System Inertia Impact Due to High-Renewable Penetration

Final Presentation

Cal State LA Team:

Michael Carbajal Kimberly Guido Shuoran Liang Manuel Rodriguez Mayra Silva Alexis Vargas

Faculty Advisor and Liaison: Ayman Samaan PE MSEE

Spring 2021 Senior Design

Agenda

Ø	Project Objective & Background
	Programmatic
	Case Development
	Case Study Analysis
	Economic Study
	Conclusion

Project Objective

Objective:

California passed the Senate Bill 100, targeting 100% carbonfree electricity by Dec 31, 2045. A study was conducted to simulate a high renewable impact study using PowerWorld Simulator software to provide a suitable recommendation that would help reduce greenhouse gasses into the atmosphere.

Team will Identify :

- Threshold for renewable penetration that can be connected in the CA system

-Balance of load and resources for the on and off-peak case

-Impact of change in short circuit duty

-Evaluate the Cost and System upgrades needed

Work Breakdown Structure Study and Learn the existing case

Determine the Case Assumption

Identify the System Study scenarios

Develop cases (on and off-peak cases)

Short circuit duty

Economic Analysis

Senior Design Schedule Project 11.1: High Renewables Penetration – California										
	Fall 2020				Break		Spring 2021			
Milestones (By Date)	Aug 2020	Sept 2020	Oct 2020	Nov 2020	Dec 2020	Jan 2021	Feb 2021	Mar 2021	Apr 2021	May 2021
	1 8 16 24	1 8 16 24	1 8 16 24	1 8 16 24	1 8 16 2	4 1 8 16 24	4 1 8 16 24	1 8 16 24	1 8 16 24	1 8 16 24
Inertia Research										
Dynamic Models Research (Solar, Wind and Battery)										
California System Research										
System Identification										
Load Forecast										
Case Development										
- Peak Case										
- Off-Peak Case										
Steady-State & Transient Analysis (Peak & Off-Peak)										
Cost Analysis										
Short Circuit Duty										
Report/Presentation										

Project Background

- Importance of System Inertia

- Renewable Energy & Inverter-Based Resource

-WEEC & NERC System Performance Requirements

2017 California Electric Grid

In this case we see:

- Existing TL, Load, and Generation
- Solved existing issues before modifying the case to 2045
- load and gen in this case to see if it meets the 2045 load forecast

2045 Load Forecast

The 2045 forecasted load was referenced from a 10-year planning horizon provided from the California Energy Commission.

The California Mid-Demand load forecast included:

- Economic & demographic data
- Transportation electrification
- Self-generation
- Electricity rates
- Climate change impact

2045 Load Forecast (Cont.)

$$F = P(1 + i)^n$$

$$1 + i = \left(\frac{F}{P}\right)^{\frac{1}{n}} = \left(\frac{63637 \ MW}{60495 \ MW}_{Y \ ear \ 2030}}\right)^{\frac{1}{9 \ years}} = 1.005642$$

Annual Load Growth Factor:

$$F = P(1.005642)^{28 \text{ years}} = P(1.170618)$$

Case Modification

From the equation used, we
determined to compensate for
11 GW growth from 67 GW
(2017) to 78 GW (2045).

To simulate California's 2045
peak demand case, the totality
of the supply and demand of
the power system was
monitored by observing the
slack bus.

Existing Generator Type	Power Generated (GW)
Natural Gas	39.5
Coal	0.4
Nuclear	0
Water	8.3
Solar	5.2
Wind	3.9
Imports	10.5
Total	67.8

California Renewable Energy

- The Renewable Energy Transmission Initiative shows us the locations of where the different types of new renewable construction were appropriate.

- The team decided to model solar photovoltaic and battery storage units for simulation.

- A total of 10 GW of solar and 30.6 GW of battery energy storage models were newly added in the simulation.

In-state and import-export TAFA map

New Renewable Resources

- The team modeled new photovoltaic generation according to this map.

- New battery storage were modeled mostly in urban areas since photovoltaic generation was not appropriate.

Photovoltaic CEC

 Displaying: MW
 1 - 20 MW
 21 - 200 MW
 201 - 2,400 MW

Case Study Analysis

Steady-State Analysis

- Evaluated the system under normal condition to ensure system reliability

- Conducted a contingency analysis to identify system violation in accordance with the NERC requirement TPL-001-4

-Bus Voltage within (0.9 - 1.1 P.U Voltage)

-Power Flow on the Transmission Lines / Transformer within rating limits

- Limit A: Normal (Continuous) Rating
- Limit B: Emergency Rating (Approximately 130% Limit A Rating)

Transmission Overload Due to a Contingency

An example of 2 Transmission Line Violations due to a line outage.

Bus Voltage P.U. during Contingency

- This visual is an example of how a bus (e.g., substation facility) is to rise/decrease in P.U. Voltage during a contingency.

Battery Storage as a Solution

- Battery resources utilized in areas where solar projects are not available.

- Battery resources were mainly used in congested areas and used as solution to mitigate etc...

- Battery helps solve power flow issues. These issues include Low Bus Voltage and Overloaded Transmission lines.

Proposed Solution for Violations

Violations by type and solutions to mitigate them:

- 82 Voltage Violations (These included Low/High Voltage)
 - Fixed with 32 Shunts.
 - Fixed with 11 Batteries
- 112 Transmission Line overloads (Over the Limit B's Rating)
 - Fixed with 36 Double circuit Lines.
 - Fixed with 17 Batteries.

Transient Analysis

- Tests whether a power system can return to a stable state after major interruption.
- In our case we simulated a fault to occur at 50% of our most critical transmission lines.
- Helped us determine when our case is most reliable by testing frequency on critical bus.

Frequency results after inserting fault on 765kV line

80% vs 81% renewable penetration with same fault inserted.

Peak Case

Frequency Stability in California after inserting line fault

Off-Peak Case

•The off peak case represent 2:00 AM during Winter, it has a lighter load than peak time.

•The off-peak case would going to be 40% of load from the peak case.

•Solar PV generator will not be available.

•Battery that is supporting the system during peak time will be in charging mode.

Off-Peak Case

Off-Peak L	.oad (GW)	Off-Peak Generation (GW)		
Load in the case	21.2	Renewable energy	16.7	
Load in the case	51.2	Gas Units	12.1	
Charging mode Batteries	11.1	Intertie from other states	11.5	
Total Load	42.3	Battery	2	
		Total Generation	42.3	

The battery will act like a load during charging mode.

All the battery in the same bus will be combined into one load.

Battery storage supporting during off-peak time to balance the load and resources.

During off-peak season, the renewable energy mix can go as high as 72% and still need to have 28% of Gas Unit.

Fault Analysis – Short Circuit Duty

2017 Single Line-to-Ground Current Mangitude (A)	2045 Single Line-to-Ground Current Mangitude (A)	Single Line-to-Ground Current Change (A)
110448.1867	93144.66472	17303.52202
86378.19777	73987.15999	12391.03778
86378.19777	73987.15999	12391.03778
68078.38169	57268.0993	10810.28239
43870.28268	33522.54096	10347.74172
	2017 Single Line-to-Ground Current Mangitude (A) 110448.1867 86378.19777 86378.19777 68078.38169 43870.28268	2017 Single Line-to-Ground Current Mangitude (A) 2045 Single Line-to-Ground Current Mangitude (A) 110448.1867 93144.66472 86378.19777 73987.15999 86378.19777 73987.15999 68078.38169 57268.0993 43870.28268 33522.54096

- What is a SLG Fault?
 - Most common type of faults & least disruptive
- Why is it important to us?

- Testing if the protection settings are suitable for a high-renewable grid

 What do these graphs mean?
 Southeast & Southwest need better protection relay settings

Fault Analysis – Short Circuit Duty

Area	2017 Three-Phase Current Mangitude (A)	2045 Three-Phase Current Mangitude (A)	Three-Phase Current Change (A)
Southwest	105000.3097	82419.4403	22580.86943
Southwest	79550.44618	64394.88415	15155.56203
Southwest	79550.44618	64394.88415	15155.56203
Southwest	80623.58606	66824.65131	13798.93475
Southwest	80623.58606	66824.65131	13798.93475

- What is a 3-Phase Balanced Fault?
 - Most critical fault, least common fault
- Why is it important to us?
 - Yields highest short-circuit current values
- What do these graphs mean?
 - Southeast & Southwest need better protection relay settings

Fault Analysis Conclusion

-California areas such as Southeast and Southwest have a total reduction of 1.7 GA and 2.7 GA.

-Short circuit analysis showed a decreased fault current in the areas where the gas resources were mostly retired

-We recommend **Southeast** and **Southwest** areas need further review in regards to the protection settings.

Transmission Line & Voltage **Total**

- To achieve a 2045 goal was determined that the system will require the addition of 36 new transmission lines along with a few shunt capacitors and reactors for a cost of \$20 Billion.
- The study also included the additional voltage support will be required for a total of 32 cap banks and 8 SVCs for a total cost of \$32 Million.
- The final overall cost is \$40 Billion. The team utilized both the 2021 PG&E and SCE Proposed Generator Interconnection Unit Cost Guide found on the CAISO website.

Conclusion

• On-Peak :

80% is the threshold for Renewable Penetration

- Off-Peak : Stagger the battery charging in the case
- Short Circuit Duty: Further evaluation in protection setting for the SE and SW areas of CA
- Renewable Dynamic Model: Need further improvement to represent the actual generator model
- Cost Analysis: Total of\$40 Billion

Thank you for your time.