

UAV Flight Controller Design and Hardware Deployment

Team Members: Saron Gebreslassie, Antranik Karayan, Armine Grigoryan, Gabriel Montañez, Jonathan Jauregui Faculty Advisor: Dr. Michael Thorburn MathWorks Liaison: Roberto Valenti Departments of Electrical and Mechanical Engineering College of Engineering, Computer Science, and Technology California State University, Los Angeles

Project Background

Unmanned aerial vehicles (UAVs) are aircraft that can be controlled remotely, or by preprogrammed plans and automation systems that enable them to fly autonomously. Many industries and organizations are adopting this technology, including the military, government, commercial, and recreational users. As engineering students with various interests in said industries, joining this project sponsored by MathWorks was a wonderful opportunity to apply our analytical and critical skills as Engineers.

Project Requirements

Hardware Components Requirements									
	UAV	Receiver	Transmitter	Battery	Radio Controller				
Model	Pixhawk 4 M ini QAV250	TBS Cross fire Diversity Nano RX	TBS Crossfire Micro TX II	HOO VO LIPo Battery	RadioMasterTX 12				
Spe cifications	Carbon Rber 250 Aliframe	Weight: 1.8g (receiver only)	Frequency Bands: 915MHz (US)	Dimensions: (103x34x31.5)mm	Dimensions: (170x159x108)mm				
	Dimensions: (198x235x85)mm	Size: 24mm x 18mm	In put Voltage: 6.0 · 13V	No. Cells: 45	Weight: 363g				
	Wheelbase: 250mm	Requires: Firmware V2.87	Connector: USB-C	Voltage : 14.8V	Frequency: 2.400GHzGHz				
	Weight: 439.8g		Dimensions: (65x48x22)mm	Discharge Rating: 50C	Channels: Up to 16				
	Pixhawk 4 M in i Autopilot	Input Power: +3.3V to 8.4V	Weight: 48g	procharge nacing: 300	Transmitting Power: 20dbm				
			Power consumption: 1.1W (@10mW) · 2W (@100mW)	Capacity: 2200mAh	Range : >2km @ 20db m				
					External Module: Jr/FrSky/Crossfire				
					Radio Firmware: OpenTX				
Software Requirements									
Program	MATLAB	Simulink	Stateflow	QGroundControl	SolidWorks				

Table 1: List of Hardware and Software Components Used for the Pixhawk4 QAV250

Figure 1: Members of Group 7C (and Advisor)(from left to right): Saron Gebreslassie, Armine Grigoryan, Antranik Karyan, Mike Thorburn, Gabriel Montañez, Jonathan Jauregui

Objective

This project is aimed at developing and deploying a piloted flight control system for a model Pixhawk 4 Mini QAV250 drone. The methodology was developed through constant optimization and iterative techniques that were extracted from engineering principles to assess design analysis, model the system, and evaluate performance of the algorithm using mathematical models in MATLAB/Simulink and design software in SolidWorks.

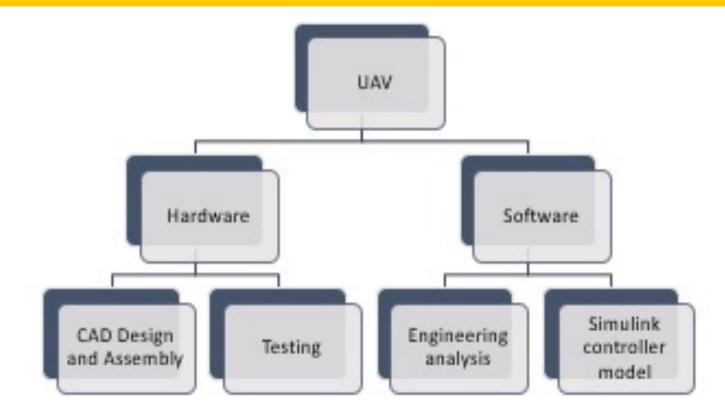
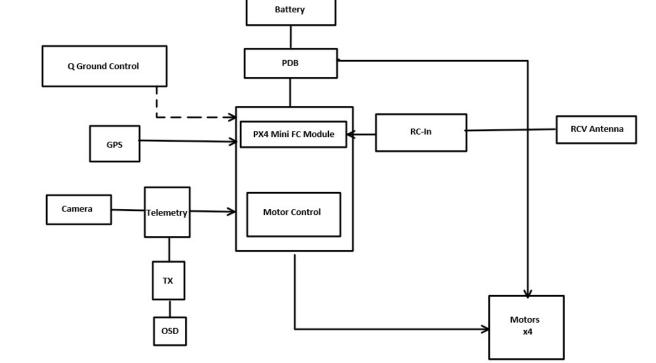



Figure 2: Block Diagram Detailing the Project Management

Figure 3: Hardware Schematic for the Pixhawk4

Figure 4: SolidWorks Model of the Pixhawk4

QAV250

Design Approach

Results

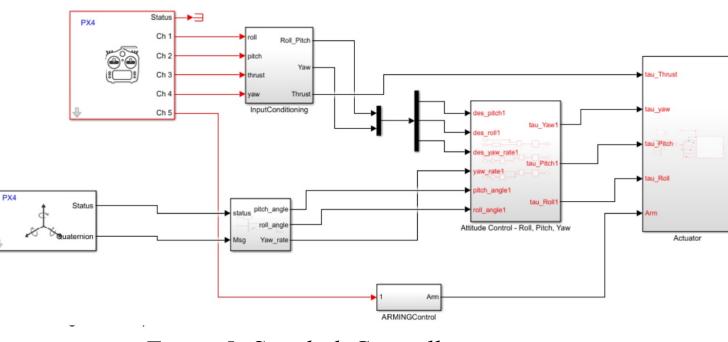


Figure 5: Simulink Controller

		Mass Properties							
Mass [g]	Volume [mm ³]	Surface Area [mm ²]	Center of Mass (X,Y,Z) [mm]						
681.50	214904.63	185889.86	-0.18	-4.96	-28.52				
Taken at the Center of Mass									
Principa	Axes of Inertia [mm]	Principal Moments of Inertia [g.mm ²]							
lx =	(1.00, 0.00, 0.00)	Px = 1966248.28							
ly =	(0.00, 0.00, -1.00)	Py = 2096366.19							
z =	(0.00, 1.00, 0.00)	Pz = 3412558.24							

Table 2: Mass Properties of UAV, obtained from SolidWorks Model

Figure 6: Radiomaster TX12 and Pixhawk4 QAV250

Conclusion

The team has fully assembled the UAV and has completed the calibration process, required prior to operation. In addition, a SolidWorks model was developed to obtain physical properties that were implemented in the Piloted Mode Flight Controller model in Simulink. The team is currently in the testing stages of the project.

Acknowledgements

We would like to thank our faculty advisor Michael Thorburn, Mathworks and our liaison Roberto Valenti, and our TA Alexis Ruiz for all their advice, guidance and support