

Long Range Endurance Platform, Systems Engineering and Payload

California State University, Los Angeles
College of Engineering, Computer Science and Technology

Team Members: Shant Havandjian (Lead), Francisco Padilla, Carolina Rosales, Briana Talamantes, Summer Tirado

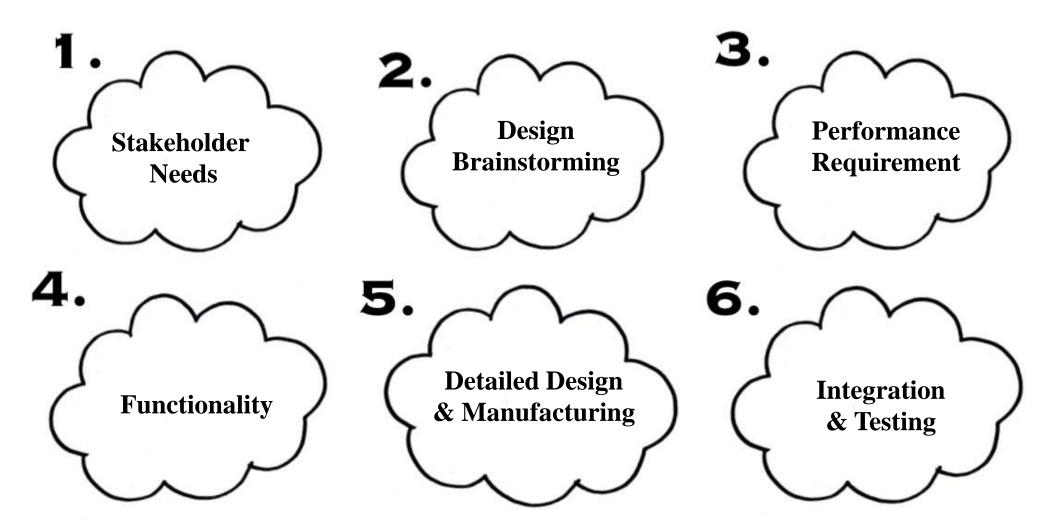
Advisor: David Scholler

Client: The Aerospace Corporation, Dr. Alyson Yarbrough

Agenda

- 1) What is Systems Engineering?
- 2) Requirements
- 3) Regulations
- 4) Missions
- 5) Sensors
 - 1) Lower Payload Bay Configuration
 - 2) Cameras
 - 3) LIDAR
 - 4) Particulate Sensor
 - 5) CO2 Sensor
- 6) Telemetry Tracking and Control
 - 1) Transmitter and Receiver
 - 2) Antenna
 - 3) IMU
- 7) Conclusion

Sub teams-Responsibilities



- Systems Engineering and Payload
 - Tracking Telemetry and Communication, Sensors, Payload Design and Analysis
- Structures
 - Design and Analysis of UAV structure
- Powertrain
 - Design and Analysis of UAV powertrain
- Flight
 - Design and Analysis of Propellers,
 Wings, and Flight characteristics

What is Systems Engineering?

- How can we successfully complete this project in the most efficient way possible?
- Approaching a complex problem and breaking it down to smaller tasks.
- Communicate the objectives, requirements, and constraints for the team
- Coordinating the project as it progresses
- Does the result meet the stakeholder's expectations?

What is Systems Engineering?

Mission Requirements

Mission Profile Requirements

General UAV Requirements

From Aerospace Corporation:

- Must maintain physical parameters given by the client's design
- ➤ Must have capacity to assess particulate emissions from marine vessels/ vehicles
- ➤ UAV must maintain at least an 8+ hour fight time
- ➤ Maintain duty cycle (60% sensing, 20% landing, 20% taking off)
- ➤ Be utilized in other port related missions (infrastructure inspection, security, emergency services)
- > Real-time data recovery and assessment

Regulations

Government Regulation to operate UAV over 55lbs–FAA

Register the UAV

Waivers to apply to

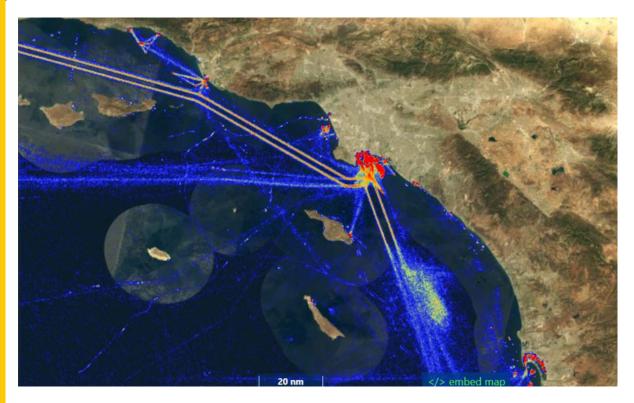
- ➤ Night flying Waiver § 107.29 Daylight Operations is required if flying past sunset.
- > Anti collision lights that meet visibility for at least 3 statue miles is needed for filing Waiver 107.29
- ➤ Waiver § 107.31 Visual Line of Sight Aircraft Operation
- ➤ Waiver § 107.33 Use a visual observer without following all visual observer requirements

Regulations

Waivers to apply to - Continuation

- ➤ Waiver § 107.35 Operation of Multiple Small UAS
- ➤ § 107.145 Operations Over Moving Vehicles
- ➤ Waiver § 107.39 Operation Over People
- ➤ Waiver § 107.51 Operating limitations for Small Unmanned Aircraft if need to surpass speed of 100mph or fly above 400ft

Mass Budgets


Team	Assigned (%)	
Systems	20 lbs (20%)	
Structure	20 lbs (20%)	
Power Train	50 lbs (50%)	
Flight	10 lbs (10%)	

Cost Budget

Team	General Description	Forecasted Expense	
	Sensors		
Systems	Gimbal	\$7,060.00	
	Camera		
	Supports/Polyurethane	\$4,500.00	
Structure	Screws		
	Carbon Fiber Sheets & Rods		
	Engine & Battery Packs	\$6,663.00	
Power Train	Electric Motors		
	Fuel		
Flight	Propellers	\$600.00	
	Wings	\$600.00	

Port Mission

Density Map with Marine Highways: Courtesy of Marine Traffic

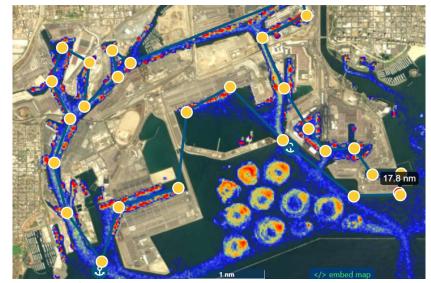
Density Map with Ship Locations: Courtesy of Vessel Finder

North-South and East-West Passages Visible in density maps.

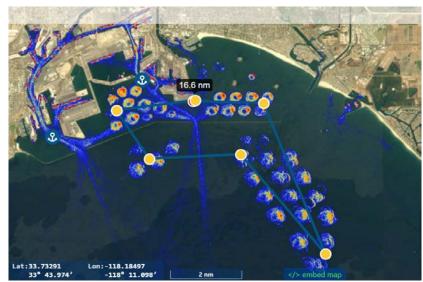
All Cargo, Container, and Freighter Ships enter ports from TWO locations

Port Mission

Density Map with Anchorage Locations (2019): Vessel Tracker


Density Map with Live Ship Locations (03/15/21): Vessel Tracker

Ships wait at Anchorage to be let into port.


Port backlog due to Covid 19, extra Anchorages set up.

Over 1 week waiting period as of February 2021

Missions

Dock Inspection: Average Distance 17.8nm

Anchorage Inspection: Average Distance 16.6nm

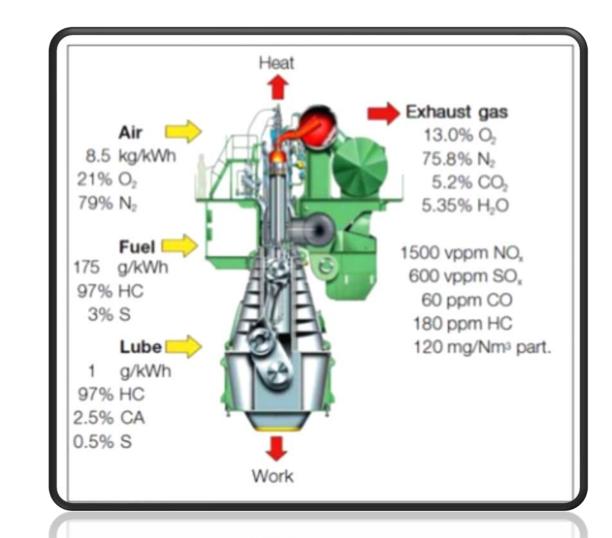
Passage Monitoring: Average Distance 19.5nm

Anchorage Inspection(extended): Average Distance 16.6nm

Port Mission

Mission	Dock Inspection	Passage Monitoring	Anchorage Inspection	Anchorage Inspection (Backlog)
Cruise Time (min)	42.7	46.8	39.8	70.3
Hover Time (min)	25	5	15	55
Total Flight Time (min)	67.7	51.8	54.8	125.3
Total Distance (nm)	17.8	19.5	16.6	29.3

Missions – Primary and Secondary


	Components			
<u>Missions</u>	<u>Camera</u>	Sensors	<u>LIDAR</u>	Lighting
Marine Vessel Emission Detection	Optical Thermal	Particle GPS	Yes	No
Port Security, Surveillance, and Reconnaissance	Optical Thermal	SWIR GPS	Yes	Spotlight
Port Emergency Services	Optical Thermal	Laser Fluro CO ₂	Yes	Spotlight Indicator
Wildfire Detection	Optical Thermal	Particle CO ₂ GPS	Yes	NA
Infrastructure Inspection	Optical Thermal Wide lens	Laser Fluro	Yes	NA

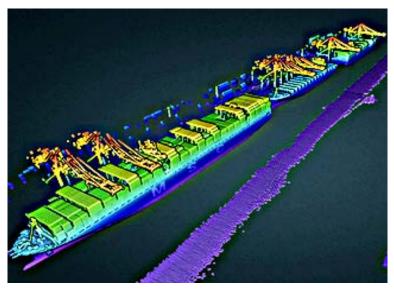
Mission – Emission Analysis

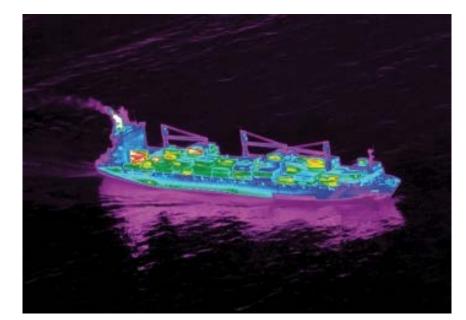
Composition of Vessel Exhaust

- Oxides of Nitrogen (NO_x): creates ozone
- Oxides of Sulphur (SO_x): create acidification
- Carbon Dioxide (CO₂): is a 'greenhouse' gas
- → Southern CA has a speed restriction of 12 knots for vessels within 20 miles of coast
- Carbon Monoxide (CO): product of incomplete combustion
- Hydrocarbons (HC): gas, soot and additional particulates

Mission – Emission Analysis

Composition of UAV Exhaust (Wankel Rotary Engine)

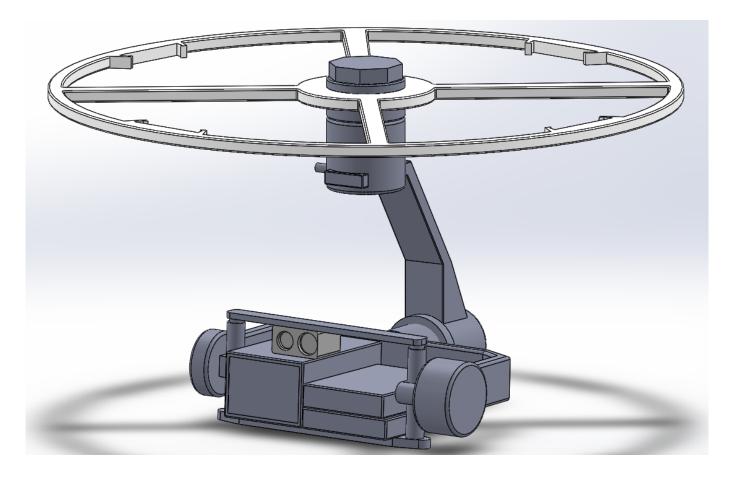

- Higher Nitrogen oxide (NO_x) emissions compared to other UAV engines
- Low Sulphur oxide (SO_x) emissions
- Higher Carbon Dioxide (CO₂) emissions
- Utilizes regular unleaded gasoline (~10 ppm of SO_x, 30 ppm for No_x)
- Power 22 kW / 29.9 hp @ 6000 rpm


Sensors

Sensors required to fulfill mission requirements

- Optical and Thermal Imaging Camera
- LIDAR Light Detecting and Ranging sensor
- Particulate Emission Detection Sensor
- CO2 Emission Detection Sensor

LIDAR imaging of docked cargo ships



Thermal Imaging of Cargo Ship at sail

Exhaust plume from Container Ship

Sensors - Lower Sensors Bay

Lower Sensors Bay CAD model with Sensors Suite

Payload - Camera

- Thermal and HD images
 - Pre-integrated thermal module
- Suitable for locating and identifying subjects in low light conditions

- Low profile design
 - Flexible positioning
 - SWaP for longer air-time

FLIR Hadron

Sensors – LiDAR S3

- Light Detection and Ranging
 - a remote sensing method that utilizes lasers to measure elevation data at a very fast rate.

- Best used for wide area mapping
- Long range of 150 m
- LiDAR system has the strong capability to examine both natural and manmade environments without sacrificing high accuracy and precision.
- Low cost
- Light weight and compact

Sensor - LiDAR

How it works

- LiDAR emits laser pulses and measures the time it takes from the moment the pulse leaves the scanner, reflects off a detected object and return to the scanner.
- Airborne LiDAR data system
 - LiDAR Unit Scans the large geographical area from side to side
 - GPS tracks the altitude and location of the aircrafts and is vital to attain accurate elevation data.
 - IMU tracks the orientation allowing high accuracy of the position of the pulse
 - Computers Gather the elevation data as the Lidar unit scans the surfaces

Sensor - LiDAR

Equations that will be used to determine

• <u>Distance</u>

$$\frac{(Travel\ Time)(Speed\ of\ Light)}{2}$$

• Ground Elevation

(Altitude) - (Distance)

Sensors – Particulate and CO₂

What is a Particulate Sensor/Counter?

- Three types: Infrared, Beta Attenuation, Laser scattering
- Laser scattering -utilizes laser diffraction to count particles and determine their size
- How it works
 - A laser beam strikes a particle, the beam's light is scattered
 - Sensor detects the intensity and angle of the beam after passing through the particulate-laden air
 - An algorithm determines how many particles were in the sample and their size

What is a CO₂ Sensor?

- Three types: NDIR, Electrochemical, Metal oxide semiconductor
- NDIR utilized specific wavelengths of light to measure amount of CO₂ in air
- How it works
- Air enters the sensor
- 2. Sensor will activate a light set at one of the specific wavelengths for CO₂; Other side will hold a receptacle that will measure how much light makes it across
- Once light is activated, any CO₂ in air sample will absorb the beams of light
- ➤ The more CO₂ that is present, the more light that will be absorbed

Sensors - Particulate

- Designed for real-time surveying of common outdoor air pollutants
- Interchangeable sensor heads (one monitoring system for +5 pollutants)
- Sensor heads utilize active fan sampling, which increases measurement accuracy

Prana Air PM2.5 Sensor

- Laser-based scattering principal w/ advanced algorithms
- Fully calibrated digital output for particle number and mass concentration values
- 10 yr. life w/ continuous operation of 24 hours/day

ExTech VPC300 Particle Counter (sensor only)

- Six particle size channels
- Stores up to 5000 records (data, time, counts, etc.)
- Intended for tasks involving traffic related emissions

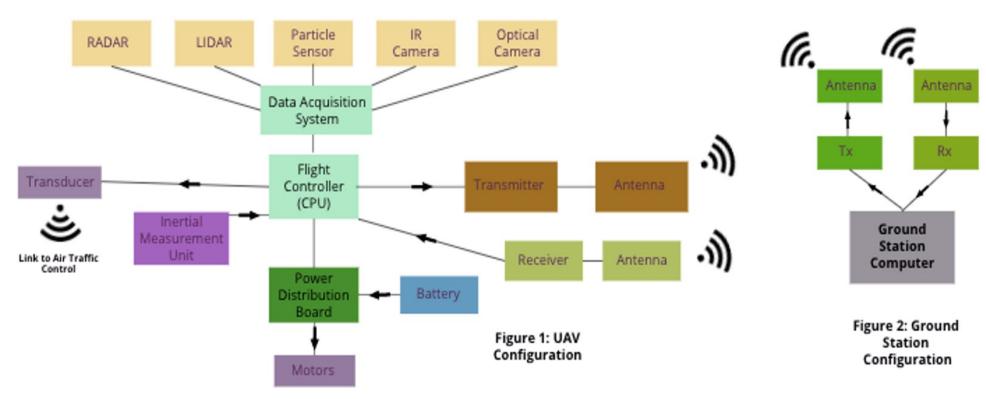
Sensors - CO₂

K33 ELG Sensor

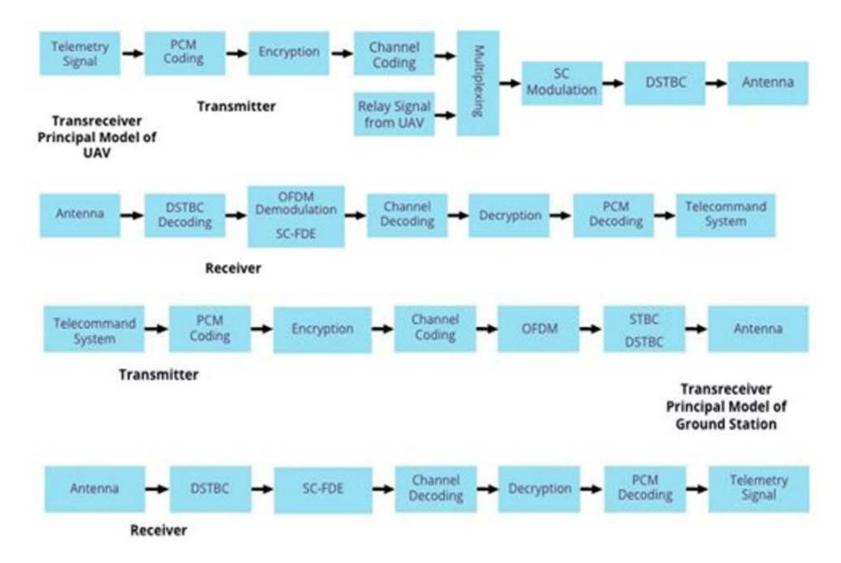
- Low-Power consumption (can be reduced to less than 52 μA)
- Maintenance free
- Sensor life of +10 yrs.

Kele Senva Outside Air CO₂ Sensor

- Auto-calibration feature available
- Internal heater for reliable outdoor operation
- 15+ yr. life expectancy on CO₂ sensor


TT&C – Government Regulations (FCC)

- FCC rules and regulations found in Title 47 of the Code of Federal Regulations (CFR).
 - 6 47 CFR § 97.215. 7 Transmitter frequencies. \$16,000 fine.
 - 47 CFR § 97.301(a) Drone accessories regulation that limits transmitter power to 1Watt.
 - 47 CFR §97.215(c)- Violators may be subject to substantial monetary fines



TT&C - Transmitter and Receiver

- How it works
 - Our System Design

TT&C - Transmitter and Receiver

TT&C

- System Changes
 - Frequency: 928MHz rather than 2.4GHz
- Capabilities
 - Entire System Included
 - 100 km (62.137 miles) LOS
 - Small and lightweight
 - Emergency power supply
 - Multiple payload interface Possibilites
 - Single Antenna
 - Dead-reckoning, flight and navigation without GPS

Link Analysis

- What is link analysis?
 - The analysis of power gains and losses that our system experiences while our signal travels from the transmitter to the reciever.
- Why is this important?
- Variables used in analysis
 - Frequency
 - Center Frequency
 - Wavelength
 - Bandwidth

Frequency	Center Frequency		Bandwidth	
(Hz)	(Hz) λ (cm)		(Hz)	
928 MHz	912 MHz	30 cm	26 MHz	

Link Analysis – Calculation Results

Distance (mi)	Power Received (dBW)	Thermal Noise Power (dBW)	Signal-to-Noise Ratio (dB)	Eb /N0 (dB)
5 mi	-85.6 dBW	-129.2 dBW	43.65 dB	58.1 dB
10 mi	-91.6 dBW	-129.2 dBW	37.64 dB	51.8 dB
15 mi	-95.1 dBW	-129.2 dBW	34.1 dB	48.1 dB
20 mi	-97.6 dBW	-129.2 dBW	31.6 dB	45.7 dB
30 mi	-101.1 dBW	-129.2 dBW	28.1 dB	42.2 dB
40 mi	-103.6 dBW	-129.2 dBW	25.6 dB	39.7 dB

