

Jet Propulsion Laboratory California Institute of Technology

Large Angle Flexure for Oscillating Heat Pipes in Space

Department of Mechanical Engineering:

California State University, Los Angeles

Senior Design Members: Spencer Miesner, Anthony De Leon, Sufi Asadi, Allan Hernandez, Christopher Molina

Advisor: Dr. Jim Kuo, Cal State LA Liaison: Dr. Scott Roberts, JPL

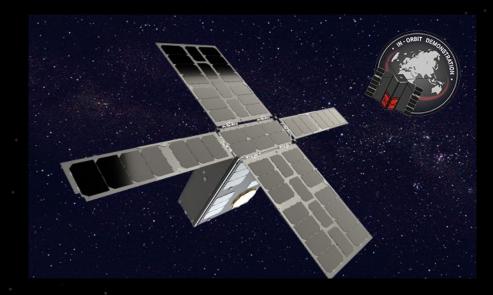
Partner: NASA, Jet Propulsion Laboratory

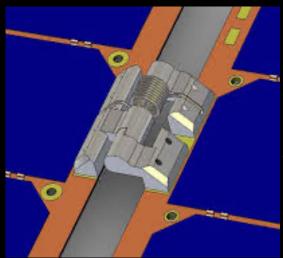
Agenda

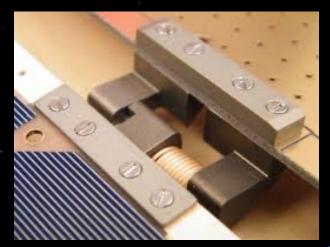
- I. Introduction
 - I. Background
 - II. Summary of Problem
 - III. Objective
 - IV. Minimum Requirements Table
- II. Design Showcase
- III. Testing Overview
 - I. Overview of 3D Printing Flexures
 - II. Experimental Procedure
 - III. Simulation Procedure
- IV. Trade Study
- V. Final Design Evaluation
- VI. What's next for Large Angle Flexures

(Spencer) (Spencer) (Spencer) (Anthony) (All) (Chris) (Chris) (Chris) (Allan) (Sufi) (Sufi) (Anthony)

Background

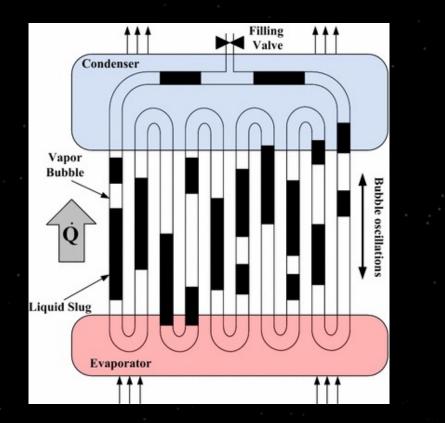

- Project is part of an effort to develop and improve CubeSats
- CubeSats are miniature satellites used for space research
- Internal components generate heat (which is detrimental to performance)
- Cooling done by radiating heat into space





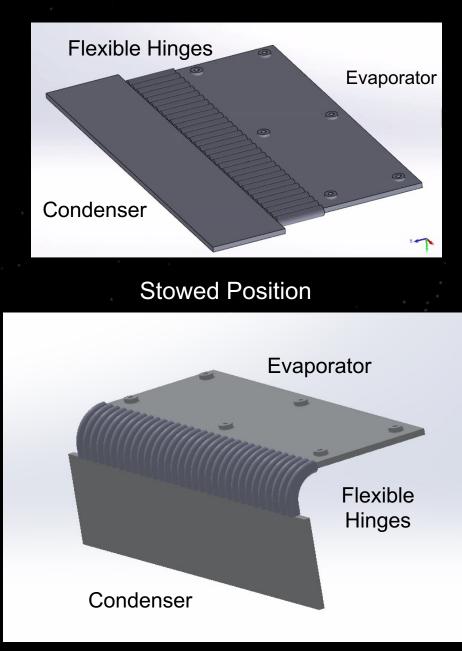
Summary of Problem

- Current cooling technologies in CubeSats limit power usage
- CubeSats have limited surface area. Use deployable radiator to increase area
- Difficulties in transferring heat across mechanical hinges
- Heat pipes transfer heat via fluid flow



Summary of Problem

- Oscillating Heat Pipes (OHP) are a 2-phase flow device
- Uses an oscillatory motion to transfer heat from evaporator to condenser
- High thermal conductivity, but requires flexible joints

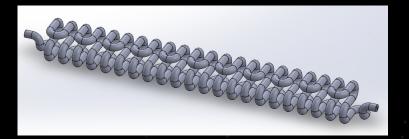


Open Position

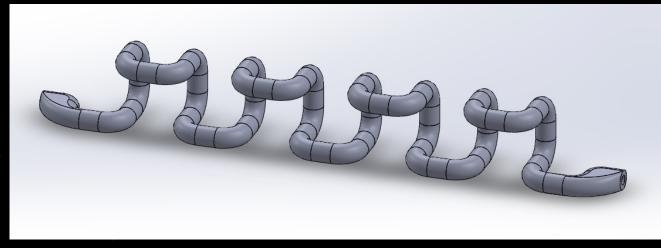
Objective

How can we create a flexure that can:

- Bend to allow radiator to be in stowed position
- Allow fluid to flow through
- Be 3D printed in metal

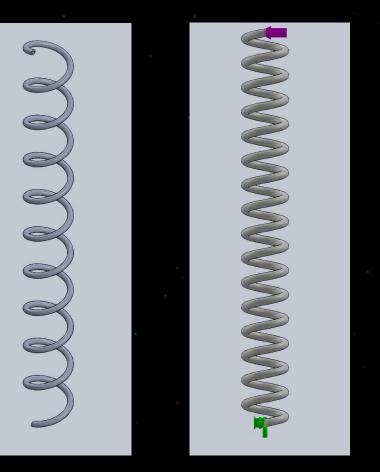


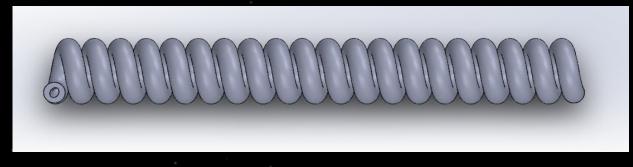
Minimum Requirements Table


Requirement **Minimum Requirement** Be able to bend to put radiator in Flexibility stowed position Have a Factor of Safety of at least Strength 2.0 **Coiled Length** Have a maximum length of 8 cm Efficient fitting of length in **Uncoiled Length** volumetric space Width Have a maximum width of 8 mm Height Have a maximum height of 8 mm Have a maximum mass of 2.5 g Mass Able to be 3D printed in metal Manufacturability though Powder Bed Fusion

Serpentine Structure

Previous Designs:

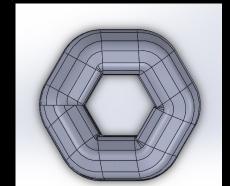

Final Design:

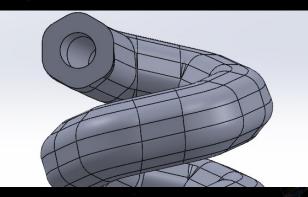

- Commonly used in MEMS (Micro Electro-Mechanical Structures) as flexures
- Lots of freedom of design
- Lots of room for optimization, through changing of different dimensions

Circle with inner Ellipse Spring

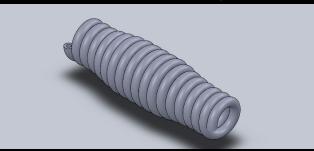
Previous Designs:

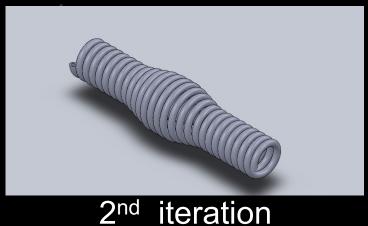
Final Design:

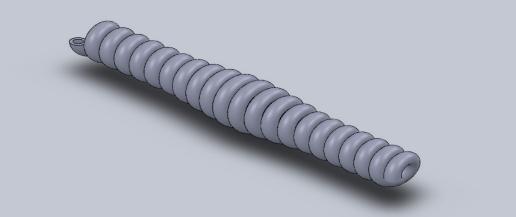

- Thicker walls can help with strength due to ellipse having less area than circle
- More angles increases the deflection, and circle has the most angles for outer
- Most amount of engaging due to not having sharp edges


Hexagon Spring

- Findings
 - \uparrow turns, \uparrow flexibility
 - *o_{max}* near fixed end at corner
 - Failure usually occurred at σ_{max} location

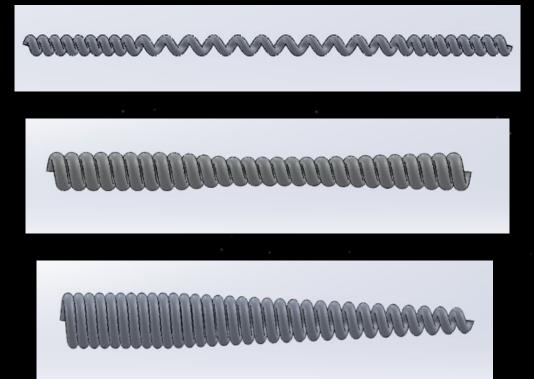

- Improvements:
 - Modified # of turns
 - Increased pitch
 - Filet edges on spring and wire



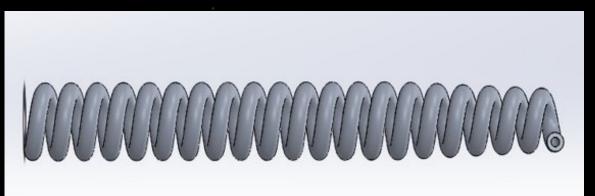

Reverse Hourglass Spring

Previous Designs:

1st iteration

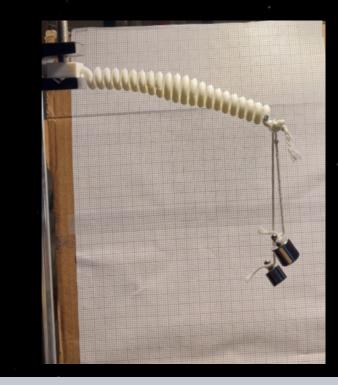


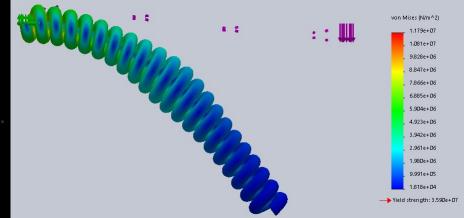
Final Design


- Alternate Design for Helical Compression Spring
 - Results can be compared to a typical helical spring
 - Change of centered height will diminish stress at edges
- Improvements:
 - Optimized length at the edges and decreasing the slope to the center height

Variable Pitch Spring

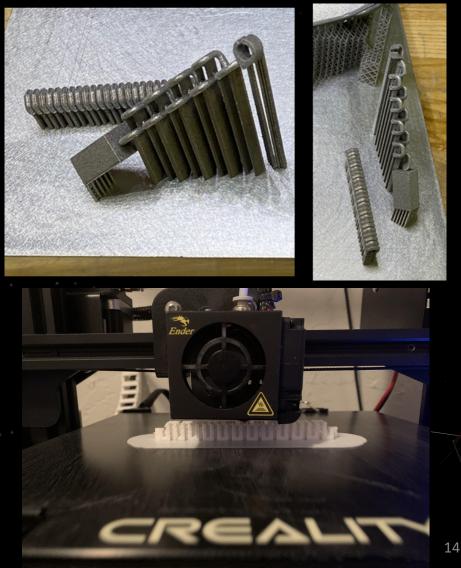
Previous Designs:


Final Design:


- Classic helical design but explored an important optimization technique
- Larger pitch toward the fixed end where more support is needed
- Smaller pitch toward free end where more bend activation is needed

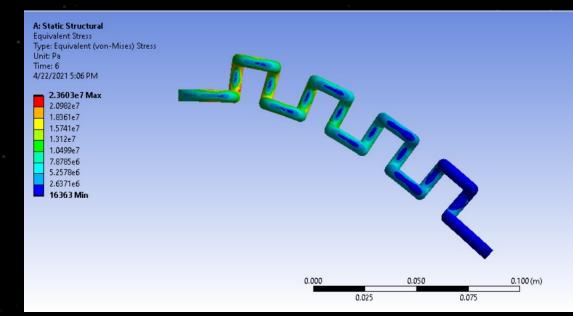
Testing Overview

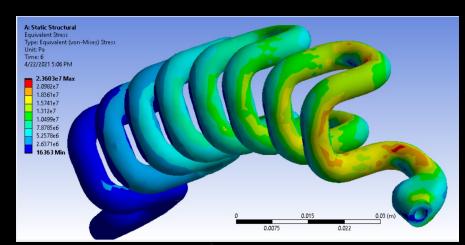
- Methods of testing:
 - Experimental Testing of 3D
 Printed PLA Flexures
 - Finite Element Analysis (FEA) Simulations
- Experimental testing in scaled PLA used to validate PLA FEA simulations
- Aluminum FEA Simulations then to describe flexure



• • • •

Overview of 3D Printing Flexures


- Final Flexure to be printed in metal (powder bed fusion)
- Flexures for experimental testing done with home PLA 3D printers
- Challenge to print small flexures with detail and little to no imperfections



Experimental Procedure

Simulation Procedure

- Performed in ANSYS or SOLIDWORKS
- Mesh sensitivity tests
 determined mesh size
- Fixed face on one end and applied-force on opposite face
- Large-deflection setting was used
- Force applied in increments
- Acquired Von-Mises Stress and Angle of Deflection

Trade Study

Categories	Importance	Serpentine	Spring with Circle and Ellipse	Variable Pitch Spring	Reverse Hourglass Spring	Helical Hexagonal Spring
Flexibility	0.19	3	1	3	3	1
Strength	0.19	2	1	2	2	1
Coiled Length (mm)	0.09	3	1	1	2	2
Uncoiled Length (mm)	0.14	1	3	2	3	1
Width	0.10	1	2	2	2	2
Height	0.05	1	2	2	2	2
Mass	0.10	3	1	1	2	3
Manufacturability	0.14	3	1	1	1	1
Total Point Weight	1.00	2.23	1.43	1.86	2.19	1.44

17

Final Design Evaluation

Requirement	Minimum Requirement	Final Design Performance		
Flexibility	Be able to deploy a radiator from	Flexes up to 24.19° which is not		
Tiexionity	a stowed position	enough for full bend		
Strength	Have a Factor of Safety of at least	Factor of Safety of 0.27 for full		
Strength	2	bend or 0.54 for halfway bend		
Coiled Length	Have a maximum length of 8 cm	Coiled Length is 6 cm		
Uncoiled Length	Efficient fitting of length in volumetric space	Uncoiled Length was about 180 mm which is low		
Width	Have a maximum width of 8 mm	Width was 8 mm		
Height	Have a maximum height of 8 mm	Height was 8 mm		
Mass	Have a maximum mass of 2.5 g	Mass was 1.14 g		
Manufacturability	Able to be 3D printed in metal	Able to be printed with small		
wanulaciulasiiity	though Powder Bed Fusion	adjustments		

What's Next for Large Angle Flexures?

- Test metal printed flexures for further result validation
- Further optimize designs to increase FOS
- Design support structure to allow flexure to sustain larger forces for more bend

