EXPO Presentation – AUV **RoboSub: Lanturn**

California State University – Los Angeles ME/EE Senior Design Team 28

Year 2021

Team Members

Eddie Hernandez Jose Barrera Angel I. Toribio Yongjie Li

Louis Carlin

Christopher Reza-Nakonechny Anthony Gonzalez Daniel Romero Brian Sager Charles Vidal

Advisors: Dr. He Shen Dr. Thorburn

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

3

AGENDA

Background

Objective & Requirements

Brian

Chris

Slide 5

RC12 I'll do

Reza-Nakonechny, Christopher, 4/23/2021

Background

Covid-19 Restrictions

- Format of Competition changed
- Scoring:
 - Presentation
 - Technical Report
 - Website
- Virtual collaboration

Background

Lanturn

- What was inherited
- Verify it meets requirements
- Keep, modify or redesign

Background

- Passing the baton
- Onboarding
- Guides

AGENDA

Background

Objective/Requirements

Brian

Eddie

Objectives

Base Project Objectives:

- Revise design of AUV to meet previous year's Robosub competition requirements
 - Functional Requirements
 - Performance requirements
- Further testing/simulation
- Refine design
- Manufacture Sub
- Compete in competition

Competition Objectives:

Competition Points Requirements revised for COVID-19 fall into

- Website
- Written Report
- Recorded Presentation

High Level Requirements

Functional

The AUV shall :

- be submergible.
- house the required electronics systems
- be able to navigate autonomously
- operate a kill switch
- operate a claw
- operate a payload system
- operate torpedo launcher

Performance

The AUV shall:

- submerge up to 10m and be under 125lb.
- contain waterproof housing for electronics with proper amount of heat dissipation
- receive information from cameras, process that information and operate thrusters to navigate through waypoints
- operate a mechanical claw to recognize, pick up and release objects
- operate a payload dropper that will house a payload and release it at a desired location
- operate a torpedo launcher to recognize a target and launch a torpedo and strike it.
- shall have an operable way to shut down, be minimum 0.5% positively buoyant when shut off through kill switch

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

13

Concept Design Overview: Mechanical

- Hull includes removable electronics shelving
- Frame I- 6061 Aluminum
- Eight Thrusters
 - Four Vertical
 - Four Horizontal
- Horizontal thrusters at 45° angles

Concept Design Overview: Mechanical

Buoyancy

- SolidWorks mass properties function
- Displaced volume / mass
- Mass = 26.15 kg
- Displaced volume = 0.03933 m³
- 66.5% positively buoyant

Concept Design Overview: Mechanical

Actuated Systems

Sensors

- Torpedo
- Dropper
- Grabber

- Hydrophones
- Two Cameras
- IMU
- DVL

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

MECHANICAL

Actuated Systems	Dropper	Angel
Body	Claw	Anthony
	Torpedo	Jay
	Hull	Charles Brian
	Frame	Person

Dropper

- Simple design that will be mounted on the frame as shown
- The rotating compartment will connect to the motor's shaft therefore causing rotation of the rotating shaft
- Satisfies with the competition requirement of dropping markers of dimensions :
 - Marker dimensions: must fit within 5.1 x 5.1 x 15.2 cm box
 - Weight \geq 2 lb.

MECHANICAL

Actuated Systems	Dropper	Angel
	Claw	Anthony
	Torpedo	Jay
Body	Hull	Charles Brian
	Frame	Angel

Actuated Systems – Previous Team Designs

- Last year's team had two placeholder designs
- No motion capability or testing
- 1st design was created by the team
- 2nd is a design by Blue Robotics
- Currently out of stock and will no longer be for sale as a new model is being designed
- The release was unclear, so a new design needed to be made

Image from Blue Robotics [2]

Actuated Systems – Grabber Design

- The design uses a combination of 3D parts and aluminum material
- (white = 3Dparts, gray = aluminum)
- A servo horn will be connected to the gears of the claw, as well as to the arm, to allow for motion
- Uses two HS-646WP servo motors

Actuated Systems – Grabber Animation Ĭ.

Actuated Systems – Grabber Mount

- Will be mounted to the Lanturn sub as shown in images
- This placement was unchanged to be in the view of the camera

Actuated Systems – Grabber Motion Analysis

- Conducted stress analysis with crucifix prop
 - Factor of Safety is 3.3
 - Highest Stress at the holes
- Conducted stress analysis with garlic prop
 - Factor of Safety is 1.7

Actuated Systems – Waterproofing Servos

- Application of epoxy and mineral oil
- The epoxy and mineral oil method was tested another team
- Max depth the servo was submerged in was between 14.8ft-22ft (4.5m-6.7m)

MECHANICAL

Actuated Systems	Dropper	Angel
	Claw	Anthony
	Torpedo	Jay
Body	Hull	Charles Brian
	Frame	Angel

Actuated Systems - Torpedo

Torpedo launcher

- The design consisted of
 - 2 stainless steel compression spring
 - 3D printed housing
 - HS-5086WP waterproof servo (4.8V~6)
 - 1 Sheet metal gate
 - Aluminum rod

Torpedo Launcher Mount

- Launcher would be mounted with screw and bolts
- Placement would be unchanged

Mechanical Design: Torpedo

- Torpedo requirements:
 - The size limit is 5.1 x 5.1 x 15.2 cm (1)
 - Weight limit less than 2 lbs. (1)
 - Distinct Marking to identify as team's
- Identical Requirements for dropper system payload
- Fins were added onto torpedo to prevent deviation from path after being launched

Torpedo Design

Torpedo

- 3 iterations of the prototype was made
- The first one iteration had a poor fit
- The second small fin surface area
- The last iteration was base off a real torpedo design

Torpedo Fluid Analysis

106098.50 105163.48

104228.46 103293.45 102358.43

101423.42 100488.40 99553.39

98618.37 97683.36 Pressure [Pa] Flow Traiectories 1

- Fluid Simulation performed in SolidWorks
 - Goal find drag coefficient close to 0.2
 - Obtained Cd of 0.33

Torpedo Computational Analysis

Torpedo Fluid Simulation

Mechanical Design: Torpedo Trajectory in Water

Simulation Inputs

- Force from Launcher
- Torpedo dimensions, drag coefficient and weight
- Camera Location Relative to Launcher

<u>Output</u>

- Equation of Trajectory using Cartesian Coordinates
 - Optional: Polar Coordinates

MECHANICAL

Actuated Systems	Dropper	Angel
	Claw	Anthony
	Torpedo	Jay
Body	Hull	Charles Brian
	Fuence	Angol
	Frame	Angel
Body - Hull

- 5 welded 1/8 in thick aluminum sheets
 - Welded to an 1/8 in aluminum sheet on top
- Designed by last year team for accessibility of electronics

Hull - Stress Analysis

A stress analysis was performed

- The max depth = 16 ft / 5m
 - Leads to a pressure of 48,000 pascals
- Factor of Safety= 1.1
 - Needed Improvement
 - Hull cannot fail
 - Max stress was found on all corners of the top sheet
 - (Adjustments will be made on this area)

Hull - Adjustments

3 Adjustments

- **1.** Increased thickness to 3/16 in
 - Factor of safety = 1.3
- 2. Extended top sheet by 0.2 in
 - Factor of safety = 1.9
- 3. Added 1.5 in chamfers to all corners
 - Factor of safety = 2.2
 - This was tested without the extended top sheet
- With both extension and chamfers
 - Factor of Safety = 3.1
 - Max stress move to beneath chamfer

Hull - Cover and Seal

Current plan

- Use a gasket shaped identical to the top surface and seal with clamps
 - Analysis of effectiveness not performed

Alternate methods explored

- Designing cover that inserts into cavity of hull and making seal inside the perimeter
 - Will require pressure release valve
- Grooved perimeter with fitted track for O-Ring
 - Reliability and replaceability concerns of O-Ring
- Using a screwing mechanism as a clamp to attach the cover over existing gasket
 - Find a torque value needed in relation to seal
 - Predicted longer durability than clamps

39

Hull – Electrical Housing

Current Plan

- Attaching a rail in each corner with a track to slide the separate electrical board in and out of
- Arranging a permanent plug interface in rear of hull connecting to subsystems affixed to AUV

Alternate Method

Drilling holes in floor and attaching rails to mount the electrical board

- Possibly using these holes in conjunction with mounting the frame onto hull
- More modular board installation possibilities
- However, more places to seal and could affect stress analysis and factor of safety

Hull – Production Status

Pending Tasks for Initial Hull Production

- Finalize sealing method of the hull with the cover.
- Finalize electrical board interface with hull
- Obtaining new materials
 - materials acquired from previous year deemed insufficient in passing stress tests
- Using a full bead welding process to ensure waterproofing
 - Finding a shop with experience to do this, unlikely student task

MECHANICAL

Actuated Systems	Dropper	Angel
	Claw	Anthony
	Torpedo	Jay
Body	Hull	Charles Brian
		Dildii
	Frame	Angel

Body - Frame

- The multiple –slot design for the frame allows easy mounting of the actuated systems.
- 8 thrusters total mounted to the corners of the frame. 2 on each corner.
- Multiple slots allows for easy add-on of numerous components to be made
 - Sensors
 - Handles
 - Mounting points to join the hull and frame

- Leg design optimized
 - Static stress analysis
 - Machine to specification (6061 Al)
- Optimization not needed
 - Weight reduction by 1.64 lb
 - Weight is of no concern
 - Production and material cost not necessary

- The frame can be divided into two main sections
 - Undercarriage
 - Top Section
- The frame is composed of the numerous parts as shown in the figure
- **Production**
 - All bars and slots cut to appropriate dimensions
 - Assembly of cut material by using standoffs and screws to be continued
 - Legs to be produced as well as thruster's housing

Changes from previous design

- Extruded T-bar slot to full length
- Opens mounting points for new handle location

Changes from previous design

- Extruded T-bar slot to full length
- Opens mounting points for new handle location
- Welded bracket shown will join the T-slot to the bars of the frame.
- Kept from previous design
 - Welded bracket and latch to join the hull and frame

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

Electrical – Previous Version(PDB)

Devices: Arduino (x3) Servos (x6) Fathom Hydrophones (x4) DVL Jetson TX2

Dimensions: 97.79mm Height 128.27mm Length

Things to Note:

No drill holes Clustered surface mounted components Board can be reduced in size FDS5680 IC used

Electrical - Device Operation Requirements

Device	Voltage (V)	Current (A)	Power (W)	
Arduino(x2)	5	1	5	
IMU	5	0.04	0.2	
Servos(x ₃)	7	1	7	
Fathom	7	1	7	
Hydrophones (x4)	phones 9 1 (4)		9	
DVL	14.8	4	59.2	
Jetson TX2	14.8	1	15	
Thruster Board	14.8	Varies	Varies	
Thruster(x8)	14.8	Varies	Varies	

ELECTRICAL

Circuit- Power Distribution Board (PDB)

- Buck Converter: LT3976
 - Step-down voltages
 - Minimize Space on the board
 - Ideal for low current circuits
 - Input voltage range: 4.3V 4oV
 - Max current output: 5V

- Circuit made on LTspice
 - Input voltage supply: Single 14.8V LiPo battery
 - Conduct simulations for the voltage, current and power consumption

Simulations - Power Distribution Board (PDB)

1.1A	l(Rload1)		l(Rload2)		:	l(Rload3)		l(Rload)	
1 04									
0.90-	/// 1A								
0.94									
0.84									
0.7A									
0.6A									
0.5A									
0.4A-									
0.3A	/								
0.2A									
0.1A	4mA								
0.0A									
-0.1A									
0.0ms	0.2ms 0.4	1ms 0.6r	ns 0.8	lms 1.0)ms 1.2	ms 1.4ms	s 1.6m	ns 1.8	ms 2.0m

Simulations - Power Distribution Board (PDB)

Efficiency: 91.7%	Efficiency: 90.9%	Efficiency: 76.4%	Efficiency: 89.4%
Input: 10.2W @ 14.8V	Input: 7.76W @ 14.8V	Input: 284mW @ 14.8V	Input: 6W @ 14.8V
Output: 9.35W @ 9.17V	Output: 7.05W @ 7.03V	Output: 217mW @ 5.21V	Output: 5.36W @ 5.18V

- Transient Analysis Simulations performed
 - Performance of the IC over time
 - Steady State is detected
 - Values correspond to the device operation requirements

- Efficiency Reports
 - How well the IC performs the voltage regulation
 - Values align with efficiency range on the datasheet for the IC

ELECTRICAL

Power Distribution Board	Daniel Romero Jose Barrera
Simulations	Daniel Romero
Design	Jose Barrera

PDB View

--5.84mm Diameter Drill holes

PDB Components and Cost

ltem	Value	Quantity	Cost(\$)	Total(\$)
Capacitor	10UF	3	2.58	7.74
	10pF	6	0.18	1.08
	470nF = .47uF	3	2.52	7.56
	470pF	3	0.3	0.9
	470F	3	1.98	5.94
Resistor	54.9kΩ	3	0.12	0.36
	1MΩ	3	0.8	2.4
	2Ω	3	0.56	1.68
	300kΩ	1	0.44	0.44
	125Ω	1	1.44	1.44
	5Ω	1	0.5	0.5
	205Ω	1	0.28	0.28
	7Ω	1	3	3
	150kΩ	1	1.04	1.04
	9Ω	1	2.66	2.66
Inductor	6.8uH	3	1.1	3.3
Diode	B540C	3	0.48	1.44
IC	LT3976	3	10.04	30.12
XT90 Adapter	Male Connector	1	2.5	2.5
Male Pin Headers	2.54mm	1	7.99	7.99
TOTAL				82.37

BM7

BM7 All from one Website, Mouser Electronics Barrera, Jose M, 4/22/2021

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

58

SIMULATIONS

Simulink

Gazebo

SolidWorks – Internal Thermals

Louis

Eddie

Chris

Simulation - SimuSub

Simulink

- Graphical coding language
- Simulation and modeling
- Co-simulation with Gazebo

SimuSub

- PID tuning
- Control system testing
- State System architecture

SimuSub – precision control system

Simulation - SimuSub

Traveling Control System

- PID controlled system
- r = horizontal error
- h = elevation error
- Θ = yaw error
- Elevation either concurrent or distinct

	Simus	Sub - Traveling	9
Scope		- 🗆 X	Example commands:
<u>F</u> ile <u>T</u> ools <u>V</u> iew S <u>i</u> mulation <u>H</u> elp		د	Cartesian; earth frame:
◎ · 《 U ▶ ● \$• · Q · 3 · 4 Ø			[530]
	Ve (m/s)		Euler Angles; earth frame:
0.2		Ve (m/s):1 Ve (m/s):2	N/A
0.1		Ve (m/s):3	
0.05			
0.05			
8	Xe (m)		
6		Xe (m):1 Xe (m):2	
4		Xe (m):3	
2			
0			
	(n A uu (rad)		
	φοφ(idd)	(rad):1	
2		φθψ (rad):1	
0		φθψ(rad):3	
-2-			
0 20 40 60 8	0 100 120 1	40 160 180 200	
Running		Sample based T=0.000	

Simulation - SimuSub

Precision Control System

- PID controlled system
- $\Delta x = x \text{ error}$
- $\Delta y = y \text{ error}$
- h = elevation error
- No angular error

Simulation - SimuSub

Precision Control System

- PID controlled system
- $\Delta x = x \text{ error}$
- $\Delta y = y \text{ error}$
- h = elevation error
- No angular error

SimuSub – Precision Control System

4	Scope			Ν	-	- 0	×
File	e Tools View Simulatio	on Help		43			3
0	- 🚳 😪 🕨 💷 🎘 -	· • • • • • •					
-			Ve (m/s)				T.
25							
20						Ve Ve	(m/s):1 (m/s):2 —
15						Ve	(m/s):3
10							
5							
0							
			Xe (m)				
30						Xe	e (m):1
20						Xe	e (m):3
10							
10							
0							
			φθψ(rad)				
0.4	<u> </u>					(h A III	(rad):1
0.2						φθψ	(rad):1 (rad):2
						φθψ	(rad):3
Ű							
-0.2							
-0.4	0	5 1	10 1	5	20		
Rea	dy				Sample based	Offset=0	T=25.000

Example commands: Cartesian; earth frame: [30 25 20] Euler Angles; earth frame: [0 0 0]

SimuSub – Future Work

- Fixing control systems
- Mission Planning
- Navigation
- State Machine
 Architecture
- Co-simulation with ROS/Gazebo

SIMULATIONS

Simulink	Chris
Gazebo	Eddie
SolidWorks – Internal Thermals	Louis

Robot Operating System (ROS)

How is this beneficial to the AUV?

- Simulation tools allows for more flexible design
 - Test data
- Thousands of packages; tools that give our AUV variety of choices that includes sensors, cameras, etc.

Robot Operating System (ROS) - Gazebo

Gazebo (Water Environment)

Image of Competition Arena, NIWCP, San Diego[1]

Gazebo Simulation – Laser Scan (Sensor)

Gazebo Simulation - Camera

SIMULATIONS

Simulink	Chris
Gazebo	Eddie
SolidWorks – Internal Thermals	Louis

Revisiting Internal Thermals

Previously

- One previous CSULA AUV would overheat
- What about current AUV: Lanturn?
 - Last semester hand calc + SolidWorks sim
 - Worst case (100 watts) No issue, barely
- Risks and limitations
 - Additional components (Comp vision)
 - Previous simulation = steady state
 - Unknown time to reach SS
 - Simplified model used limits accuracy

The Revisit

- Attempted to use realistic internals
 - Issues: Errors + excessive calculation time
- Resolving risks and limitations
 - Simplified model
 - 125 watts heat generation
 - 1 hour of operation
- Results:
 - 37 to 43 min to hit 65 °C battery limit
 - Comp runs historically: 20 min = 1200 sec
 - Power budget available

Revisiting Internal Thermals

AGENDA

Background, Objective, Requirements

System Overview

Mechanical

Electrical

Simulation

Conclusion

76

Summary

MECHANICAL

- Designing has been completed
- Manufacturing incomplete
- Testing not done
- Electrical
 - PDB design and simulation completed
 - Manufacturing incomplete
- Simulation
 - Much more work needed to be fully functional
- Passing the baton
 - Onboarding material provided to next year's team

Thank you!

Eddie Hernandez Jose Barrera Angel I. Toribio Yongjie Li

Louis Carlin

Christopher Reza-Nakonechny Anthony Gonzalez Daniel Romero Brian Sager Charles Vidal

Advisors: Dr. He Shen Dr. Thorburn

References

- [1] Robo Nation, 22ndAnnual International RoboSub Competition Mission and Scoring, San Diego, California, 2019.
- [2] Blue Robotics, Newton Subsea Gripper, Pasadena, California, 2021.