Solar Demonstration Lab

Instructor: Michael Thorburn Advisor: Samuel Landsberger

TEAM 1: SOLAR PANEL TRACKER - CALVIN CHHUN, MOHAMMED SHUKR, NATHAN CASTRO

TEAM 2: SOLAR HOT WATER - ASHLEY GUO, FAISAL ALDOSSARI, ULISES VEGA PERALTA

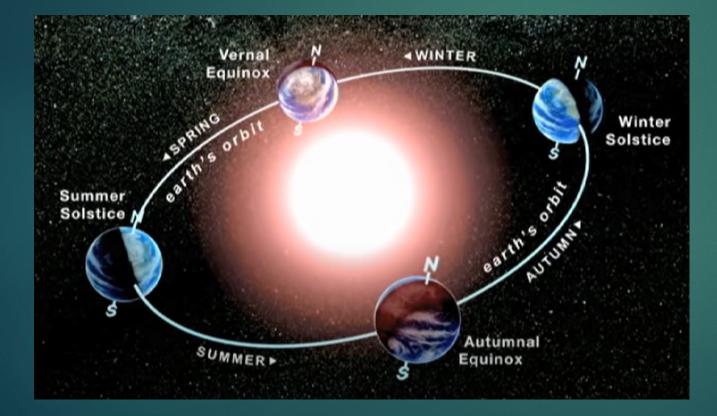
TEAM 3: ENERGY ANALYSIS - ALEX RODRIGUEZ, KAILEN LOUALHATI, NAPAT ATIKANIT

TEAM 4: 3D PRINTING - SERGIO MIRANDA, STEVEN GARCIA

Presentation Overview

Mission Statement:

Our goal is to Research, Design, Build, and Demonstrate a solar Photovoltaic system as well as share information about sustainable solar energy with the Cal State Community and the surrounding East LA Community, from schools to community leaders.


Team 1: Solar Panel Tracker Team 2: Solar Hot Water Team 3: Energy Analysis Team 4: 3D Printing

Team 1

Solar Panel Tracker

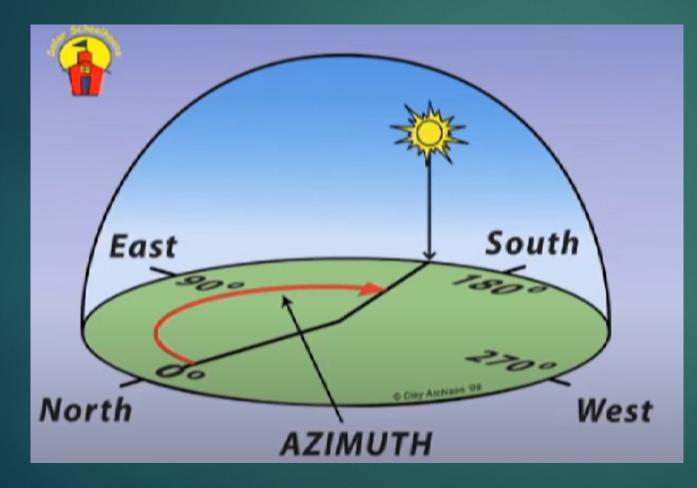
Calvin, Mohammed, Nathan

Solar Orientation

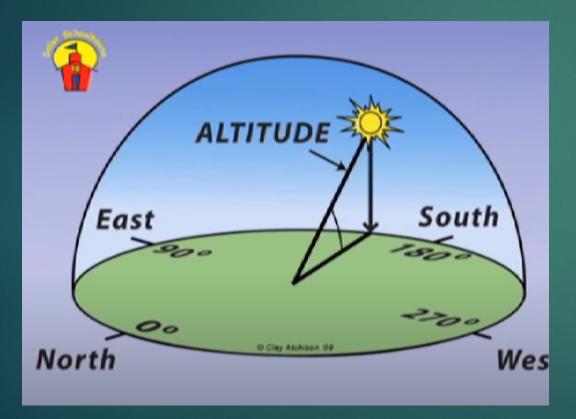


- The Earth's axis is approximately 23.5° relative to its orbit around the sun
- For the Northern Hemisphere, the summer solstice is when the Earth's axis is tilted the most towards the sun to the sun
- The vernal and autumnal equinoxes represent the time of year when the Earth's axis is sideways to the sun
- The winter solstice is when the axis is tilted farthest away from the sun

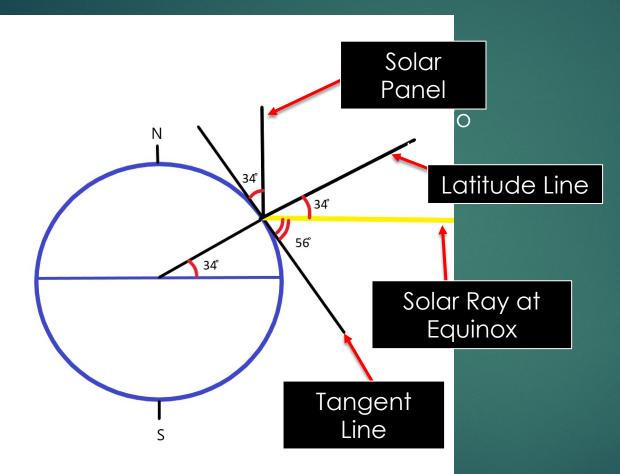
4


Solar Orientation

- Summer solstice sun path (June 21st) is the longest path
- Winter solstice sun path (Dec 21st) is the shortest path
- Throughout the year the sun's path will always be between the summer solstice path and the winter solstice path


Azimuth

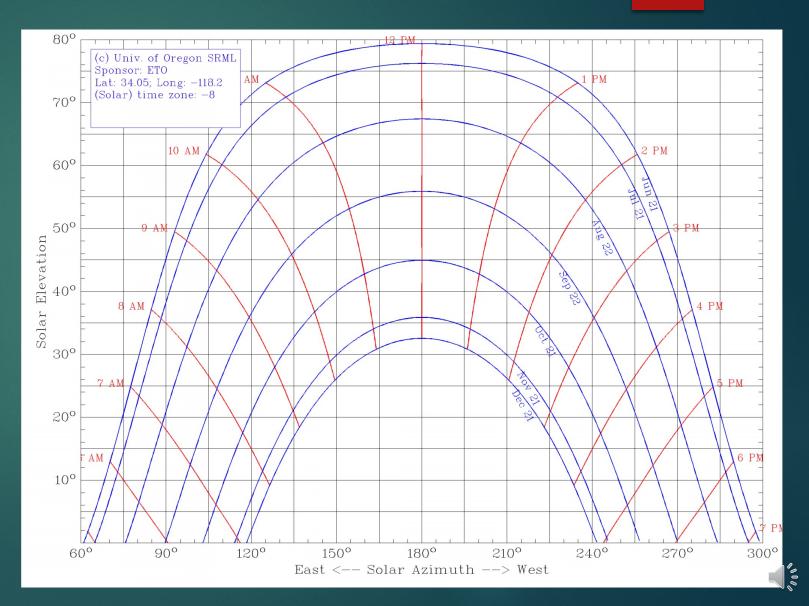
- From a fixed position, the azimuth is the angular measurement that gives the direction or heading of a celestial body
- Where 0° is true north and 180° is due south



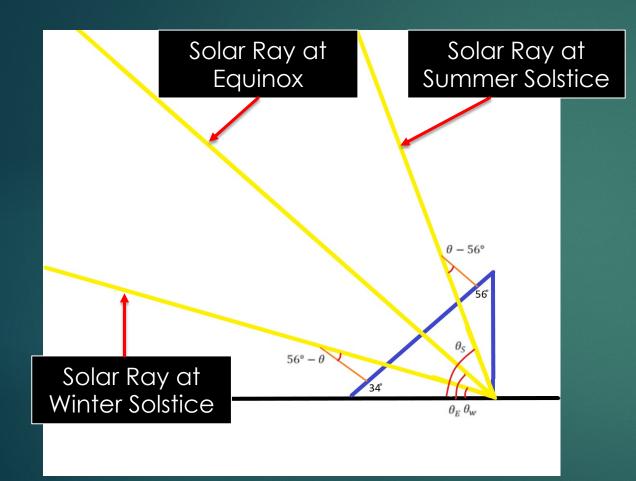
Altitude (Elevation Angle)

- The altitude of an object is its vertical angular elevation above the horizon
- Sometimes referred to as the elevation angle

Theoretical Calculations


 The latitude for Los Angeles is approximately 34°

- During the equinox the Earth's axis is perpendicular to the direction of sunlight
- The sun's elevation during the equinox will be 56°
- Since the Earth's tilt is 23.5° we get:
 Summer Solstice Elevation: Elevation = 56° + 23.5° = 79.5°


• Winter Solstice Elevation: $Elevation = 56^{\circ} - 23.5^{\circ} = 32.5^{\circ}$

Solar Chart

- This is the solar chart for latitude 34.05°, longitude -118.2
- The top blue line represents the summer solstice, at noon the sun's elevation is at 79.5° as expected
- The bottom blue line represents the winter solstice, at noon the sun's elevation is at 32.5°
- The blue line marked at Sep 22 represents the equinox, at noon the sun's elevation is at 56° as expected

Solar Constant And The Cosine Effect 10

• Solar panel fixed at 34°

•
$$Max Power = \eta G_{SC} \cos(56^\circ - \theta) A$$

- $\eta = panel \ efficiency$
- $G_{SC} = Solar \ Constant = 1000 \frac{W}{m^2}$
- $\theta = Solar Elevation$
- $A = Area \approx 0.286 m^2$
- At summer solstice:

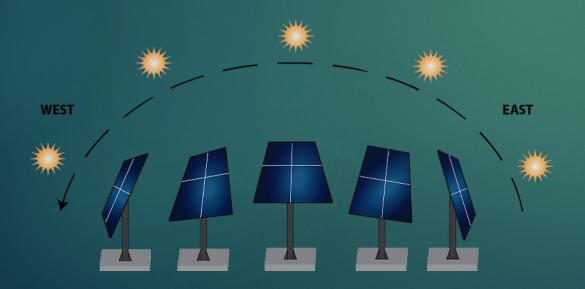
$$P_{max} = \eta \left(1000 \frac{W}{m^2} \right) \cos(56^\circ - 79.5^\circ) (0.286 \ m^2)$$

\$\approx \eta 263 W\$

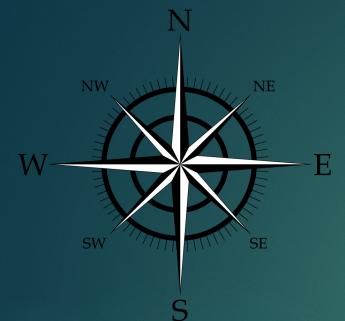
• At winter solstice

$$P_{max} = \eta \left(1000 \frac{W}{m^2} \right) \cos(56^\circ - 32.5^\circ) (0.286 \ m^2)$$

\$\approx \eta 263 W\$


Solar Tracker

11


00

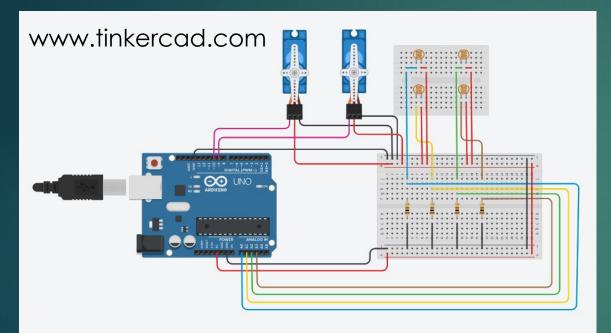
Solar tracker is a system that position solar panels at an angle relative to the sun so that they remain perpendicular to sun's ray.

- More sunlight strikes the solar panel
- ► Less light is reflected
- More energy is absorbed and converted to power

Why Should We Have A Solar Tracking

Advantages - increased energy by about 30 to 40 percent

000


Disadvantages

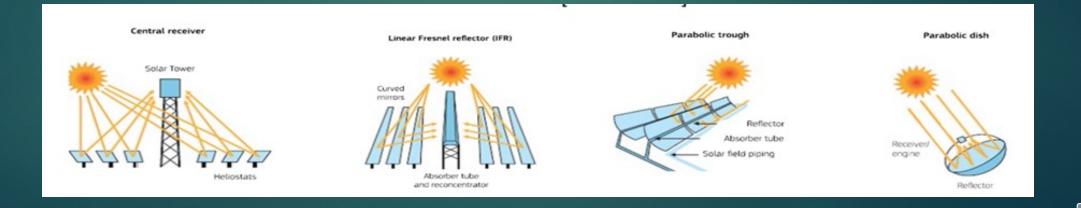
Disadvantages:

- ▶ Solar trackers require one or more actuators to move the panel.
 - Increase installation costs
 - reduce reliability.
- ▶ Use a small amount of energy.
- Computer-based solar trackers are more expensive, require additional maintenance, and become obsolete much faster
- Electronic components parts, may be difficult to replace over time.

Tracking With Arduino

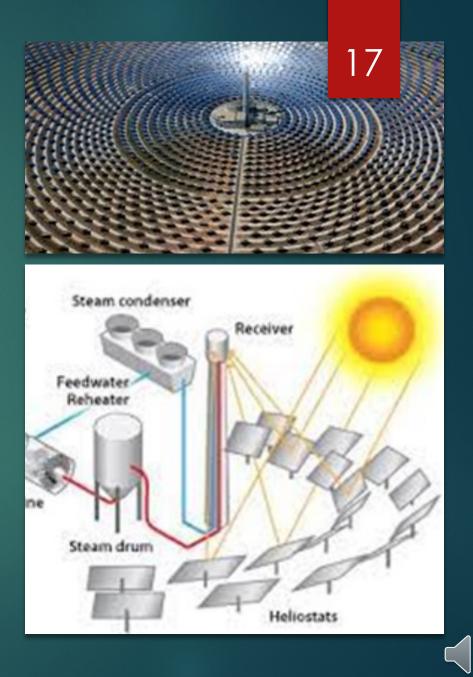
Using tinkercad.com design virtually model and program a mini solar tracking system

Mini solar tracking prototype plan on using to compare the rate of solar energy production with a fixed solar panel

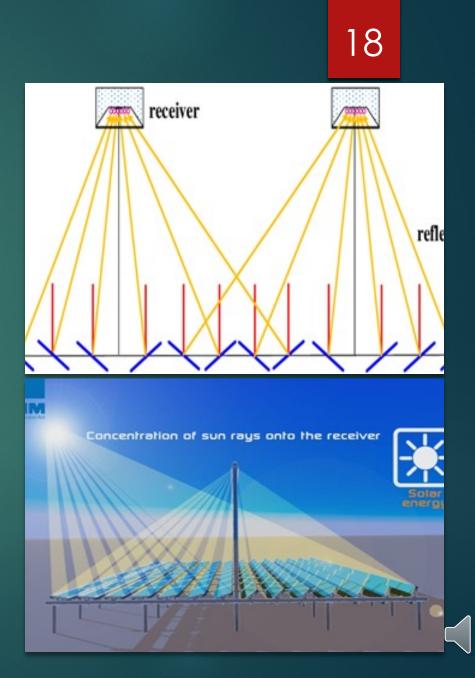


Solar Concentrated System

- Solar Concentrated System collects the sunlight by using mirrors/ lenses to produce a very high temperature head in order to generate some electricity
- Most of the systems have a heat transfer fluid circulated and heated in the receiver and produce steam
- Solar power system has a tracking system

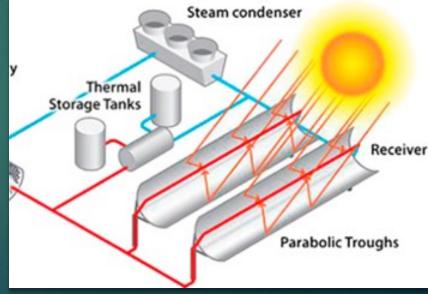

Types of Solar Concentrated System

- Central receiver
- Linear Fresnel reflector
- Parabolic Trough
- Parabolic Dish


Central Receiver System

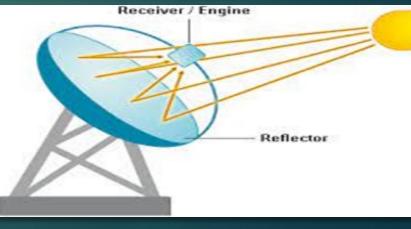
Central Receiver System is a receiver located on top of a tower to receive energy from the flat distributed mirrors

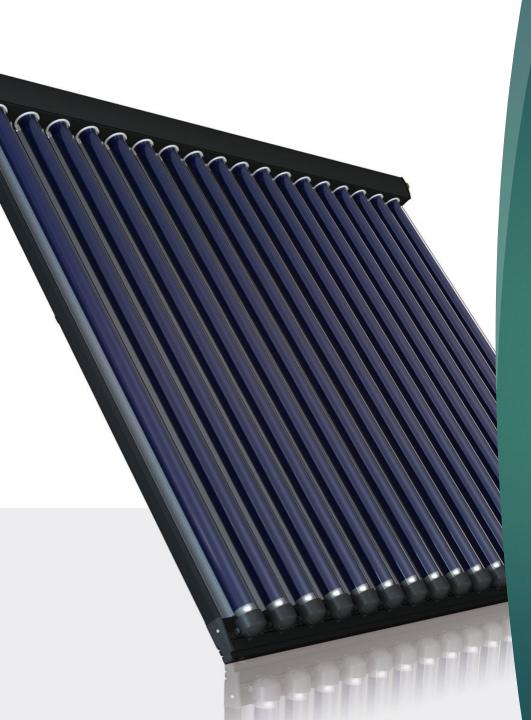
Linear Fresnel Reflector


Linear Fresnel reflector or IFR is a reflector that concentrate sunlight and send it to the receiver that is located above the mirror

Parabolic Trough Reflector

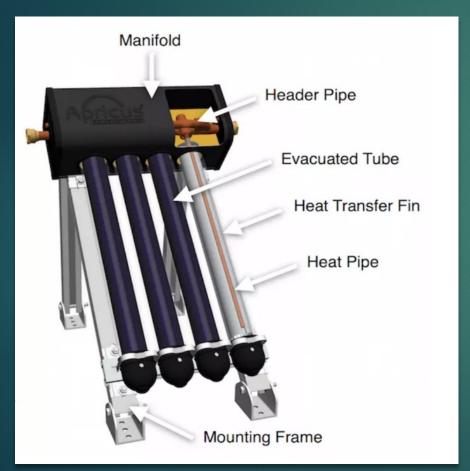
PTR, are made by bending a sheet of polished aluminum that is reflective and it is called a parabola shape



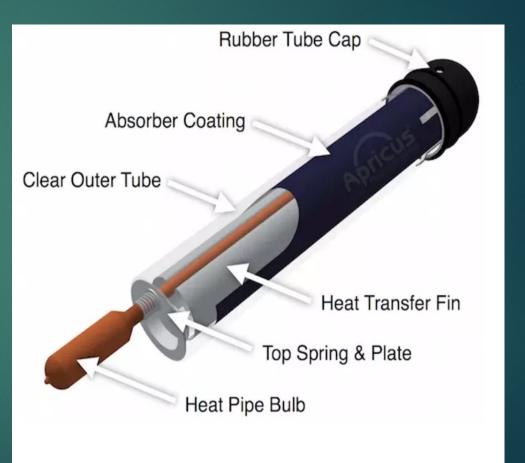


Parabolic Dish

Solar dish system uses a mirrored dish which is similar to satellite dish or even larger. It is used to reduce costs the mirrored dish is made of small little flat mirrors.

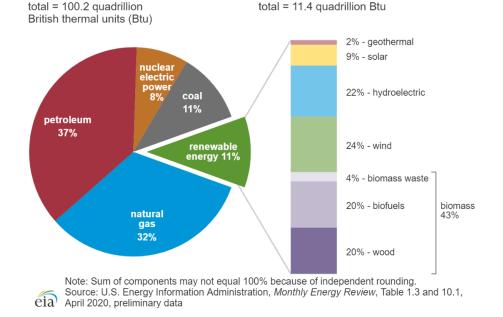

Team 2

Solar Hot Water System

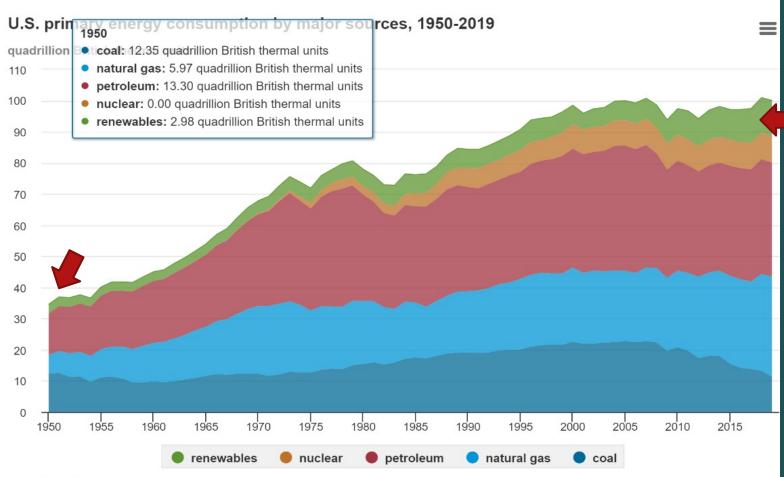

Faisal, Ulises, Ashley

Background

Apricus ETC-solar collectors


Benefits & Mission Statement

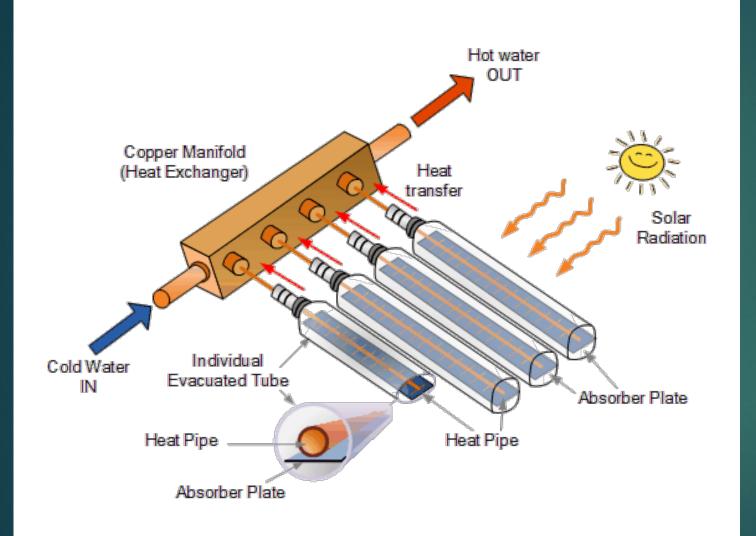
- A stable energy supply
- Free energy source
- Reduced carbon footprint
- Efficiency: Around 80% of radiation turn into heat
- Low maintenance: very low maintenance that lasts for 20 years


Figure 2. U.S. energy-related carbon dioxide emissions by major fuel, 2009 million metric tons carbon dioxide Petroleum 2,318.8 (42.7%) Coal 1,876.8 (34.6%)

U.S. primary energy consumption by energy source, 2019

Natural gas 1,218.0 (22.4%)

United States Energy Consumption



Note: Petroleum is petroleum products excluding biofuels, which are included in renewables.

eia Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3, April 2020, preliminary data for 2019

24

Apricus ETC-solar collectors

Concept & Design

25

Alternative-energy-tutorial

Efficiency Analysis

$$\eta = \frac{Q_{out}}{Q_{in}}$$

$$P_{in,eff} = \eta_{sun}P_{in}$$

$$Q_{in} = P_{in,eff}\Delta T$$

$$Q_{out} = mC_p\Delta T$$

$$\Delta T = T_f - T_i$$

$$1Wh = 3.41Btu$$

$$1gal = 0.1336ft^3$$

$$\rho_{water} = 62.43\frac{lbs}{ft^3}$$

$$C_{p,water} = 1\frac{Btu}{lb \circ F}$$

- $Q_{out} =$ Heat energy out
- $Q_{in} = Heat \ energy \ in$
- $\eta_{sun} =$ Sunlight heat efficiency
- $P_{in} = Power of the Source (sun)$
- $\eta = Efficiency$

Efficiency Analysis (Flat Plate)

 $Q'' = F[G\tau\alpha - U(T_c - T_a)]$ Energy in - Energy out

 $\eta_c = \frac{Q''}{G} = \frac{Actual \ energy \ into \ working \ fluid}{Maximum \ radiation \ energy \ available}$

 $\begin{array}{l} Q^{\prime\prime} = \textit{Heat flux absorbed by collector} \left(\frac{\textit{heat transfer}}{\textit{unit area}} \right) \\ F = \textit{Design factor of collector} (\textit{efficiency factor}) \\ G = \textit{Total normal incident radiation} \left(\frac{W}{m^2} \right) \\ T_a = \textit{ambiend temperature} \\ T_c = \textit{collector fluid temperature} \\ U = \textit{heat loss coefficient} \\ \alpha = \textit{absorbance collector} (\textit{material property}) \\ \tau = \textit{transmittance of enclosure cover} \\ \eta_c = \textit{efficiency of collector} \end{array}$

Assembly

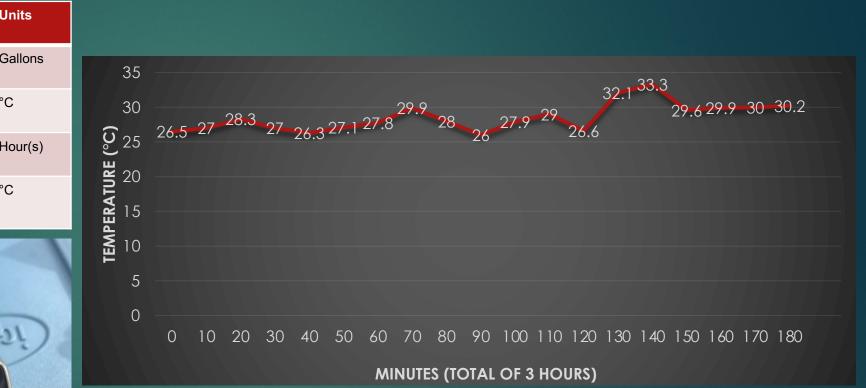
Mini Solar Model

Water pump inside insulated cooler (1 gallon Water)

Evacuated tube Solar Hot water system

Test Run #1

Parameter	Symbo I	Value	Units
Total Volume of water:	V	1	Gallons
Initial Temperature of Water:	T _i	25.9°	°C
Time Passed:	Δt	1	Hour(s)
Final Temperature of Water:	T _f	32.8°	°C


Initial Temperature (T_i)

aser ON/OFF

Test Run #2

Parameter	Symbol	Value	Units
Total Volume of water:	V	1	Gallons
Initial Temperature of Water:	Ti	26.5	°C
Time Passed:	Δt	3	Hour(s)
Final Temperature of Water:	T _f	30.2	°C

Difference in Temperature per 10 min

Trials & Error

- Cooler not fully insulated
- Cloudy weather
- Loss of water (tubing)

Team 3

Charging System + Energy Analysis (Generation, Consumption)

Napat, Kailen, Alex

Project Background

- history of solar...
- solar goals of California...
- current operation/issues with solar integration in power grid...
- solar panel...
- battery storage...
- solutions...

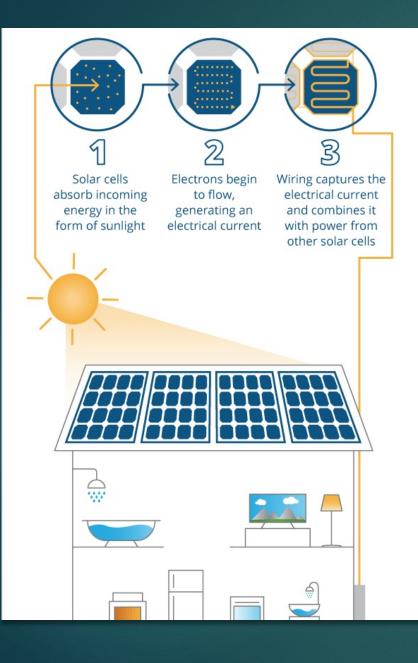
Project Importance

Within the solar trailer, we need to be mindful of how much power is being generated, stored, and used by appliances.

- Estimate power generated
- Acknowledge the minimum voltage level for batteries to maintain health
- Research, select, and estimate power consumed by desired appliances

What Makes A Solar Power System?

Four main components to a solar power system:


- Solar Panels
- Inverters
- Solar Module Racking (to be discussed more during 3D printing section)
- Solar Batteries

36

Solar Panels

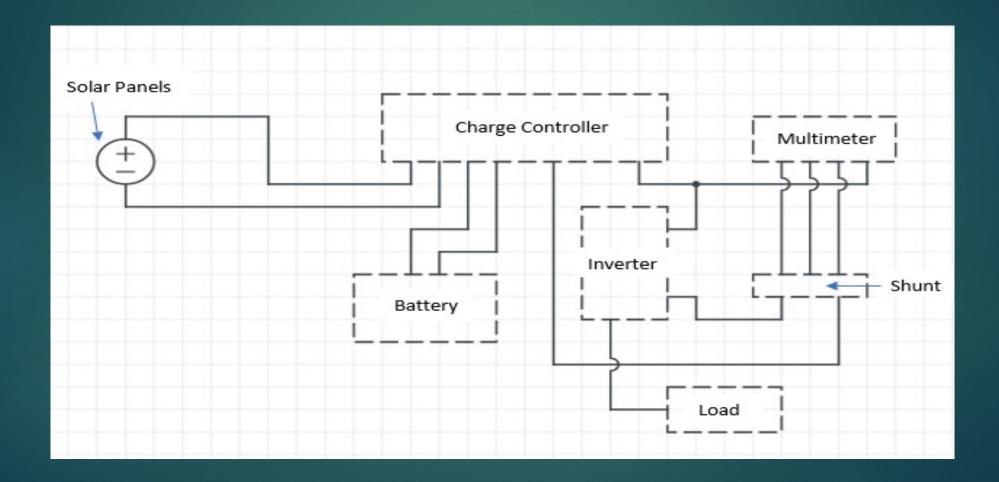
PHOTOVOLTAIC CELLS ABSORB SUNLIGHT AND CONVERTS THAT ENERGY INTO A DC CURRENT.

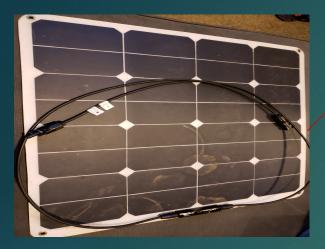
Mini Model Components

37

Power Inverter

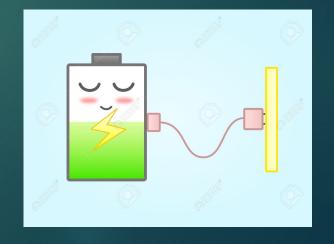
 GELOO 300 W Power Inverter (Input: DC12V & Output:AC 110V±10%)


Solar Battery


 MightyMax (12V 18Ah) Lead-Acid Rechargeable Battery

Mini Model Circuit Diagram (First Draft)

Equipment Used


Energy Analysis

- To estimate the electricity generated in an output of a photovoltaic system:
- E (kwh) = Area (m²)*r (solar panel yield percentage)*H(annual average solar radiation on the tilted panels)*PR (performance ratio)
- Performance ratio will experience losses due to Inverter, AC & DC cables, dirt/particles between the face of the panels, shade and temperature variations (overcast, storm, night, etc.)

Power Consumption

- ► Formula for Determining Appliance Cost:
- Daily Cost = Wattage (in mW) x Usage per day (in hours) x Energy Cost (cents per kWh)
 - Ex) Appliance operates at 1500W for 3 hours a day. Your utility company charges 0.10c per kWh.
 - ► (1500W/1000) * 3 hours * 0.10c = \$0.45 per daily operation
- Wattage can be found in product description
- ▶ Usage per day can just be estimated, or observed by power meter
- Energy cost varies by region, time used, and provider
 - ► US average is approximately \$0.12/kWh

Appliance Characteristic Chart

Appliance Characteristic Chart									
Appliance		Dimensions (WxDxH, In)	Weight (Ibs)	Price (\$)	Wattage (W)	Estimated Daily Usage (in hours)	Estimated Monthly Usage (in hours)	Estimated Daily Cost (@ \$0.12/kWh)	Estimated Monthly Cost (@ \$0.12/kWh)
	Stove	-	-	-	-		-	-	-
Brand:	Techwood	22.5x9.9x4.3	8.83	\$72.98	1800	5	150	\$ 1.08	\$ 32.40
Brand:	CUSIMAX, electric	21.5x15x4.7	8	\$93.99	1250	5	150	\$ 0.75	\$ 22.50
	Toaster		-	-	-	-	-	-	-
Brand:	Whall	13.19x9.13x7.52	3.65	\$39.99	1200	0.2	6	\$ 0.03	\$ 0.86
N	Aini Fridge	-	-	-	-	-		-	
Brand:	Euhomy	19.4x19.9x33.5	53.1	\$199.99	286	24	720	\$ 0.82	\$ 24.71
Brand:	Bossin	20.1x19x33.5	44.1	\$209.99	253	24	720	\$ 0.73	\$ 21.86
Coffee Maker					-	-	2.5	-	-
Brand:	Farberware	9.2x8.7x7	2.25	\$29.99	900	0.5	15	\$ 0.05	\$ 1.62
Brand:	Black&Decker	8.25x12.25x11	4.5	\$22.49	950	0.5	15	\$ 0.06	\$ 1.71
Television		-		-	-	-	-	-	-
Brand:	TCL	38.2x22.3x3.3	15.4	\$228.00	63	4	120	\$ 0.03	\$ 0.91
Brand:	Vizio	22.1x13.3x2.9	8.73	\$149.88	58	4	120	\$ 0.03	\$ 0.84
Microwave		-	-	-	-	-	10 - 20	-	-
Brand:	Amazon Basics	17.3x10.1x14.1	21.9	\$74.99	700	1	30	\$ 0.08	\$ 2.52
Heat Pump				-	-	-	-		-
Brand:	Senville	30.31x11.81x21.85	65	\$799.99	1200	8	240	\$ 1.15	\$ 34,56

Design Decision Matrix

Appliance Design Decision Matrix								
Appliance (1 = low, 5 = high)		Size	Weight	Cost	Availability	Reviews	Energy Consumption	Overall Score
	Stove	-	-	-	1	1	-	-
Brand:	Techwood	3	4	4	5	4	4	24
Brand:	CUSIMAX, electric	3	4	3	5	3	3	21
Toaster		-	-	-	-	-	-	•
Brand:	Whall	3	4	3	4	4	4	22
Mini Fridge		-	-	-	-	-	-	1
Brand:	Euhomy	3	3	3	3	4	4	20
Brand:	Bossin	3	4	3	3	2	4	19
Coffee Maker			-	-	-	-	-	1
Brand:	Farberware	3	4	4	4	3	4	22
Brand:	Black&Decker	2	2	3	5	3	4	19
	Television	-	-	-	-	1	-	•
Brand:	TCL	4	2	2	4	5	3	20
Brand:	Vizio	2	3	3	4	4	3	19
	Microwave	-	-	-	-	-	-	-
Brand:	Amazon Basics	3	3	2	5	4	3	20
	Heat Pump	-	-	-	-		-	-
Brand:	Senville	1	2	2	3	3	4	15

Total Monthly Energy Cost
\$97.58
Total Appliance Cost
\$1,576.00

By estimation, the solar trailer would pay off the appliances after 16 months.

K-12 Engagement/Interaction

Objective

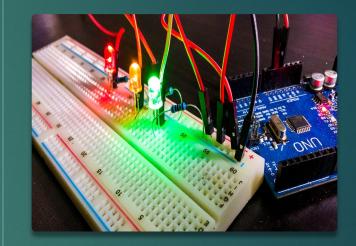
- Demonstrate how easy using solar power can be
- Demonstrate the number of appliances powered
- Make the case that solar power is a viable and needed option
- Make the learning experience engaging and fun

Overview

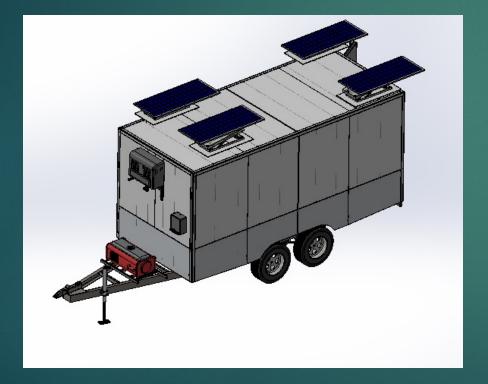
- ▶ 3 Levels of project breakdown:
 - ► Grades K-6
 - Generating power using a hand crank
 - Grades 7-8
 - Given a sized solar system and a chart of appliances, which appliances would you like in your home?
 - Grades 9-12
 - Powering their phone by constructing a small scale solar powered circuit

Project Visions

Grades K-6


- Hand crank to generate electric charge to power a small device.
- Distinguish between passive and active generation of power

Grades 7-8


- Students would think about appliances they use most while keeping their consumption in mind
- Could also help students conserve energy at home by eliminating phantom energy

Grades 9-12

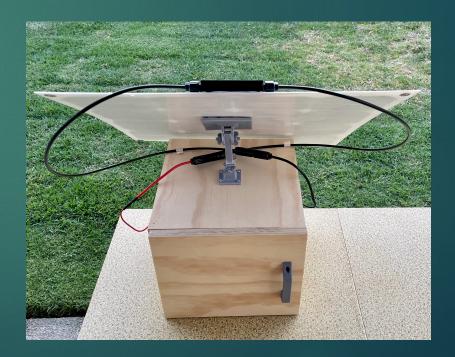
- Expose students to small circuitry
- Interactive and hands on learning
- Troubleshooting experience

Solar Power Trailer SolidWorks Prototype

Team 4:

3D Printing & Applications

Steven Garcia

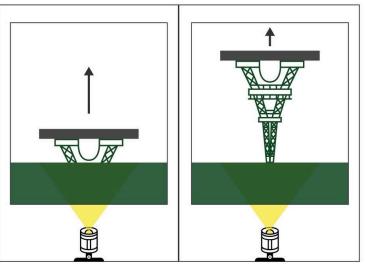

Sergio Miranda

Background

Our team was focused on 3D printing a mounting system and other various parts as well as building a prototype solar photovoltaic system.

Resin 3D Printing

- ▶ 3D Printer Elegoo Mars Pro 2
- Uses Build & Design
- Advantages Fast Prototyping
- 3D Printing Process


Curing

General DLP 3D Printer : Bottom-up

- Small vat, needs little resin to print, suitable for smallsized output
- Easily remove and change resin
- Heavy output requires many supporters for a successful output

3D Print Manufacturing

))

3D Printed Parts

Total Hours 3D Printing: 50+ Hrs

Solar Box

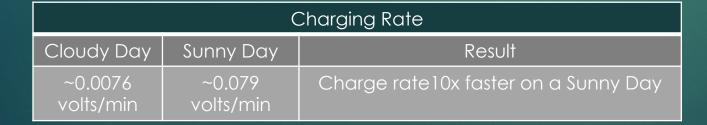
- ► Box Build Size: H10in x W12in x L12in
- ► Total Weight: 26.2 lbs.
- 3D Printed Parts: 2 Axis Solar Panel Bracket, Screws, Wing Nuts, Shunt Mount & Door Handle
- Real World Energy Use: 163 Wh

Charging Rate						
Cloudy Day	Sunny Day	Result				
~0.0025 volts/min	~0.0172 volts/min	7x more power on a sunny day than on a cloudy day				

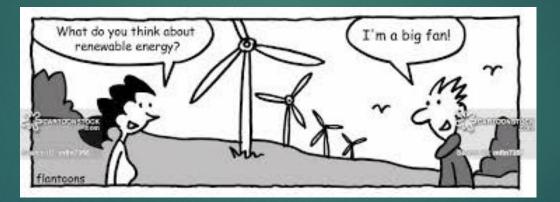
Solar Cart

Solar Panel Specification					
Size	22.0 x 21.3 x 0.118 in				
Weight	2.4 lb				
Optimal Power (Pmax)	50W +/-0.25W				
Working Voltage	18V+/-0.3V				
Working Current	2.7A +/-0.15 A				
Short circuit Current	2.9A +/-0.15A				
Open Circuit Current	20V +/-0.8V				

- ▶ Box Size: H12in x W13in x L12.5in
- ► Total Weight = 27.8 lb.
- > 3D Printed Adjustable Solar Panel Mount
- Solar Panel attached with Velcro
- ▶ 3D Printed Screws and Wing Nuts
- ► 3D Printed Vents
- ▶ 3D Printed Multimeter and Shunt Case


Solar Cart





Community Demonstration

- Demonstrate by showing the Solar Box/Cart to schools and the neighborhood.
- Educate about Solar and Sustainability
- Portable charging station

Questions?

