PROJECT SANTA CRUZ

Team Members: Alvaro Cuevas, Jacob Dominguez, Pablo Alvarez, Enrique Salinas, Emmanuel Valencia-Ruiz, Ashley Muñoz, Jose Reyes, Mario Pinzon, Cesar Medrano, Tracy Jimenez Faculty Advisor: Ted Nye Liaison: U.S National Park Service Departments of Mechanical Engineering & Electrical Engineering College of Engineering, Computer Science, and Technology California State University, Los Angeles

Background

An interdisciplinary engineering team of students designed, assembled and installed a photovoltaic power system for the US National Park Services on Santa Cruz Island. The system will power to a historic adobe on smugglers ranch in a remote and rugged setting.

> Testbed was built to reinforce understanding of the actual system

- Similar top level system components were utilized for familiarization
- > Testbed is functional and telemetry shows expected results

Electric Block Diagram

Outside Adobe Combiner Box

Electrical Room

Outback **Batteries**

Inverter

Charge

Controller

NATIONAL

Objective

- Design and build a stand-alone photovoltaic power generation system.
- Provide electrical power to a historic adobe securely and sustainably
- Develop an understanding of both system and design details

No.	Title	Requirement	Capabilities
1	Instantaneous Power	4.7 kW	5.4kW @5 sec. 3.5kW Co
2	Energy Delivered	13.9 kWh	22.3 kW-hr
3	Output Service	< 50 A	29.2 A Continuos
4	Circuit Protection	Resettable Circuit breakers	Complies
5	User Warning	< 70% Battery SOC	Complies
6	System Shutdown	< 50% Battery SOC	Complies
7	System Telemetry	Red/Yellow/Green Status c	Complies
8	Component Weight	< 3000 lbs	Batteries: 2300 lbs
9	Max. Comp. Size	< 6' x 3' x 3'	Complies
10	Reliability and Life	P(s) > 0.95 @ 15 Years	Designed for 15 years
11	Safety and Grounding	US Electrical Code	Complies
12	Temperature	30 F Min 83 F Max.	Complies
13	Structural Wind Survivability	> 100 mph	140 mph

System Design

A day in the life of the system on the winter solstice

- **Analysis Results**
- Panel structure has a low profile design
- > 16 panel structure with a

- > Designed around the winter solstice this is the worst-case condition
- > System contains plenty of overhead to account for solar obscuration
- > Batteries offset power consumption at peak usage times
- > Thermal design centered around inverter and charge cont. temperatures

height of 7 ft.

vulnerable to

wind loads

max anchor

pullout load

1175 lb

Structure is composed of galvanized and aluminum weather resistant materials

atran 2021 2 11-Mar-22 19:09:46

Major Conclusions

- System requirements have been met with plenty of overhead
- Proposed design can deliver 31.4 kW-hrs in summer and 22.3 kW-hrs during winter (worst case conditions)
- \succ The team will install the photovoltaic system in situ mid summer