# **Kinematic Bicycle**



**Team Members:** Diana Chavez-Leyva, Richard Chavez, Manuel Noriega Meraz, Alexandro Rodriguez, Jose Salazar, Daniel Wong-Wu Faculty Advisor: Everardo Hernandez **Kinematic Bike:** Phillip Thomas Department of Mechanical and Electrical Engineering College of Engineering, Computer Science, and Technology California State University, Los Angeles



## **Project Background**

Mountain bikes have risen in prominence over the last decade due to their ability to handle different types of environments with ease. These bikes have evolved to be a lot stronger and lighter which ultimately has improved the riding experience for users all around the world. A well-designed mountain bike requires a durable rear suspension and a unique frame design which will allow it to function effectively while on rough terrains.

# Objective

The overall purpose of this project is to develop a mountain trail bike frame. The mechanical team was tasked with designing a frame that was lightweight and strong enough to operate at a high efficiency while riding on various types of terrain. Additionally, the electrical team's objective would be to convert a mechanical shifter into a wired electronic shifter that allows the rider to shift the gears on a pinion drive train electronically. Finite Element Analysis would be conducted on the frame itself to understand areas of failure and to determine the overall factor of safety. Lastly, a 3D printed prototype of the frame would be the result of this project.

## **System Requirements**

| No. | Requirement                | Performance Objective                                                                                                                 | Source of<br>Requirement | Method of<br>Verification |
|-----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|
| 1.  | Frame Cost                 | \$2500 < Frame Cost < \$3000                                                                                                          | Customer                 | Economic Analysis         |
| 2.  | Frame Weight               | 2250 grams < Frame Weight < 2500 grams                                                                                                | Customer                 | Visual                    |
| 3.  | Frame Material             | High Strength to Weight Ratio<br>Corrosion Resistant                                                                                  | Customer                 | Testing                   |
| 4.  | Rear Suspension            | Anti-Squat should be at a 100% efficiency at 25%-<br>wheel travel<br>Anti-Rise should be at a 100% efficiency at 25%-<br>wheel travel | Customer                 | Engineering<br>Analysis   |
| 5.  | Aesthetics                 | Frame Design                                                                                                                          | Customer                 | Visual                    |
| 6.  | Finite<br>Element Analysis | 2 < Factor of Safety < 3                                                                                                              | Customer                 | Engineering<br>Analysis   |

### **Overall Design Approach MECHANICAL APPROACH**







Gearbox

**Manufacture Process: 3D-Printed Material: PLA Print Infill: 25%** Frame Assembly: Three Main sections (Front Frame, **Rear Frame, and Bottom/Top Linkages)** 

#### Conclusion

- Successfully designed and manufactured a prototype of the frame.
- The modification of the pinion gearbox allowed us to change it from mechanical to electrical gear shifting.
- 5 out of the 6 system requirements for the frame were met, except for the weight requirement.
- FEA results proved to be realistic with an overall FOS of 2.57. The next • step in the design process is to manufacture the frame out of Aluminum 6061-T6 and conduct a series of machine-based strength tests.

#### Acknowledgements

The Kinematic Bicycle Team would like to extend gratitude toward **Professor Everardo Hernandez,** Dr. Michael Thorburn, Dr. Kurt Sawitskas, our sponsor **Philip Thomas, and tutors Alexis Ruiz Farzana Boby.** 



### **ELECTRICAL APPROACH**

# **DC Motor Schematic Diagram DC** Motor Attached to Pinion Gearbox Moto Arduino Uno Rev3 A0 A1 A2 A3 A4 A5

We were able to produce a code that allowed the DC motor to spin using the required degree to make a complete gear shift. The schematic above shows how everything should be wired up and the picture to the right of it shows how the final product will look like without the cap that protects it.