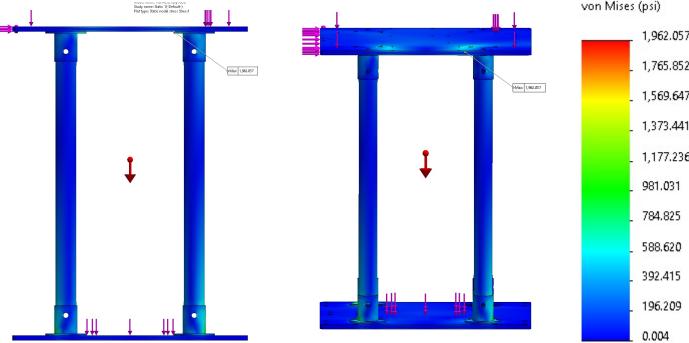

Field of View Tool


Team Members: Adriana Aldana, Aaron Lockett, David Torres, Kevin Luu, Sevag Baboomian Faculty Advisor: Dr. Everardo Hernandez **Boeing Liaisons:** Mackenzie Mason, Carrie LaPonza, Jose Armenta **Technical Advisor:** Ronald Sobchik

BACKGROUND		OBJECTIVE	SYSTEM REQUIREMENTS			
Accurate assembly of		Develop automated,	#	Requirement	Production-Level Model Capability	Compliance
signal-generating horns	No.		1	No foreign object debris (FOD)	Aluminum-based design	Compliant
on satellites involves	Horn Field of View (FOV)	portable system for FOV verification that:	2	Electrostatic discharge (ESD) - sensitive, non-fibrous materials	Antistatic (ESD) acrylic housing	Compliant
manual laser-tracker		1 Colforiante and colf	3	No RF/Bluetooth emissions	Analog electronics	Compliant
measurements to verify		1. Self-orients and self-	4	Portable and mobile	Wheels, swivel handle, and batteries	Compliant
that these horns have a		aligns to horn FOV path 2. Detects obstructions	5	Technician can input FOV angle	Button pad to input FOV angle	Compliant
clear, direct field of view			6	Automated FOV Tool positioning	Manual positioning required	Non-Compliant
(FOV) of the reflectors			7	Stores scan for CAD verification	Stores 3D map of scan	Compliant
that they are pointed		in horn FOV path	8	No contact with vehicle	Positioned away from vehicle	Compliant
towards. CAD model		 Verifies alignment of horn to reflector 	9	35 lbs or less	34.5 lbs	Compliant
comparison is used for			10	Max. 3-ft long x 2-ft wide	1.2-ft long x 1-ft wide	Compliant
additional verification.			11	Scan heights from 2-ft to 10-ft	135º vertical sweep, 39-ft range	Compliant

OVERALL DESIGN APPROACH

://=///F

*Images Courtesy of Travis Ledo, Arduino Lidar Scanning

ACKNOWLEDGEMENTS

MAJOR CONCLUSIONS

Team 30 would like to thank Everardo Hernandez, Ronald Sobchik, Mackenzie Mason, Carrie LaPonza, Jose Armenta, Dr. Michael Thorburn, Kurt Sawitskas, Sergio Perez, and Sergio Marquez for guidance and support with this project.

(Sevag, David, Adriana, Kevin, Aaron)

- Obstruction detection accomplished with current design functionality
- FOV verification automated by the FOV Tool, minimal technician input required
- FOV Tool is 4x more efficient than manual FOV verification process
- Alignment verification can be accomplished by adding gimbal arm extension for better positioning of gimbal and LiDAR to horn-reflector configuration
- Self-orientation and self-alignment can be accomplished by adding objectrecognition camera and motorized leveling caster wheels