 gamma = 0.1;
9 %quarantine rate

10 kappa = 0.033;
11 %initial population size
12 N = 1;
13 %dS/dt
14 q4(1) = - beta*((x(1)*x(3))/N);
15 %dE/dt
16 q4(2) = beta*((x(1)*x(3))/N) - sigma*x(2);
17 %dI/dt
18 q4(3) = sigma*x(2) - (gamma + kappa)*x(3);
19 %dR/dt
20 q4(4) = gamma*(x(3) + x(5));
21 %dQ/dt
22 q4(5) = kappa*x(3) - gamma*x(5);
23

24 q4 = [q4(1), q4(2), q4(3), q4(4), q4(5)]';
25 end

1 %%%%%%%%%%%%%%%%%%%%%% CaseStudy.m %%%%%%%%%%%%%%%%%%%%%%
2 clear all;
3 format long;
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 load cases3.dat;
6 [n,p] = size(cases3);
7 t=1:n;
8 bar(t,cases3,'c','EdgeColor','b')
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9 hold on;
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 % time points
12 to=0;
13 tisol=30; % WHO quarantine program
14 tvacc=57; % WHO vaccination program
15 tf=84;
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % Initial values for SEIRQ model
18 % [So, Eo, Io, Ro, Vo, Qo]
19 xo = [297, 0, 1, 0, 0, 0];
20 % solve SEIRVQ system with ode45
21 [t,x] = ode45('seirvq3',[to,tisol],xo); %SEIRVQ with low ...

quarantine rate
22 % plot infected solution curve
23 plot(t,x(:,3),'r','LineWidth',2)
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 % Initial values for SEIRVQ2 model. These are the final values
26 % computed in the SEIRVQ3 model
27 yo = [x(65,1),x(65,2),x(65,3),x(65,4), 0, 21.24]; % Qo=90% of inf ...

@ day 38
28 [t,y] = ode45('seirvq2',[tisol,tvacc],yo); %SEIRVQ with high ...

quarantine
29 plot(t,y(:,3),'--g','LineWidth',2)
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % Initial values for SEIRV model. These are the final values
32 % computed in the SEIRQ2 model
33 zo = [y(45,1),y(45,2),y(45,3),y(45,4),158.4,y(45,5)]; % Vo= 90% ...

of non FTC
34 [t,z] = ode45('seirvq',[tvacc,tf],zo); % Vaccination implemented
35 plot(t,z(:,3),':b','LineWidth',2)
36 hold off;
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % figure
39 title('ABAKALIKI Delayed Interventions')
40 xlabel('Days')
41 ylabel('Number of Infected Population')
42 legend('Recorded data','SEIRVQ, low \kappa','SEIRVQ, high ...

\kappa','SEIRVQ model')

1 %%%%%%%%%%%%%%%%%%%%%% seirvq2.m %%%%%%%%%%%%%%%%%%%%%%
2 function seirvq2 = seirvq2(t,z)
3 %infection rate
4 beta = 0.0011565657; % Abakaliki
5 %rate at which E becomes I
6 sigma = 0.0833333333; % Abakaliki
7 %recovery rate
8 gamma = 0.05; % Abakaliki
9 %vaccination rates

10 nu1 = 0;
11 nu2 = 0;
12 %quarantine rate
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13 kappa = 0.125; % Abakaliki
14 %initial population size
15 N = 1;
16 %dS/dt
17 seirvq2(1) = - beta*((z(1)*z(3))/N) - z(1)*nu1;
18 %dE/dt
19 seirvq2(2) = beta*((z(1)*z(3))/N) - z(2)*(sigma + nu2);
20 %dI/dt
21 seirvq2(3) = sigma*z(2) - (gamma + kappa)*z(3);
22 %dR/dt
23 seirvq2(4) = gamma*(z(3) + z(6));
24 %dV/dt
25 seirvq2(5) = nu1*z(1) + nu2*z(2);
26 %dQ/dt
27 seirvq2(6) = kappa*z(3) - gamma*z(6);
28

29 seirvq2 = [seirvq2(1), seirvq2(2), seirvq2(3), seirvq2(4), ...
seirvq2(5), seirvq2(6)]';

30 end

1 %%%%%%%%%%%%%%%%%%%%%% serivq3.m %%%%%%%%%%%%%%%%%%%%%%
2 function seirvq3 = seirvq3(t,z)
3 %infection rate
4 beta = 0.0011565657; % Abakaliki
5 %rate at which E becomes I
6 sigma = 0.0833333333; % Abakaliki
7 %recovery rate
8 gamma = 0.05; % Abakaliki
9 %vaccination rates

10 nu1 = 0;
11 nu2 = 0;
12 %quarantine rate
13 kappa = 0.02; % Abakaliki
14 %initial population size
15 N = 1;
16 %dS/dt
17 seirvq3(1) = - beta*((z(1)*z(3))/N) - z(1)*nu1;
18 %dE/dt
19 seirvq3(2) = beta*((z(1)*z(3))/N) - z(2)*(sigma + nu2);
20 %dI/dt
21 seirvq3(3) = sigma*z(2) - (gamma + kappa)*z(3);
22 %dR/dt
23 seirvq3(4) = gamma*(z(3) + z(6));
24 %dV/dt
25 seirvq3(5) = nu1*z(1) + nu2*z(2);
26 %dQ/dt
27 seirvq3(6) = kappa*z(3) - gamma*z(6);
28

29 seirvq3 = [seirvq3(1), seirvq3(2), seirvq3(3), seirvq3(4), ...
seirvq3(5), seirvq3(6)]';

30 end
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1 %%% Classical 4th Order Runge-Kutta Method for SEIR/SIR Epidemic ...
Models %%%

2 function [t,w] = RK4E(a,b,n,alpha)
3 %%%%%%%% initialize w vector
4 % SIR
5 % w = zeros(3,n+1);
6 % SEIR
7 w = zeros(4,n+1);
8 % SEIRV/Q
9 % w = zeros(5,n+1);

10 % SEIRVQ
11 % w = zeros(6,n+1);
12 %%%%%%%% initialize t vector
13 t = zeros(1,n+1);
14 %%%%%%%% h is stepsize for method
15 h = (b-a)/n;
16 %%%%%%%% initial conditions vector
17 w(:,1) = alpha;
18 %%%%%%%% t vector loop
19 for i=1:n+1
20 t(i)=a+(i-1)*h;
21 end
22 %%%%%%%% method loop
23 for i = 2:(n+1)
24 k1 = h*f(t(i-1), w(:,i-1));
25 k2 = h*f(t(i-1) + h/2, w(:,i-1) + k1/2);
26 k3 = h*f(t(i-1) + h/2, w(:,i-1) + k2/2);
27 k4 = h*f(t(i) + h, w(:,i-1) + k3);
28 w(:,i) = w(:,i-1) + (k1 + 2*k2 + 2*k3 + k4)/6;
29 end
30 end
31 %%%%%%%%%%%%%%%%%%%%% ODE Systems %%%%%%%%%%%%%%%%%%%%%
32

33 %%%%%%%%%%%%%%%% SIR %%%%%%%%%%%%%%%%%%%%%
34 % function sir = f(t,y)
35 % % infection rate
36 % % epidemic
37 % % beta =0.3;
38 % % no epidemic
39 % beta = 0.08;
40 % % recovery rate
41 % gamma = .1;
42 % %dS/dt
43 % sir(1) = -beta*y(1)*y(2);
44 % %dI/dt
45 % sir(2) = beta*y(1)*y(2)-gamma*y(2);
46 % %dR/dt
47 % sir(3) = gamma*y(2);
48 % sir = [sir(1), sir(2), sir(3)]';
49 % end
50

51 %%%%%%%%%%%%%%%% SEIR %%%%%%%%%%%%%%%%%%%%%
52 function seir = f(t,y)
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53 %infection rate
54 % beta = 0.3;
55 beta = 0.08;
56 %rate at which exposed becomes infected
57 sigma = 0.5;
58 %recovery rate
59 gamma = 0.1;
60 %initial population size
61 N = 1;
62 %dS/dt
63 seir(1) = - beta*((y(1)*y(3)))/N;
64 %dE/dt
65 seir(2) = beta*(y(1)*y(3))/N - sigma*y(2);
66 %dI/dt
67 seir(3) = sigma*y(2) - gamma*y(3);
68 %dR/dt
69 seir(4) = gamma*y(3);
70 seir = [seir(1), seir(2), seir(3), seir(4)]';
71 end
72

73 % %%%%%%%%%%%%%%%% SEIRV %%%%%%%%%%%%%%%%%%%%%
74 % function seirv = f(t,y)
75 % %infection rate
76 % beta = 0.3;
77 % %rate E becomes I
78 % sigma = 0.5;
79 % %recovery rate
80 % gamma = 0.1;
81 % %vaccination rates
82 % nu1 = 0.019;
83 % nu2 = 0.011;
84 % % nu1 = 0.03;
85 % % nu2 = 0.03;
86 % %initial population size
87 % N = 1;
88 % %dS/dt
89 % seirv(1) = - beta*((y(1)*y(3))/N) - nu1*(y(1));
90 % %dE/dt
91 % seirv(2) = beta*((y(1)*y(3))/N) - y(2)*(sigma + nu2);
92 % %dI/dt
93 % seirv(3) = sigma*y(2) - gamma*y(3);
94 % %dR/dt
95 % seirv(4) = gamma*y(3);
96 % %dV/dt
97 % seirv(5) = nu1*y(1) + nu2*y(2);
98 % seirv = [seirv(1), seirv(2), seirv(3), seirv(4), seirv(5)]';
99 % end

100

101 %%%%%%%%%%%%%%%% SEIRQ %%%%%%%%%%%%%%%%%%%%%
102 % function seirq = f(t,y)
103 % %infection rate
104 % beta = 0.3;
105 % %rate at which exposed becomes infected
106 % sigma = 0.5;
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107 % %recovery rate
108 % gamma = 0.1;
109 % %quarantine rate
110 % kappa = 0.03;
111 % %initial population size
112 % N = 1;
113 % %dS/dt
114 % seirq(1) = - beta*((y(1)*y(3))/N);
115 % %dE/dt
116 % seirq(2) = beta*((y(1)*y(3))/N) - y(2)*sigma;
117 % %dI/dt
118 % seirq(3) = sigma*y(2) - y(3)*(gamma + kappa);
119 % %dR/dt
120 % seirq(4) = gamma*(y(3)+y(5));
121 % %dQ/dt
122 % seirq(5) = kappa*y(3)- gamma*y(5);
123 % seirq = [seirq(1), seirq(2), seirq(3), seirq(4), seirq(5)]';
124 % end
125

126 %%%%%%%%%%%%%%%% SEIRVQ %%%%%%%%%%%%%%%%%%%%%
127 % function seirvq = f(t,y)
128 % %infection rate
129 % beta = 0.3;
130 % %rate at which E becomes I
131 % sigma = 0.5;
132 % %recovery rate
133 % gamma = 0.1;
134 % %vaccination rates
135 % nu1 = 0.02;
136 % nu2 = 0.01;
137 % %quarantine rate
138 % kappa = 0.03;
139 % %initial population size
140 % N = 1;
141 % %dS/dt
142 % seirvq(1) = - beta*((y(1)*y(3))/N) - y(1)*nu1;
143 % %dE/dt
144 % seirvq(2) = beta*((y(1)*y(3))/N) - y(2)*(sigma + nu2);
145 % %dI/dt
146 % seirvq(3) = sigma*y(2) - (gamma + kappa)*y(3);
147 % %dR/dt
148 % seirvq(4) = gamma*(y(3) + y(6));
149 % %dV/dt
150 % seirvq(5) = nu1*y(1) + nu2*y(2);
151 % %dQ/dt
152 % seirvq(6) = kappa*y(3) - gamma*y(6);
153 % seirvq = [seirvq(1), seirvq(2), seirvq(3), seirvq(4), ...

seirvq(5), seirvq(6)]';
154 % end
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