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ABSTRACT

An Age-Structured SIR Model

For Cholera Epidemics

By

Leslie J. Szijjarto

Mathematical modeling is an important tool in epidemiology. It provides a

way to understand the primary forces in disease dynamics, and to conduct theoretical

experiments that are not possible in practice. In this paper, we study mathematical

models that describe the spreading of epidemic cholera through a human population.

We are particularly interested in one which shows the behavior of the disease across

different human age groups as well as across time. A major assumption of many

mathematical models of epidemics is that the population can be divided into a set of

distinct compartments. These compartments are defined with respect to the disease

status of individuals in the population. The general SIR model, which is used to

simulate behavior of many diseases, consists of three compartments: susceptible (S),

infected (I), and recovered (R). Since the general SIR model was first developed in

1927, several revisions have been made by different researchers to tailor it to fit to

cholera epidemics. Until recently, most models described behavior with respect to

time only. In 2011, Gobbert et al. [9] extended the SIR Cholera model to simulate

behavior across both time and age groups. This attempt was based on the fact that in

endemic areas, both the risk of contracting the disease, and the response to currently

available vaccines are age dependent.

In this thesis we study the SIR-based age-structured epidemic cholera model
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as proposed in [9]. The model consists of a coupled system of five differential equa-

tions: three partial differential equations, describing the disease dynamics of a hu-

man population across both time and age, and two ordinary differential equations,

describing cholera bacteria concentrations in the water supply across time. We solve

the age-structured model numerically by implementing a first order accurate finite

difference method and the Euler method. An agreement with the solution claimed

in [9] is obtained. We further suggest and implement the Lax-Wendroff scheme and

the Midpoint method to improve the accuracy of the model solution. We discuss

our simulation results and suggest a way to improve one of the model parameters.

Sensitivity analysis on model parameters are performed to determine their relative

importance to disease dynamics, and finally we compare the model to several case

studies found in literature.
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CHAPTER 1

Introduction

Cholera is an acute infection of the small intestine that is caused by ingestion of food

or water contaminated with the bacterium Vibrio cholerae. It is an ancient, water-

borne disease that continues to cause epidemics and pandemics despite ongoing efforts

to limit its spread. Every year, there are an estimated 3 to 5 million cholera cases,

resulting in 100,000 to 120,000 deaths, and the number of cases reported to the WHO

(World Health Organization) continues to rise. In 2011 alone, cases were reported in

58 different countries [20], with most cases reported in Asia and Africa.

Epidemic cholera is characteristically explosive in nature. About 80% of symp-

tomatic cholera cases are mild or moderate, but 20% cause severe dehydration, leading

to death if untreated. Populations lacking prior immunity can be devastated by the

disease in a matter of weeks. Cholera affects all age groups, but children are especially

vulnerable, and can die within hours.

The dynamics of cholera epidemics are still not fully understood. A very

complex system of interactions occurs between the human host, pathogen, and en-

vironment, resulting in some outbreaks being mild and others, explosive in nature.

Recently, one of the main mechanisms thought to be responsible for epidemic behav-

ior is the consumption of vibrios freshly shed (from human stool) into public drinking

water. Merrell and Butler (2002) [14] reported a study showing that cholera is up
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to 700 times more infectious in the first 5 hours following excretion, but then sub-

sequently decays quickly to the normal degree of infectivity. The larger the dose

ingested by an individual, the more severe the symptoms, and the larger the amount

of vibrios subsequently excreted. So, as long as the main source of the disease is the

bacteria naturally occurring in the water source, any outbreak in the population is

mild and slow to occur. Once people start routinely coming into contact with water

or food that is contaminated with vibrios freshly shed from human feces, the disease

is able to spread epidemically.

Mathematical modeling has been used as a tool in epidemiology to understand

the spreading mechanism of infectious diseases. It provides a way to gain insight on

the primary forces in disease dynamics, and to conduct theoretical experiments that

are not possible in practice. In this paper, we study the development of mathematical

models that describe the spreading of epidemic cholera through a human population.

We are particularly interested in one which shows the behavior of the disease across

different human age groups as well as across time.

This thesis is organized as follows. In Chapter 2, we present the general

SIR (Susceptible-Infected-Recovered) model for epidemic disease, and describe several

developments that lead to the age-structured model. The model consists of a system of

partial and ordinary differential equations. Chapter 3 discusses our approach to solve

the age-structured model numerically by implementing a first order accurate finite

difference method to solve the partial differential equations, and the Euler method to

solve the ordinary differential equations. In Chapter 4, we propose several ways to

improve on the accuracy of the model, replacing the first order method with a second

2



order Lax-Wendroff scheme, and the Euler method with the Midpoint method. The

comparison of our simulation results for both methods is also presented. In Chapter

5, we perform a sensitivity analysis on model parameters in order to determine their

relative importance to disease dynamics. We also suggest a way to improve one of

the model parameters. We conclude in the final chapter by comparing model output

to several case studies found in literature.
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CHAPTER 2

Mathematical Model

Infectious disease modeling has a long history, going back to at least Daniel Bernouli’s

smallpox model from 1760. The discipline is driven by the desire to understand the

dynamics of an outbreak or epidemic in order to plan control strategies.

When dealing with large populations, as in the case of cholera, deterministic

(or compartmental) models are commonly used, where individuals in the population

are compartmentalized according to disease stage. The most common model is the

SIR model which divides the individuals in the population into three compartments:

Susceptible (S), Infected (I), and Recovered (R).

In this chapter we discuss the basic disease models, and several developments

that have been made to model cholera epidemics. These models provide the building

blocks for an age-structured cholera model, which is the main topic of this thesis.

2.1 Basic Models

In this section, we discuss two basic models for general epidemic disease: the SIR

and SIS models. In both models, S(t) represents the number of individuals who are

susceptible to the disease, but not yet infected at time t, while I(t) denotes the number

of individuals who have been infected with the disease at time t and are capable

of spreading the disease to those in the susceptible category. Each member of the

population typically progresses from the susceptible group into the infected group. In

4



some diseases, an individual gains an immunity that prevents the person from getting

reinfected, while in others, there is a possibility that the recovered individual can get

reinfected, and this is the main difference between the SIR and SIS models. In the SIR

model, the infected individuals will proceed to the recovered group after they recover,

while in the SIS model, the infected individuals will return to be susceptibles after

the disease recovery. Figures 2.1 and 2.2 show the flow dynamic of the individuals in

different compartments of the two models.

Figure 2.1: SIR Flow Diagram

Figure 2.2: SIS Flow Diagram

2.1.1 SIR Model

The SIR model is the most common type used to model the spread of disease in

a large population. Developed in 1927 by W. O. Kermack and A. G. McKendrick

[11], it was the first to successfully predict the behavior of many recorded epidemics

(Brauer & Castillo-Chavez [3]).

In the SIR model, R(t) represents the number of individuals who have re-

covered from the disease at time t. Those in this category are immune and un-

5



able to transmit the infection to others. Each population group is differentiable

with respect to time, and assuming that the population size is constant, that is,

N = S(t) + I(t) + R(t), the rate of change of each population group is given by the

following system of ODEs:

dS

dt
= −λSI (2.1)

dI

dt
= λSI − γI (2.2)

dR

dt
= γI, (2.3)

where λ = rate of infection and γ = rate of recovery.

This SIR model assumes that each infected individual has an equal probability

of transmitting the disease to other λS individuals, and each infected has equal re-

covery rate γ. It is also assumed that the rate of infection and recovery is much faster

than the time scale of births and deaths, therefore, these factors are ignored in this

model. From the system (2.1)-(2.3), one can guess that the number of susceptibles

will decrease, while the number of recovered individuals will increase over time. The

solution to this SIR model with parameter values λ = 0.00003, γ = 0.03, and initial

values S(0)=10000, I(0)=1, and R(0)=0 over a period of 24 weeks is shown in Figure

2.3.

2.1.2 SIS Model

In the basic SIS model, individuals recover with no immunity to the disease, that is,

they are immediately susceptible once they have recovered. Removing the equation

6



Figure 2.3: SIR Model Output

representing the recovered population from the SIR model and adding those removed

from the infected population into the susceptible population gives the following two

ordinary differential equations:

dS

dt
= −λSI + γI (2.4)

dI

dt
= λSI − γI (2.5)

2.2 Modeling Disease Transmission

One critical component of all infectious disease models is the mode of transmission,

the most common of which are environment-to-human and human-to-human trans-

missions.
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2.2.1 Environment-to-human Transmission

Prior to 2001, cholera based SIR models assumed that cholera bacteria are transmitted

only via the interaction between the infected with susceptible individuals. In 2001,

Cláudia Codeço [7] proposed the role of indirect transmission via the environmental

reservoir. Her model explicitly accounts for the concentration of V. Cholerae bacteria

in the drinking water supply. It is an extension of the demographic SIS model (i.e.

includes birth and natural death rates), and is composed of the following three ODEs:

dS

dt
= b(N − S)− βλS

dI

dt
= βλS − γI

dB

dt
= B(ψ − δ) + ξI,

where B = concentration of V.cholerae in water, b = human birth and death rates,

N = total human population, β = ingestion rate, γ = recovery rate, ψ = V. cholerae

growth rate, δ= V. cholerae loss rate, ξ = vibrio shedding rate, which is the con-

tribution from an infected individual to the vibrio reservoir through excretion. The

infection rate λ = B/(κ+B), where κ is the saturation constant.

Codeço’s model was the most accurate of its time, but it was not able to

accurately explain the behavior of epidemics that were explosive in nature.

2.2.2 Human-to-human Transmission

In 2002, Andrew Camilli et al. [6] discovered that freshly shed V. cholerae from

human intestines outcompeted other V. cholerae by as much as 700-fold for at least
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the first 5 hours in the environment. In 2006, David Hartley et al. [10] improved

Codeço’s model which only accounted for environment-to-human infection (through

contaminated food or water) by distinguishing highly infectious (HI) and non-highly

infectious (non-HI) stages of the V. cholerae pathogen. Hartley’s model provides a

basis for the human-to-human transmission pathway (i.e., fecal to oral).

Hartley’s model is an extension of the demographic SIR model, which includes

the natural death rate of individuals in each of the three categories. It distinguishes

the infection rate from HI and non-HI vibrio groups, and the dynamics between these

two vibrio groups. The model consists of five ODEs given by

dS

dt
= b(N − S)− (βLλL + βHλH)S (2.6)

dI

dt
= (βLλL + βHλH)S − (γ + b)I (2.7)

dR

dt
= γI − bR (2.8)

dBH

dt
= ξI − χBH (2.9)

dBL

dt
= χBH − δLBL, (2.10)

where the subscripts H and L represent the HI and non-HI vibrios, respectively. The

list of parameter descriptions is given in Table 2.1.

Hartley’s cholera model was the first that accurately described the observed

explosive epidemic patterns of past cholera outbreaks.
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2.3 Age-Structured Model

In this section we discuss two improvements to the Hartley model proposed by Gob-

bert et al.(2010) [9].

The first improvement is done by introducing several new parameters relevant

specifically to cholera epidemics. One such parameter is waning immunity. This is

based on the fact that individuals gain a certain immunity once they recover from

cholera, but this immunity diminishes over a certain period of time. Likewise, new-

born babies inherit a certain level of immunity at birth, but it also vanishes as they

grow older.

The equation (2.6) in the Hartley’s model can then be improved as follows

dS

dt
= Λ+ ωR− (βLλL + βHλH)S − bS, (2.11)

where Λ is the recruitment rate, that is the number of susceptibles entering the

population, and ω is the rate of waning immunity of those who have been recovered

from the disease and become susceptible again.

Gobbert’s model also includes the oral rehydration therapy factor which can

effectively reduce mortality due to the disease. Furthermore, it distinguishes the

recovery rate of treated versus untreated cholera, which makes the model more ap-

plicable for epidemic cholera in remote areas in which not all infected individuals can

receive medical treatment. With these additional terms, equations (2.7)-(2.8) can be
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modified as follows:

dI

dt
= (βLλL + βHλH)S − bI − (1− h)∆I − (γ1(1− u) + γ2u)I (2.12)

dR

dt
= (γ1(1− u) + γ2u)I − bR − ωR (2.13)

The second improvement is based on the argument that the risk for contracting

cholera and/or dying from it depends on the age of the humans, and thus an age-

structured model can offer additional insights and the possibility to study the effects

of treatment options. We now discuss how to add age structure into the model

equations (2.11)-(2.13).

We follow the well-known McKendrick approach to convert an ODE into an

age-structured PDE [4]. To illustrate the method, we take the equation (2.1) as an

example:

dS

dt
= −λSI.

Let S(a, t) and I(a, t) be the number of susceptibles and infectives of age a at

time t. Then at time h = ∆t later, the individuals who are still susceptibles will have

aged by an amount of ∆a = ∆t = h. That is,

S(a+ h, t+ h) = S(a, t)− λS(a, t)I(a, t)h.
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We expand S(a+ h, t+ h) in Taylor series around (a, t) to get

S(a+ h, t+ h) =S(a, t) + h
∂S(a, t)

∂a
+ h

∂S(a, t)

∂t

+
h2

2!

∂2S(a, t)

∂a2
+
h2

2!

∂2S(a, t)

∂t2
+ h2

∂2S(a, t)

∂t∂a
+O(h3)

If h is sufficiently small, then h2 and higher order terms are negligible, giving us

h
(∂S

∂a
+
∂S

∂t

)

= S(a+ h, t+ h)− S(a, t)

= −λS(a, t)I(a, t)h

Hence,

∂S

∂a
+
∂S

∂t
= −λSI, (2.14)

for t ≥ 0, 0 ≤ a ≤ A, where A is the upper bound on the human’s age in the

population, and initial condition S(a, 0) = S0(a).

The age-structured PDEs for the equations (2.11)-(2.13) are derived in a sim-

ilar manner and the system now becomes

∂S

∂t
+ α

∂S

∂a
= Λ+ ωR− (βLλL + βHλH)S − bS (2.15)

∂I

∂t
+ α

∂I

∂a
= (βLλL + βHλH)S − bI − (1− h)∆I − (γ1(1− u) + γ2u)I (2.16)

∂R

∂t
+ α

∂R

∂a
= (γ1(1− u) + γ2u)I − bR − ωR (2.17)

dBH

dt
=

∫ A

0

ξηI da− χBH (2.18)

dBL

dt
= χBH − δLBL, (2.19)
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where λH = BH (t)
κH (a)+BH (t)

, λL = BL(t)
κL(a)+BL(t)

, and α = proportionality factor. The model

parameters and their units are listed in Table 2.1.

Note that BH and BL are independent of human age, and thus the equations

that give their rate of change stay as ODEs. Equation (2.18), however, is dependent

on I(a, t) and to get dBH/dt we need to integrate I(a, t) with respect to a to get the

number of infected individuals of all ages at a particular time t.

The initial conditions for the model (2.15)-(2.19) are given by

S(a, 0) = S0(a), I(a, 0) = I0(a), R(a, 0) = R0(a)

BL(0) = BL0, BH(0) = BH0,

where S0(a), I0(a) and R0(a) are some functions of a, and BL0, BH0 are constants.

The boundary conditions are defined based on the following assumptions:

(1) Babies of age one year old or younger have a natural immunity.

(2) People of ages between 15 and 45 have on average three children throughout

their lifetime.

Assumption 2 can be modeled by first defining the fecundity as a function

of age a. The fecundity function describes the potential reproductive capacity of a

population. There are many ways to model the pattern of births within a population.

A normal distribution curve is one example. Another example, suggested in Gobbert
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(2010) is to use a sine function given by:

f(a) =

{

1
5
sin2

[(

a−15
30

)

π
]

, if 15 < a < 45 years,
0, otherwise,

whose graph is given in Figure 2.4.

Figure 2.4: Fecundity Function

We then define the boundary condition for R(0, t) by

R(0, t) =

A
∫

0

(S(a, t) + I(a, t) +R(a, t))f(a)da, (2.20)

which shows that all newborns are placed into the recovered population, satisfying

assumption 1.
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Table 2.1: Model Parameters and Their Units

Parameter Description Units

α proportionality factor (wave speed) week
days

Λ(a, t) recruitment rate, number of susceptible humans entering
pop of age a at time t

humans
week∗days

h(a, t) oral rehydration therapy, reduces disease related mortality
(90% effective)

none

u(a, t) antibiotic treatment rate for humans none
βL(a) ingestion rate of non-HI vibrios 1

day

βH(a) ingestion rate of HI vibrios 1

day

κL(a) saturation const of non-HI vibrios cells
ml

κH(a) saturation const of HI vibrios cells
ml

b(a) natural mortality rate of humans 1

day

ω(a) rate of waning immunity of humans 1

day

∆(a) disease related mortality rate for humans 1

day

f(a) maternity rate 1

week

γ1 recovery rate of untreated cholera 1

day

γ2 recovery rate of treated cholera 1

day

ξ shedding rate of vibrios from infected person cells
ml∗day∗human

η relative amount of stool per unit time none
χ rate of vibrio moving from HI to non-HI state 1

day

δL death rate of vibrio in the environment 1

day

A Upper bound on the age of people weeks
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CHAPTER 3

Numerical Solution to the Age-Structured Model

A mathematical model that represents a real life situation is typically complex, of-

ten making it very difficult or even impossible to solve analytically. In such case,

implementing numerical methods is the approach taken to approximate the solution.

In Section 3.1 we describe the finite difference concept to approximate the

derivative of a function, and its implementation to the age-structured model presented

in Section 2.3. The parameter values used in the simulation are taken from [9] and

are listed in Section 3.2. We solve the age-structured model numerically using a first

order scheme and present our computational results in Section 3.3.

3.1 Finite Difference Schemes

In general, a finite difference approximation to the value of some derivative of a scalar

function u(x) at a point x0 in its domain, say u′(x0), relies on a suitable combination

of sampled function values at nearby points, such as x0 ± h, x0 ± 2h, . . ., for some h.

The step size h is assumed to be sufficiently small.

We begin with the first order derivative. Recall that the Taylor series expan-

sion for u(x0 + h) around the point x0:

u(x0 + h) = u(x0) + hu′(x0) +
h2

2!
u′′(x0) +

h3

3!
u′′′(x) + ... (3.1)
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Solving for u′, we get

u′(x0) =
u(x0 + h)− u(x0)

h
+O(h), (3.2)

where O(h) refers to the error term that is proportional to h and whose absolute

value is bounded by a constant multiple of |h| as h → 0. Equation (3.2) is known

as the forward difference approximation for u′(x) if h > 0 and backward difference

approximation if h < 0. Since the error is proportional to h, this forms a first order

approximation to u′(x0).

To approximate higher order derivatives, we need to evaluate the function at

more than two points, which usually are equally spaced for simplicity. We consider

the Taylor series expansion for u(x0 − h) around the point x0:

u(x0 − h) = u(x0)− hu′(x0) +
h2

2!
u′′(x0)−

h3

3!
u′′′(x) + ... (3.3)

Adding (3.1) and (3.3) gives

u(x0 + h) + u(x0 − h) = 2u(x0) + u′′(x0)h
2 +O(h4).

Solving for u′′(x0) we arrive at the second order centered finite difference approxima-

tion:

u′′(x) =
u(x0 + h)− 2u(x0) + u(x0 − h)

h2
+O(h2). (3.4)

We will now employ the finite difference formulae to devise a numerical solution

scheme for a hyperbolic PDE:

∂u

∂t
+ α

∂u

∂a
= f(a, t). (3.5)
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We assume rectangular mesh (ai, tj) with uniform space (age) mesh size h =

∆a = ai+1 − ai and time step size k = ∆t = tj+1 − tj . We use ui,j ≈ u(ai, tj) to

denote our numerical approximation to the solution u(a, t) at the indicated node.

The most elementary numerical solution scheme is obtained by replacing the time

derivative by the first order forward difference approximation and the age derivative

by the backward difference, giving us the explicit scheme

ui,j+1 − ui,j
k

+ α
ui,j − ui−1,j

h
= f(ai, tj). (3.6)

which can be solved for ui,j+1. The above scheme is often called the upwind scheme.

Implementing the upwind scheme to the age-structured model (2.15)-(2.17),

we obtain

Si,j+1 − Si,j

k
+ α

Si,j − Si−1,j

h
=[Λ+ ωR− (βLλL + βHλH)S − bS]i,j (3.7)

Ii,j+1 − Ii,j
k

+ α
Ii,j − Ii−1,j

h
=[(βLλL + βHλH)S

− bI − (1− θ)∆I − (γ1(1− u) + γ2u)I]i,j (3.8)

Ri,j+1 −Ri,j

k
+ α

Ri,j − Ri−1,j

h
=[(γ1(1− u) + γ2u)I − bR − ωR]i,j. (3.9)

Note that the functions on the right hand side are evaluated at the node (ai, tj).

Equation (2.19) involves a first order derivative with respect to a single variable

t and its finite difference formula is given by

BLj+1
−BLj

h
=

[

χBHj
− δLBLj

]

(3.10)

Equation (2.18) involves an integral which we also need to compute numeri-
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cally. For this, we choose to implement the composite Trapezoidal rule:

∫ b

a

f(x)dx ≈
h

2

n−1
∑

k=0

[f(xk+1) + f(xk)] , (3.11)

where h is the step size chosen and n = (b− a)/h.

Applying (3.11) to (2.18) we get

BHj+1
−BHj

h
=

[

h

2
ξη

n−1
∑

i=0

(Ii+1,j + Ii,j)

]

− χBHj
(3.12)

where n = A/h

3.2 Parameter Values

For all simulations, we set the following parameter values, most of which are taken

from [9]. The value for parameter b, the mortality rate of human beings, was taken

from [19], which is the average for multiple African countries. The parameter χ, which

denotes the rate of vibrios moving from HI to non-HI state, was taken from [10] and

it is set to be 1/5 per hour or 33.6/week. Table 3.1 lists all parameters and their

values. In all of our simulations, we take the time step size k = ∆t = 1/50 week, age

mesh size h = ∆a = 1 week, and the initial number of individuals N = 104, which is

distributed uniformly across the age range 0 to 72 years old.
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Table 3.1: Model Parameters and Their Values

Parameter Quantity

α 1 week
days

Λ(a, t) 0 humans
week∗days

h(a,t) 0.9
u(a,t) 0.0
βL(a) 1.5/7 1

day

βH(a) 1.5/7 1

day

κL(a) 106 cells
ml

κH(a) κL/700
cells
ml

b(a) 1/50 1

year

γ1 1/5 1

day

γ2 1/3 1

day

η 0.1
χ 1/5 1

hour

δL 1/30 1

day

ω(a) 1

365
(a <=10 yrs), 1

2∗365
(a > 10 yrs) 1

day

∆(a) 0.032 (a <=10 yrs), 0.007 (a > 10 yrs) 1

day

A 72 years

3.3 Computational Results

We simulate the age-structured model (equations (3.7)-(3.9), (3.10) and (3.12)) in

three different scenarios:

• Reference simulation (i.e. no infected population)

• Simulation with high rate of shedding of cholera bacteria

• Simulation with low rate of shedding of cholera bacteria

We run the simulation in two different time periods: 24 weeks and 208 weeks.

With the 24-week simulation we can get a more detailed picture of the interplay be-

tween variables and parameters in the system during a course of the epidemic, while

the 208-week simulation can give us the information on the long term behavior of the

system. We also present the plot of the highly infectious (HI) and non-highly infec-

tious (non-HI) vibrios to see their transition. Our numerical scheme is implemented
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in the Matlab programming language, whose code is given in Appendix A.

3.3.1 Reference Simulation

For the reference simulation, no infected individuals are introduced into the popula-

tion. This corresponds to setting I(a, 0) = 0 at t = 0. In this case, we expect almost

all individuals in the population to belong to the susceptible category, except the new-

born babies who are immune and placed in the recovered population. The number of

recovered population is therefore relatively very small compared to the susceptibles.

According to the immunity waning function ω(a), newborns are immune for one year.

Hence, we define the initial conditions as follows

S(a, 0) =

{

0, if 0 <= a <= 52 weeks,
d, if a > 52 weeks,

and

R(a, 0) =

{

d, if 0 <= a <= 52 weeks,
0, if a > 52 weeks,

where

d = (10000 individuals)/(72 years * 52 weeks/year) = 2.671 individuals/week

The plot of the reference simulation is given in Figure 3.1. Since there are

no infected people in this reference simulation, the number of infected people remain

zero at all times. Total population increases due to a positive difference between the

birth rate and natural death rate (Figure 3.2). The susceptible population decreases

slightly due to people who died of natural causes during the simulation, and the

recovered population increases slightly due to the addition of newborns. The two
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vibrio populations also remain at zero (Figure 3.3).
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3.3.2 High Rate Shedding Simulation

For the high rate shedding scenario, we include one extra infected person of age 18

in the initial population. The shedding rate of vibrio from infected individuals is

set to ξ = 109 cells/(ml*day*human). All other parameters have the same values

as the reference simulation. In the 24-week simulation, we note the explosive nature

of the HI Rate shedding epidemic. The infected population peaks at 5000 people

within the first two weeks and then drops down to an endemic state in 4 weeks with

approximately 77 infected individuals, 36 susceptible individuals, and the rest of the

population in the recovered category. The total population number drops right away

and slowly rises back up due to the positive difference between the birth rate and

natural death rate. Refer to figures 3.4 through 3.6.

The 208-week high rate shedding simulation mirrored the 24 week simula-

tion. It quickly reached an endemic state of about 77 infected individuals, and 36
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susceptible individuals, with the rest of the population in the recovered category. In-

terestingly, the plots show no major oscillations after the initial peak of the infected

population. This will be discussed in Section 5.1. Refer to Figures 3.7 through 3.9.
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3.3.3 Low High Rate Shedding Simulation

Parameter values for the low rate shedding simulation are identical to those of the high

rate shedding simulation, except for the shedding rate, (ξ), which is set to ξ = 102

cells/(ml*day*human). Compared to the 24-week simulation of HI Rate shedding, the

Lo Rate shedding simulation produces a much more mild outbreak with the infected

population peaking at approximately 1500 people at week six. The outbreak curve is

also spread across 12 weeks, giving humanitarian agencies more time to react. Note

that the susceptible population increases slightly at the end of the time frame. This

is an unexpected behavior which will be discussed in Section 5.1. Refer to figures

3.10 through 3.12.

The Lo rate shedding simulation for 208 weeks produced a strong epidemic

peak of approximately 1500 people, followed by decaying oscillations to an equilibrium

(endemic state) of about 6 infected individuals. The endemic state is one in which

the disease persists with a constant number of susceptible, infected, and recovered

individuals. This agrees with mathematical theory predicting decaying oscillations

[2]. Refer to Figures 3.13 through 3.15.
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Figure 3.12: Lo Rate Shedding Simulation - Vibrio Populations
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Figure 3.14: Low Rate Shedding Simulation 208 Weeks - Vibrio Populations
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CHAPTER 4

Second Order Method for the Age-structured Cholera Model

The upwind scheme done in the previous chapter (Equations 3.7 to 3.9) uses forward

differencing in time and backward differencing in space, both of which are first order

accurate. We improve on the order of accuracy by using the Lax-Wendroff scheme

which is second order accurate in both time and space. The scheme is based in the

following function:

ui,j+1 = f(ui−1,j, ui,j, ui+1,j) (4.1)

Since the computational molecule is triangular in shape it can handle the

entire space(age)-time (ai, tj) grid except for the right hand side boundary (the left

hand side are the given boundary values). There are many ways to solve this. For

example, the second order accurate Upwind Scheme, which can handle the right hand

boundary, can be combined with with the Lax-Wendroff scheme. We choose instead

to simply extend the simulation out twice as far in the i (age) direction, allowing us

to obtain the values of the right hand boundary.

In this chapter we derive both the Lax-Wendroff scheme, and a simplified

version of it. We then compare the simulation output of the first order model with

the ones of the Lax-Wendroff schemes.
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4.1 The Lax-Wendroff Scheme

The first order model Equations 2.15 through 2.17) are nonhomogeneous hyperbolic

equations of the form:

ut = −αux + f (4.2)

Recall the Taylor series for u(x, t + k), where u(x, t) is a solution to the non-

homogeneous equation 4.2, is given by

u(x, t+ k) = u(x, t) + kut(x, t) +
k2

2
utt(x, t) +O(k3) (4.3)

Differentiating equation 4.2 with respect to t, we get

utt = −αutx + ft (4.4)

Differentiating equation 4.2 with respect to x, we get

utx = −αuxx + fx (4.5)

Combining equations 4.4 and 4.5 we get

utt = α2uxx − αfx + ft. (4.6)

The Taylor series 4.3 then becomes

u(x, t+ k) = u(x, t)−αkux(x, t) +
α2k2

2
uxx(x, t) + kf −

αk2

2
fx +

k2

2
ft +O(k3) (4.7)

Replacing the derivatives in x by second-order accurate differences and ft by
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a forward difference, we obtain

u(x, t+ k) =u(x, t)−
αk

2h
[u(x+ h, t)− u(x− h, t)]

+
α2k2

2h2
[u(x+ h, t)− 2u(x, t) + u(x− h, t)]

+
k

2
[f(x, t+ k) + f(x, t)]−

αk2

4h
[f(x+ h, t)− f(x− h, t)]

+O(kh2) +O(k3)

This gives the Lax-Wendroff explicit scheme with second order accuracy in x

and t:

ui,j+1 = ui,j −
kα

2h
(ui+1,j − ui−1,j) +

k2α2

2h2
(ui+1,j − 2ui,j + ui−1,j)

+
k

2
(fi,j+1 + fi,j)−

αk2

4h
(fi+1,j − fi−1,j)

(4.8)

or, equivalently,

1

k
(ui,j+1 − ui,j) +

α

2h
(ui+1,j − ui−1,j)−

kα2

2h2
(ui+1,j − 2ui,j + ui−1,j)

=
1

2
(fi,j+1 + fi,j)−

αk

4h
(fi+1,j − fi−1,j)

(4.9)

Using the Lax-Wendroff Scheme, the corresponding second order finite differ-

ence equations for the age-structured model are below.

1

k
(Si,j+1 − Si,j) +

α

2h
(Si+1,j − Si−1,j)−

α2k

2h2
(Si+1,j − 2Si,j + Si−1,j) =

1

2
[Λ− (βLλL + βHλH)S − bS + ωR]i,j+1

+
1

2
[Λ− (βLλL + βHλH)S − bS + ωR]i,j

−
kα

4h
[Λ− (βLλL + βHλH)S − bS + ωR]i+1,j

+
kα

4h
[Λ− (βLλL + βHλH)S − bS + ωR]i−1,j

(4.10)
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1

k
(Ii,j+1 − Ii,j) +

α

2h
(Ii+1,j − Ii−1,j)−

α2k

2h2
(Ii+1,j − 2Ii,j + Ii−1,j) =

1

2
[(βLλL + βHλH)S − bI − (1− h)∆I − γ1(1− u)I − γ2uI]i,j+1

+
1

2
[(βLλL + βHλH)S − bI − (1− h)∆I − γ1(1− u)I − γ2uI]i,j

−
kα

4h
[(βLλL + βHλH)S − bI − (1 − h)∆I − γ1(1− u)I − γ2uI]i+1,j

+
kα

4h
[(βLλL + βHλH)S − bI − (1 − h)∆I − γ1(1− u)I − γ2uI]i−1,j

(4.11)

1

k
(Ri,j+1 −Ri,j) +

α

2h
(Ri+1,j −Ri−1,j)−

α2k

2h2
(Ri+1,j − 2Ri,j +Ri−1,j) =

1

2
[γ1(1− u)I + γ2uI − bR− ωR]i,j+1

+
1

2
[γ1(1− u)I + γ2uI − bR− ωR]i,j

−
kα

4h
[γ1(1− u)I + γ2uI − bR− ωR]i+1,j

+
kα

4h
[γ1(1− u)I + γ2uI − bR− ωR]i−1,j

(4.12)

By putting the terms with (i, j + 1) on the left hand side, we can rewrite the

equations (4.10)-(4.12) as follows

[
1

k
+
1

2
(βLλL +−βHλH) + b]Si,j+1 −

1

2
ωRi,j+1 =

1

k
Si,j +

1

2
Λ−

α

2h
(Si+1,j − Si−1,j) +

α2k

2h2
(Si+1,j − 2Si,j + Si−1,j) +

1

2
Λ

+
1

2
[Λ− (βLλL +−βHλH)S − bS + ωR]i,j

−
kα

4h
[Λ− (βLλL +−βHλH)S − bS + ωR]i+1,j

+
kα

4h
[Λ− (βLλL +−βHλH)S − bS + ωR]i−1,j

(4.13)

[
1

k
+

1

2
(b+ (1− h)∆ + γ1(1− u)I + γ2u]Ii,j+1 −

1

2
(βLλL + βHλH)Si,j+1 =

1

k
Ii,j −

α

2h
(Ii+1,j − Ii−1,j) +

α2k

2h2
(Ii+1,j − 2Ii,j + Ii−1,j)

+
1

2
[(βLλL + βHλH)S − bI − (1− h)∆I − γ1(1− u)I − γ2uI]i,j

−
kα

4h
[(βLλL + βHλH)S − bI − (1 − h)∆I − γ1(1− u)I − γ2uI]i+1,j

+
kα

4h
[(βLλL + βHλH)S − bI − (1 − h)∆I − γ1(1− u)I − γ2uI]i−1,j

(4.14)
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[
1

k
+

1

2
(b+ ω)]Ri,j+1 −

1

2
[γ1(1− u) + γ2u]Ii,j+1 =

1

k
Ri,j −

α

2h
(Ri+1,j −Ri−1,j) +

α2k

2h2
(Ri+1,j − 2Ri,j +Ri−1,j)

+
1

2
[γ1(1− u)I + γ2uI − bR− ωR]i,j

−
kα

4h
[γ1(1 − u)I + γ2uI − bR− ωR]i+1,j

+
kα

4h
[γ1(1 − u)I + γ2uI − bR− ωR]i−1,j

(4.15)

This gives a system of equations Ax = b, where

A =





c1 0 c2
c4 c3 0
0 c6 c5



 , x =





Si,j+1

Ii,j+1

Ri,j+1



 , b =





d1
d2
d3





and the constants d1, d2, d3 are the right hand side of equations 4.13, 4.14, and 4.15,

respectively, and

c1 = [
1

k
+

1

2
(βLλL +−βHλH) + b]

c2 = −
1

2
ω

c3 = [
1

k
+

1

2
(b+ (1− h)∆ + γ1(1− u)I + γ2u]

c4 =
1

2
(βLλL + βHλH)

c5 = [
1

k
+

1

2
(b+ ω)]

c6 =
1

2
[γ1(1− u) + γ2u].

The system can be solved numerically by implementing the Jacobi or Gauss-

Seidel methods [16]. Alternatively, by substitution we can also convert the equations

(4.13)-(4.15) into their explicit forms. For a detailed explanation of the substitution

process and its associated Matlab code for the Lax-Wendroff scheme, see Appendix

C and D.
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4.2 Simplified Lax-Wendroff Scheme

The following is a simplified version of the Lax-Wendroff scheme [17] that is easier to

solve explicitly. It is second order accurate in x and first order accurate in t.

Equation 4.7 is repeated here for convenience

u(x, t+k) = u(x, t)−αkux(x, t)+
α2k2

2
uxx(x, t)+kf −

αk2

2
fx+

k2

2
ft+O(k

3) (4.16)

Removing the space and time derivatives of f from the above equation we get

a new equation that is second order accurate for x and first order accurate for t:

u(x, t+ k) = u(x, t)− αkux(x, t) +
α2k2

2
uxx(x, t) + kf +O(k2) (4.17)

Replacing ux and uxx with central difference equations we get the Simplified

Lax-Wendroff explicit scheme.

ui,j+1 = ui,j −
kα

2h
(ui+1,j − ui−1,j) +

k2α2

2h2
(ui+1,j − 2ui,j + ui−1,j) + kfi,j (4.18)

or, equivalently,

1

k
(ui,j+1 − ui,j) +

α

2h
(ui+1,j − ui−1,j)−

kα2

2h2
(ui+1,j − 2ui,j + ui−1,j) = fi,j (4.19)

Implementing the simplified Lax-Wendroff scheme, the age-structured model

can be solved by solving the following equations:

1

k
(Si,j+1 − Si,j) +

α

2h
(Si+1,j − Si−1,j)−

α2k

2h2
(Si+1,j − 2Si,j + Si−1,j) =

[Λ− (βLλL + βHλH)S − bS + ωR]i,j

(4.20)
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1

k
(Ii,j+1 − Ii,j) +

α

2h
(Ii+1,j − Ii−1,j)−

α2k

2h2
(Ii+1,j − 2Ii,j + Ii−1,j) =

[(βLλL + βHλH)S − bI − (1 − h)∆I − γ1(1− u)I − γ2uI]i,j

(4.21)

1

k
(Ri,j+1 −Ri,j) +

α

2h
(Ri+1,j −Ri−1,j)−

α2k

2h2
(Ri+1,j − 2Ri,j +Ri−1,j) =

[(γ1(1− u) + γ2u)I − bR− ωR]i,j

(4.22)

4.3 Improving the Accuracy of the First Order Model ODEs

In the first order model described in Chapter 3, the ODE

dBH

dt
=

∫ A

0

ξηIda− χBH

was implemented using the second-order accurate trapezoidal rule, so this same im-

plementation is also used in the second order model. The ODE

dBL

dt
= χBH − δLBL

was solved by using the first order Euler Method (3.10). We improve this to second

order accuracy by implementing the second order Midpoint Method [5]. The method

is defined as follows: Given dy/dx = f(x, y), a ≤ x ≤ b with initial value y(a) = y0,

let

c1 = f(xi, yi), c2 = f(xi +
1

2
h, yi +

1

2
c1h),

where h = (b− a)/N is the step size. Then yi+1 = yi + c2h.
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Applying the Midpoint Method to equation (2.19), we get

c1 =
[

χBHj
− δLBLj

]

BLj+1
− BLj

k
= χ

BHj
+BHj+1

2
− δL(BLj

+
1

2
c1k)

4.4 Comparison of First Order Model with Lax Wendroff Models

To compare differences in accuracy between the first order model in Chapter 3 and

the two Lax-Wendroff models, all three models were run with the same settings, for

the high rate shedding scenario (i.e. ξ = 1000000000), and a time duration of four

years. The models all agree closely with each other. The greatest difference occurs in

the infected population at the extremum where the second order infected population

peak is 100 people less than the first order peak 4.5. This corresponds to a difference

of 2%. The following are graphs of each population category with magnified views in

areas of greatest difference.

All three models were also run for the low rate shedding scenario. The differ-

ences between the model outputs were even smaller, so these plots were not included

in this paper.
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Figure 4.1: HI Rate Shedding - Susceptible Population

Figure 4.2: HI Rate Shedding - Susceptible Population Zoomed
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Figure 4.3: HI Rate Shedding - Infected Population

Figure 4.4: HI Rate Shedding - Infected Population Zoomed
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Figure 4.5: HI Rate Shedding - Infected Population Zoomed

Figure 4.6: HI Rate Shedding - Recovered Population
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Figure 4.7: HI Rate Shedding - Recovered Population Zoomed

Figure 4.8: HI Rate Shedding - Total Population
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Figure 4.9: HI Rate Shedding - Total Population Zoomed
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CHAPTER 5

Analysis on Model Parameters

In this chapter, we analyze several model parameters and their effects on the model

output. The first parameter we hone in on is the immunity waning parameter ω. We

notice a weakness in the previously defined parameter value of ω which produces un-

realistic behavior in simulation curves. We propose a solution which produces a more

realistic behavior in both short and long term simulations. In the following section

we conduct a sensitivity analysis on various model parameters and their impacts on

outbreak severity both in the high rate and low rate shedding scenarios.

5.1 Analysis on Immunity Waning Parameter

From our simulation results presented in Chapter 3, we notice a strange behavior

in the Lo Rate shedding simulation as mentioned in [9]. The susceptible population

increases near the end of the 24 week time frame. This phenomenon can be seen in

both the susceptible population curve with an unexpected increase, and the recovered

population curve with an unexpected decrease. See Figure 3.10. The susceptible

population is expected to increase slightly due to the infant population constantly

losing immunity at one year of age, but the increase should not be as large as the

plot shows.

The strange behavior has to do with the way immunity waning parameter ω
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is defined as a piecewise step function given by [9]:

ω =



















1/365 per day a ≤ 10 years old

1/(2 ∗ 365) per day a > 10 years old.

(5.1)

With this definition of ω some people become susceptible immediately after

they have recovered from infection. However, studies show that the recovered popu-

lation is immune for at least a year before becoming susceptible (Ref [13], [22], [8]).

Using (5.1), our simulation shows that some people get infected more than once within

a short time frame. The most obvious problem shows up in the Hi Rate shedding

simulation over a 24 week time period. This scenario produces an infected population

curve of Figure 5.1. Here the cumulative infected population totals over 12000 peo-

ple (Figure 5.2), which is well over the initial population size of 10000. Essentially,

over 2000 repeat infections unrealistically occur within the 24 week time frame of the

outbreak. This indicates that the use of (5.1) to model the immunity waning is not

quite accurate.

45



Figure 5.1: Hi Rate Shedding - Infecteds - using definition (5.1)

Figure 5.2: Hi Rate Shedding - Cumulative Infecteds - using definition (5.1)

To overcome this unwanted behavior, we modify our algorithm by subtracting

the number of infecteds that occurred exactly one immunity period earlier (immunity

period of 1 year for children under 10 years old and 2 years for those older than 10)
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from the recovered population, and adding that value to the susceptible population.

By doing this, our simulation plot of the cumulative infected population does not

grow beyond the initial population size, which is more realistic. Refer to Figure 5.3.
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Figure 5.3: HI Rate Shedding - Cumulative Infecteds with our proposed technique

Using the same technique, our Lo Rate shedding simulation also removes the

unwanted behavior in the susceptible and recovered population curves. Refer to

Figures 5.4 and 5.5 and compare these to Figure 3.10.
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Figure 5.4: Lo Rate Shedding - Susceptible Population with our proposed technique
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Figure 5.5: Lo Rate Shedding - Recovered Population with our proposed technique

We also ran a long term simulation out to 208 weeks for both HI and Lo rate

shedding scenarios implementing this technique. For the Lo Rate shedding scenario,

two infection peaks were produced, and the second peak was more pronounced than
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in previous simulations using (5.1). Compare Figures 3.13 and 5.6.
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Figure 5.6: Lo Rate Shedding - Human Populations with our proposed technique

The HI Rate scenario produced two series of infection peaks. The first series

represents the reinfection of adults within the population. These peaks are large and

have a period of two years. The second series represents the reinfection of children

within the population. These peaks are small and have a period of one year. The

peaks oscillate, decay, and overlap.

This is a marked improvement for the HI rate simulation since the model with

ω defined by (5.1) produced only a single peak, and no oscillations. Refer to Figures

3.7 and 5.7. With two series of oscillating and overlapping peaks, the results look

noisy and therefore more realistic. If the adult immunity period is not a multiple of

the child period, then the results would look even noisier.
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Figure 5.7: HI Rate Shedding - Human Populations with our proposed technique

5.2 Sensitivity Analysis on Various Model Parameters

Cholera-related parameter values can be difficult to determine and can vary consid-

erably between populations [10, 12]. We conduct a sensitivity analysis to determine

the impact of changes to key model parameters on various output measures. Three

model outputs were chosen as measures of outbreak severity: peak infected popula-

tion (maximum population infected at any one time), total infected population, and

total mortalities.

In our analysis, each key model parameter (Table 3.1) was varied by ± 5%

and ± 10% while keeping all other parameters at their default values for a 24 week

simulation time window. In all, 22 parameters were tested, resulting in a total of 89

simulations. Model output for measures of outbreak severity was compared to the

default output from Table 5.1.
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Table 5.1: Outbreak severity - default output values for high and low rate shedding

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

HI Rate Shedding 5150.82 12293.11 65.08

Lo Rate Shedding 1340.29 8927.13 45.38

5.2.1 Sensitivity of High Rate Shedding Scenario Parameters

Across the ranges of parameters assessed, the model output was most sensitive to

h(a, t), the oral rehydration therapy. Although h(a, t) had little influence on the peak

of the infected population, and total infected population, it had a strong influence

on total mortalities. Case projections for total mortalities varied from 90% lower to

88% higher than the base case. This indicates that oral hydration therapy is highly

effective as an intervention for high rate shedding epidemics.

Model output was moderately sensitive to γ1, the recovery rate of untreated

cholera. γ1 had a only mild effect on infecteds, but a stronger effect on total mortalities

(9% lower to 11% higher).

The model was strongly robust to all other parameters with values changing

less than 2% from the nominal value. This tells us that these parameters are less

important to estimate accurately.

We list the sensitivity data of the high rate shedding scenario produced by our

simulations in section 5.2.3 and present the plots of the most sensitive parameters in

Section 5.2.5.

5.2.2 Sensitivity of Low Rate Shedding Scenario Parameters

As in the high rate shedding scenario, across the ranges of parameters assessed, the

model output was most sensitive to h(a, t), the oral rehydration therapy. Although
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h(a, t) had little influence on the peak of infected population, and total infected

population, it had a strong influence on total mortalities. Case projections for total

mortalities varied from 90% lower to 89% higher than the base case. This indicates

that oral hydration therapy is highly effective as an intervention for low rate shedding

epidemics as well.

Model output was moderately sensitive to κL(a), κH(a), βH(a), γ1, η, and χ.

All these parameters affect the peak of the infected population up to 16% lower to

19% higher compare to the base case. The parameter γ1 also has a moderate effect

on total mortalities (13% lower to 15% higher).

The model was fairly robust to all other parameters with values changing

less than 2% from the nominal value. This indicates that these parameters are less

important to estimate accurately.

Although more model parameters are moderately sensitive in the low rate

shedding scenario, it should be noted that this scenario is much less critical because

of its smaller negative effect on the population. Regardless, more studies need to be

done to estimate accurate values for the low rate shedding scenario.

Refer to Section 5.2.4 for sensitivity data of the low rate shedding scenario,

and Section 5.2.5 for a collection of plots of the most sensitive parameters.

5.2.3 Sensitivity Data - High Rate Shedding Scenario

In columns two, three, and four of each table, the numbers in parenthesis represent

the percentage change from the nominal value listed in Table 5.1.
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Table 5.2: Sensitivity of ξ - Rate of Shedding of Cholera Vibrios

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.56 (0.00%) 12293.06 (0.00%) 65.08 (0.00%)

95% 5150.69 (0.00%) 12293.09 (0.00%) 65.08 (0.00%)

105% 5150.93 (0.00%) 12293.13 (0.00%) 65.08 (0.00%)

110% 5151.04 (0.00%) 12293.15 (0.00%) 65.08 (0.00%)

Table 5.3: Sensitivity of b - Normal Mortality Rate of Humans

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.92 (0.00%) 12294.44 (0.01%) 65.09 (0.02%)

95% 5150.87 (0.00%) 12293.77 (0.01%) 65.08 (0.01%)

105% 5150.77 (0.00%) 12292.45 (0.01%) 65.07 (0.01%)

110% 5150.72 (0.00%) 12291.78 (0.01%) 65.07 (0.02%)

Table 5.4: Sensitivity of κL(a) Half Saturation Constant of non-HI Vibrios

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5151.06 (0.00%) 12293.16 (0.00%) 65.08 (0.00%)

95% 5150.94 (0.00%) 12293.13 (0.00%) 65.08 (0.00%)

105% 5150.70 (0.00%) 12293.09 (0.00%) 65.08 (0.00%)

110% 5150.59 (0.00%) 12293.07 (0.00%) 65.08 (0.00%)

Table 5.5: Sensitivity of κH(a) Half Saturation Constant (Hyper-Infective)

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

95% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

105% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

110% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

Table 5.6: Sensitivity of βL(a) - Ingestion rate of non-HI vibrios at age a

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5049.03 (1.98%) 12288.87 (0.03%) 65.05 (0.04%)

95% 5099.98 (0.99%) 12291.04 (0.02%) 65.06 (0.02%)

105% 5199.49 (0.94%) 12295.08 (0.02%) 65.09 (0.02%)

110% 5246.23 (1.85%) 12296.95 (0.03%) 65.10 (0.04%)
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Table 5.7: Sensitivity of βH(a) - Ingestion rate of HI vibrios at age a

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5049.03 (1.98%) 12288.68 (0.04%) 65.05 (0.05%)

95% 5099.73 (0.99%) 12290.95 (0.02%) 65.06 (0.02%)

105% 5199.48 (0.94%) 12295.17 (0.02%) 65.09 (0.02%)

110% 5246.75 (1.86%) 12297.12 (0.03%) 65.11 (0.04%)

Table 5.8: Sensitivity of γ1 - Recovery Rate of Untreated Cholera

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5347.29 (3.81%) 12281.05 (0.10%) 72.08 (10.75%)

95% 5246.11 (1.85%) 12287.39 (0.05%) 68.40 (5.10%)

105% 5058.62 (1.79%) 12298.30 (0.04%) 62.07 (4.63%)

110% 4971.88 (3.47%) 12303.04 (0.08%) 59.32 (8.85%)

Table 5.9: Sensitivity of h(a, t) - Oral Rehydration Therapy

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5142.31 (0.17%) 12278.55 (0.12%) 122.40 (88.08%)

95% 5146.56 (0.08%) 12285.79 (0.06%) 93.88 (44.26%)

105% 5155.08 (0.08%) 12300.51 (0.06%) 35.98 (44.72%)

110% 5159.35 (0.17%) 12307.99 (0.12%) 6.58 (89.90%)

Table 5.10: Sensitivity of δL - Death Rate of Vibrio in the Environment.

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

95% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

105% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

110% 5150.82 (0.00%) 12293.11 (0.00%) 65.08 (0.00%)

Table 5.11: Sensitivity of η - Relative Amount of Stool Per Unit Time

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.56 (0.00%) 12293.06 (0.00%) 65.08 (0.00%)

95% 5150.69 (0.00%) 12293.09 (0.00%) 65.08 (0.00%)

105% 5150.93 (0.00%) 12293.13 (0.00%) 65.08 (0.00%)

110% 5151.04 (0.00%) 12293.15 (0.00%) 65.08 (0.00%)
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Table 5.12: Sensitivity of χ - Rate of Vibrio Moving from HI to non-HI State

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 5150.61 (0.00%) 12293.07 (0.00%) 65.08 (0.00%)

95% 5150.72 (0.00%) 12293.09 (0.00%) 65.08 (0.00%)

105% 5150.91 (0.00%) 12293.13 (0.00%) 65.08 (0.00%)

110% 5150.99 (0.00%) 12293.15 (0.00%) 65.08 (0.00%)

5.2.4 Sensitivity Data - Low Rate Shedding Scenario

In columns two, three, and four of each table, the numbers in parenthesis represent

the percentage change from the nominal value listed in Table 5.1.

Table 5.13: Sensitivity of b - Normal Mortality Rate of Humans

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1340.97 (0.05%) 8930.57 (0.04%) 45.40 (0.04%)

95% 1340.63 (0.03%) 8928.85 (0.02%) 45.39 (0.02%)

105% 1339.95 (0.03%) 8925.41 (0.02%) 45.37 (0.02%)

110% 1339.61 (0.05%) 8923.69 (0.04%) 45.36 (0.04%)

Table 5.14: Sensitivity of κL(a) Half Saturation Constant of non-HI Vibrios

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1533.67 (14.43%) 9230.10 (3.39%) 46.96 (3.48%)

95% 1435.26 (7.09%) 9082.30 (1.74%) 46.19 (1.78%)

105% 1248.71 (6.83%) 8764.05 (1.83%) 44.53 (1.87%)

110% 1160.59 (13.41%) 8592.46 (3.75%) 43.64 (3.83%)

Table 5.15: Sensitivity of κH(a) Half Saturation Constant (Hyper-Infective)

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1522.86 (13.62%) 9150.76 (2.51%) 46.54 (2.55%)

95% 1429.76 (6.68%) 9041.26 (1.28%) 45.97 (1.30%)

105% 1254.51 (6.40%) 8807.97 (1.33%) 44.76 (1.36%)

110% 1172.39 (12.53%) 8683.35 (2.73%) 44.12 (2.79%)
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Table 5.16: Sensitivity of βL(a) - Ingestion rate of non-HI vibrios at age a

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1328.83 (0.86%) 8838.19 (1.00%) 44.91 (1.03%)

95% 1334.57 (0.43%) 8883.32 (0.49%) 45.15 (0.51%)

105% 1346.02 (0.43%) 8969.67 (0.48%) 45.60 (0.49%)

110% 1351.69 (0.85%) 9010.99 (0.94%) 45.82 (0.97%)

Table 5.17: Sensitivity of βH(a) - Ingestion rate of HI vibrios at age a

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1124.43 (16.11%) 8623.07 (3.41%) 43.80 (3.47%)

95% 1233.48 (7.97%) 8786.40 (1.58%) 44.65 (1.61%)

105% 1444.69 (7.79%) 9049.73 (1.37%) 46.01 (1.39%)

110% 1546.54 (15.39%) 9157.50 (2.58%) 46.57 (2.62%)

Table 5.18: Sensitivity of γ1 - Recovery Rate of Untreated Cholera

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1591.09 (18.71%) 9250.23 (3.62%) 52.23 (15.09%)

95% 1461.17 (9.02%) 9091.94 (1.85%) 48.64 (7.19%)

105% 1227.70 (8.40%) 8755.76 (1.92%) 42.39 (6.58%)

110% 1122.72 (16.23%) 8577.78 (3.91%) 39.65 (12.63%)

Table 5.19: Sensitivity of h(a, t) - Oral Rehydration Therapy

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1329.70 (0.79%) 8908.83 (0.20%) 85.38 (88.15%)

95% 1334.98 (0.40%) 8917.96 (0.10%) 65.48 (44.29%)

105% 1345.65 (0.40%) 8936.33 (0.10%) 25.08 (44.73%)

110% 1351.02 (0.80%) 8945.56 (0.21%) 4.58 (89.90%)

Table 5.20: Sensitivity of δL - Death Rate of Vibrio in the Environment.

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1342.35 (0.15%) 9030.59 (1.16%) 45.92 (1.20%)

95% 1341.31 (0.08%) 8977.40 (0.56%) 45.64 (0.58%)

105% 1339.29 (0.07%) 8879.63 (0.53%) 45.13 (0.55%)

110% 1338.29 (0.15%) 8834.76 (1.03%) 44.89 (1.07%)
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Table 5.21: Sensitivity of η - Relative Amount of Stool Per Unit Time

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1141.47 (14.83%) 8553.11 (4.19%) 43.44 (4.28%)

95% 1244.00 (7.18%) 8755.24 (1.93%) 44.49 (1.97%)

105% 1430.67 (6.74%) 9075.08 (1.66%) 46.15 (1.70%)

110% 1515.54 (13.08%) 9203.75 (3.10%) 46.82 (3.18%)

Table 5.22: Sensitivity of χ - Rate of Vibrio Moving from HI to non-HI State

Scenario Peak Infected Pop Total Infected Pop Total Mortalities

90% of default 1519.04 (13.34%) 9151.55 (2.51%) 46.54 (2.56%)

95% 1428.03 (6.55%) 9041.60 (1.28%) 45.97 (1.30%)

105% 1255.93 (6.29%) 8807.77 (1.34%) 44.76 (1.36%)

110% 1174.95 (12.34%) 8683.10 (2.73%) 44.11 (2.79%)

5.2.5 Selected Plots of Sensitive Parameters

This section contains plots of the effects of the most sensitive parameters on model

behavior.

Figure 5.8: Sensitivity of ξ - Rate of Vibrio Shedding - LO rate shedding
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Figure 5.9: Sensitivity of κH(a) - Half Saturation Const - LO Rate Shedding

Figure 5.10: Sensitivity of κL(a) - Half Saturation Const - LO Rate Shedding
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Figure 5.11: Sensitivity of βH(a) - Ingestion rate of HI vibrios - LO Rate Shedding

Figure 5.12: Sensitivity of γ1 - Recovery Rate of Untreated Cholera - HI Rate Shed-
ding
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Figure 5.13: Sensitivity of γ1 - Recovery Rate of Untreated Cholera - LO Rate Shed-
ding

Figure 5.14: Sensitivity of h(a, t) - Oral Rehydration Therapy - HI Rate Shedding
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Figure 5.15: Sensitivity of h(a, t) - Oral Rehydration Therapy - LO Rate Shedding

Figure 5.16: Sensitivity of η - Rel Amount of Stool Per Unit Time - LO Shedding
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Figure 5.17: Sensitivity of χ - Rate Vibrio Moving from HI to non-HI - LO Shedding
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CHAPTER 6

Comparing the Age-structured Model to Case Studies

To see how capable the age-structured model (equations 2.15-2.19) is in predicting

future cholera epidemics, we compare the model output to some case studies found

in literature. We choose to compare the age-structured model, solved by the first

order upwind scheme, as presented in Chapter 3, with two case studies related to

a recent cholera outbreak in Zimbabwe, Africa. Due to the limited data, we can

only curve fit 4 parameter values, and using these parameter values, the simulation

gives results for the total infection cases, and the percentage of the number of disease-

related deaths that are relatively accurate. With this age-structured model, we further

study the effect of cholera on children versus adults. The World Health Organization

(WHO) estimates that over half of all cholera related deaths are children. Using the

demographic information in Zimbabwe, our simulation result supports this.

6.1 The Zimbabwe Cholera Case Studies

Zimbabwe is a large landlocked country located in southern Africa. It is divided

into eight provinces, and two major cities, spread out over an area of 400,000 square

miles. The provinces are subdivided into 59 districts which are then divided further

into 1,200 municipalities. The total population of the country is 12.5 million, with

40 percent living in urban centers.

In August 2008, a severe cholera outbreak occurred in Zimbabwe. The disease

spread so quickly that it overwhelmed the Zimbabwean health department and the

63



WHO. Many people, especially those in remote areas, received no treatment, resulting

in a high overall mortality rate. By the time the outbreak was over in August 2009,

there were a total of 98,585 reported infection cases (and 4,287 resulting deaths),

representing approximately 1 percent of the population.

The epidemic spread throughout the country in a nonuniform fashion. In some

provinces it experienced explosive growth, while in others it was mild. Outbreaks did

not occur simultaneously either, but the composite peak for the country occurred in

January, 2009. Figure 6.1 shows a district map of the state of the epidemic nine weeks

after the WHO first started recording data. Notice the heterogeneous nature of the

spreading epidemic.

Figure 6.1: World Health Organization Data [21]
Zimbabwe Cholera Epidemic 2008 - Week 9
Cumulative Attack Rates (Cases/100,000)

Epidemic cholera is hard to model. Although much is known about the mech-

anisms behind its spreading behavior, we still do not fully understand what makes

cholera outbreaks happen in some places and not others. Typically, during an epi-
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demic, for every person reporting symptoms, up to 250 other people can get the

infection but show little or no symptoms [12], and still contribute to the spread of

the disease. Assuming that if the entire population of Zimbabwe (12.5 million) did

get infected, a population of 98,585 symptomatic infecteds falls within the expected

range.

Many factors prevented the epidemic from spreading to the entire population

though. Zimbabwe is composed of over 1200 municipalities, each with its own sanita-

tion facilities, so not everyone was equally exposed to contaminated water and food

sources. During the epidemic, Zimbabwe health centers, and the WHO were both

actively trying to vaccinate the population. Most (∼ 60%) people live in rural areas

where the population density can be below the threshold required to produce a large

outbreak. Lastly, cholera is endemic to Zimbabwe, so some people had immunity.

There are two major assumptions with the SIR epidemic cholera model we use.

The model only describes the spread of the disease through the population capable

of showing symptoms of infection. So, for each case study, N represents, not the

size of an entire population in an area, but the size of the sub-population at risk to

symptomatic infection from Cholera. The model also assumes that everyone in the

at-risk population is equally likely to get infected.

In the Zimbabwe cholera case studies, we adjust four model parameters (N =

size of population at risk to symptomatic infection, ξ = shedding rate of vibrio, βL =

Ingestion rate non-HI Vibrio, and βH = Ingestion rate HI Vibrio ) to produce a best

fit curve over the infection data. Table 6.1 contains model parameter data specific

to the country of Zimbabwe, taken from reference [15]. All other parameters in the
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model are the default values taken from Table 3.1.

Table 6.1: Model Parameters and Values

PARAM DESCRIPTION VALUE

A Life expectancy 43.5 years old

βL Ingestion rate non-HI Vib - (95% conf interval) 0.16− 1.54

βH Ingestion rate HI Vib (95% conf interval) 0.0011− 0.0016

Since the epidemic is not uniform throughout the country, we focus our com-

parison to two of the most populous provinces: Masvingo and Midlands. From our

curve fitting, we show that Midlands had a much higher shedding rate compared to

Masvingo. Both cases are considered to be low rate shedding scenarios though.

6.1.1 Masvingo Case Study

Masvingo is a province located in the south-eastern section of Zimbabwe. It is one

of the most populous with 1.4 million people. Masvingo contains seven districts:

Masvingo city, Gutu, Chivi, Bikita, Chiredzi, Mwenezi, and Zaka. Cholera was first

reported between November 13 and 17 in Masvingo city, Chiredzi and Mwenezi. Each

district experienced its own distinct infection curve with different characteristics of

severity and timing, and all but the Zaka province eventually reported infection cases.

By the end of the outbreak a total of 11,644 infections, and 691 deaths were reported.

In this case study, we varied two major parameters (N = size of population at

risk to symptomatic infection, ξ = shedding rate of vibrio) and two minor parameters

(βL = Ingestion rate non-HI Vibrios, βH = Ingestion rate HI Vibrios) to produce a

curve to fit the infection data. Table 6.2 shows the parameter values of the best fit

model curve, and Figure 6.2 shows the model curve superimposed over the data. All
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other parameters are either listed in Table 6.1 or have default values from Table 3.1.

Simulation results show a total of 15,275 total infection cases (Figure 6.3). The

model also predicts 835 infection related deaths (Figure 6.4), which is approximately

5.4% of the total infection cases. The actual data shows 11,644 reported infections

with 691 reported deaths, which is about 5.9% of the total infection cases.

Table 6.2: Masvingo - Model Parameters and Values

PARAM DESCRIPTION VALUE

N Population at risk 16000 people

ξ shedding rate of vibrio 2200 cells/(mL ∗ day ∗ human)

βL Ingestion rate non-HI Vib 0.85

βH Ingestion rate HI Vib 0.0014

Figure 6.2: Simulation of Masvingo Zimbabwe Cholera Outbreak
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Figure 6.3: Masvingo - Cumultive Infected Population

Figure 6.4: Masvingo - Cumulative Infected Mortalities

6.1.2 Midlands Case Study

Midlands is a province located in the midsection of Zimbabwe. Like the Masvingo

province, it is also one of the most populous with 1.5 million people. Midlands con-

tains seven districts: Chirumhanzu, Gokwe, Gweru, Kwekwe, Mberengwa, Shurugwi,
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and Zvishavane. Cholera was first reported between November 11 and 19. Each

district experienced its own distinct infection curve with different characteristics of

severity and timing, with Gokwe being hit the hardest. By the end of the outbreak

a total of 7,156 infections and 331 deaths were reported.

In this case study, we varied two major parameters (N = size of population at

risk to symptomatic infection, ξ = shedding rate of vibrio) and two minor parameters

(βL = Ingestion rate non-HI Vibrios, βH = Ingestion rate HI Vibrios) to produce

a best fit curve over the infection data. Table 6.3 shows the values of the best fit

model curve, and Figure 6.5 shows that curve superimposed over the data. All other

parameters are either listed in Table 6.1 or have default values from Table 3.1. Note

that the shedding rate ξ of vibrio in Midlands is much higher compared to the one in

Masvingo.

Simulation results show a total of 10,031 total infection cases (Figure 6.6) and

548 infection related deaths (Figure 6.7), which is 5.4% of total infection cases. In

comparison, the actual data shows that there were 7,156 reported infections with 331

reported deaths, which is approximately 4.6% of total infection cases.

Table 6.3: Midlands - Model Parameters and Values

PARAM DESCRIPTION VALUE

N Population at risk 10500 people

ξ shedding rate of vibrio 18000 cells/(ml ∗ day ∗ human)

βL Ingestion rate non-HI Vib 0.43

βH Ingestion rate HI Vib 0.0013
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Figure 6.5: Simulation of Midlands Zimbabwe Cholera Outbreak

Figure 6.6: Midlands - Cumultive Infected Population
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Figure 6.7: Midlands - Cumulative Infected Mortalities

6.2 The Effects of Cholera on Children Versus Adults

Cholera attacks children more severely than it does adults [1]. Children typically

have poorer hygiene and are therefore at higher risk to contracting the disease. Once

infected, children also suffer more severe symptoms and higher death rates. Most

adults in cholera-endemic areas have some antibodies, which helps to protect them

from developing the disease, while children in these areas are commonly malnourished

so their immune systems are weak. Children are also small, and their bodies contain

less fluid, which means they are more likely to die from the disease because they

become dehydrated faster than adults. The World Health Organization estimates

that over half of all cholera related deaths are children.

Our first order model was modified to allow us to study the effects of cholera

on children and adults. A high rate of shedding scenario was tested on a population

of 10,000 people for a 24 week period. The population was distributed according to
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the following 2005 demographics in Zimbabwe: 40.1% aged 0 to 14, 56.1% aged 15 to

64, and 3.8% aged over 65 [18]. This translates to a population of 2578 children aged

1 though 10, and 5990 people aged 11 years or older (considered adults in this case).

Infected elderly people are also more severely affected than adults because they have

weaker immune systems, however, they are classified as adults in our model and will

not be analyzed separately. Refer to Appendix F for the Matlab program for this

model.

Simulation results show that although approximately the same percentage of

children and adults are infected, approximately 330 children die, while only 250 adults

die due to infection. This means about 14% of infected children die, versus 3% of

adults. Model output can be viewed in Figures 6.8 through 6.10.

Figure 6.8: Infected Population - Children Versus Adults

72



Figure 6.9: Total Infected Mortalities - Children Versus Adults

Figure 6.10: Percentage Infected Mortalities - Children Versus Adults
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APPENDIX A

Matlab Code for the First Order Accurate Age-Structured Cholera Model

1 function [] = SIR_AgeStructured ()

2 %% Project - Age Structured Cholera Model

3 % Author : John Szijjarto

4 % Date: 10/27/11

5 % Title : Implementation of Gobbert ’s Age -Structured Model

6 %

7 % delta -t = 1 week

8 %%

9

10 clear all ; % Close /Delete all figures

11 close all ; % Free system memory

12 clc ; % Clear command window

13

14 % Simulation Control Variables

15 reference_sim = false ; % i f true , run ref sim (ie. no infected pop )

16

17 xi = 1000000000; % Hi Rate of shedding of cholera vibrios from

18 %xi = 100; % Lo Rate of shedding of cholera vibrios from

19 % infected human of age a.

20

21 k = 1/50; % detla_t = 1/50 of a week

22 h = 1; % delta_a = 1 week

23 alpha = 1; % Proportionality factor (wave speed )

24 b = (1/50)*(1/52); % normal mortality rate in deaths per week

25

26

27 A = 72; % Upper bound on human age

28 BL = 0; % non -HI Vibrio Population

29 BH = 0; % HI Vibrio Population

30 kappa_L = 1000000; % cells /ml

31 kappa_H = kappa_L /700; % cells /ml

32 beta_L = 1.5/7*7; % per week

33 beta_H = 1.5/7*7; % per week

34 lambda = 0*7; % Human recruitment rate (non -newborns entering pop )

35 gamma_1 = 1/5*7; % recovery rate of untreated cholera

36 gamma_2 = 1/3*7; % recovery rate of treated cholera

37 u = 0*7; % antiboitic treatmnt rate for humans of age a at time t

38 H2O = 0.9; % hydration therapy related mortality . (h(a,t) in model)

39 % This is a percentage vale.

40 delta_L = 1/30*7; % Death rate of vibrio in the environment .

41

42 eta = 0.1; % Relative amount of stool per unit time - no units

43

44 chi = 1/5*24*7; % Rate of vibrio moving from HI to non -HI state.

45

46 % Declare the S, I, R Arrays and zero out all values .

47 %

48 m = 3744; % cols -> total age = 72 * 52 = 3744 weeks

49 n = 24/k; % rows -> total simulation time = 24 weeks

50 S = zeros (m,n); % Suseptable population

51 I = zeros (m,n); % Infected population

52 R = zeros (m,n); % Recovered population

53

54

55 %% Boundary Conditions

56 % Note: Boundary conditions fo r R array are created

57 % within the main simulation loop.

58 %
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59 for t = 0:(n-1)

60 % Susceptable and Infected Population

61 S(0+1,t+1) = 0.0;

62 I(0+1,t+1) = 0.0;

63 end

64

65

66 %% Initial Conditions

67 %

68 % Initial Conditions fo r R and S

69 one_year_old = 52; % Age in weeks

70 for a=(m-1): -1:0

71 % Susceptable and Recovered Population

72 if (a<= one_year_old) % if age < 1 yr old then immune (ie. in R group )

73 R(a+1 ,0+1) = 2.67;

74 S(a+1 ,0+1) = 0;

75 else

76 R(a+1 ,0+1) = 0;

77 S(a+1 ,0+1) = 2.67; % 2.67 *52 wks *72 yrs = 10000 people

78 end

79 end

80

81 % Initial Conditions for I

82 %

83 eighteen_years_old = 936; % Age in weeks

84 nineteen_years_old = 988; % Age in weeks

85 if (reference_sim == false) % reference sim contains no infected people

86 % Include one 18 year old infected human

87 for a=(m -1): -1:0

88 if (a>= eighteen_years_old) && (a<= nineteen_years_old)

89 I(a+1 ,0+1) = 1/52;

90 else

91 I(a+1 ,0+1) = 0;

92 end

93 end

94 end

95

96 total_BH = zeros(n ,1);

97 total_BL = zeros(n ,1);

98

99

100 %% Run the Simulation

101 %

102 % Generate All Other Interior Grid Points

103 for t = 0:(n-1)

104

105 % Suseptable Population - Generate one row

106 for a=1:(m-1)

107 S(a+1,t+1+1) = ...

108 (1-k*alpha/h)* S(a+1,t+1) ...

109 + k*alpha/h* S(a-1+1,t+1) ...

110 + k*lambda ... % recruitment

111 - k*beta_L *BL/( kappa_L +BL)*S(a+1,t+1)... % BL infected humans

112 - k*beta_H *BH/( kappa_H +BH)*S(a+1,t+1)... % BH infected humans

113 - k*b * S(a+1,t+1) ... % natural mortalities

114 + k*omega(a+1)*7 * R(a+1,t+1); % pop losing immunity

115 end

116

117 % Infected Population - Generate one row

118 for a=1:(m-1)

119 I(a+1,t+1+1) = ...

120 (1-k*alpha/h)* I(a+1,t+1) ...

121 + k*alpha/h* I(a-1+1,t+1) ...

122 + k*beta_L *BL/( kappa_L +BL)*S(a+1,t+1)... % BL infected humans

123 + k*beta_H *BH/( kappa_H +BH)*S(a+1,t+1)... % BH infected humans

124 - k*b * I(a+1,t+1) ... % natural mortalities

125 - k*(1- H2O )*delta (a)*7*I(a+1,t+1) ... % infected mortalities

126 - k*gamma_1 *(1-u)*I(a+1,t+1) ... % pop recovering w/o antibiotics
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127 - k*gamma_2 *u*I(a+1,t+1); % pop recovering w antibiotics

128 end

129

130 % Include new born babies into the recovered population this week

131 fecundity = 0;

132 for age =779:1:2339

133 fecundity = fecundity ...

134 + (S(age +1,t+1) + I(age +1,t+1) + R(age +1,t+1))...

135 * (1/5) * (sin ((age -780)/1560*3.14159))^2;

136 end

137 R(0+1,t+1)= fecundity /52; %Divided by 52 weeks /year

138

139

140 % Recovered Population - Generate one row

141 for a=1:(m-1)

142 R(a+1,t+1+1) = ...

143 (1-k*alpha/h)* R(a+1,t+1) ...

144 + k*alpha /h * R(a-1+1,t+1) ...

145 + k*gamma_1 *(1-u)*I(a+1,t+1) ... % pop recovering w/o antibiotics

146 + k*gamma_2 *u*I(a+1,t+1) ... % pop recovering with antibiotics

147 - k*b * R(a+1,t+1) ... % natural mortalities

148 - k*omega (a+1)*7 * R(a+1,t+1); % recovered - loosing immunity

149 end

150

151 % Calculate current hyperinfective (BH) and non - hyperinfective (BL)

152 % cholera bacteria populations

153 dBH = get_dBH (I,t,BH ,xi ,chi ,eta ,A,k);

154 dBL = get_dBL (chi ,BH ,delta_L ,BL ,k);

155 BH = BH + dBH;

156 BL = BL + dBL;

157 total_BH (t+1) = BH;

158 total_BL (t+1) = BL;

159

160 fprintf (’%f %f\n’,BH ,BL);

161

162 end

163

164 % Print Population Totals

165 total_sus_population = zeros(n ,1); % column vector of length n

166 total_inf_population = zeros(n ,1); % column vector of length n

167 total_rec_population = zeros(n ,1); % column vector of length n

168 total_population = zeros (n ,1); % column vector of length n

169

170 fprintf (’\nSUSEPTABLE INFECTED RECOVERED TOTAL -POPULATION \n\n’);

171

172 for t = 0:1:(n-1)

173 for a=0:(m-1)

174 total_sus_population (t+1) = total_sus_population (t+1) ...

175 + S(a+1,t+1);

176 total_inf_population (t+1) = total_inf_population (t+1) ...

177 + I(a+1,t+1);

178 total_rec_population (t+1) = total_rec_population (t+1) ...

179 + R(a+1,t+1);

180 total_population(t+1) = total_sus_population (t+1) ...

181 + total_inf_population(t+1)...

182 + total_rec_population(t+1);

183 end

184 fprintf (’%f %f %f %f\n’ ,...

185 total_sus_population (t+1) ,...

186 total_inf_population (t+1) ,...

187 total_rec_population (t+1), ...

188 total_sus_population (t+1) + total_rec_population (t+1));

189 end

190

191 % Produce 2D Plots

192 %

193

194 x=1:1: n;
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195

196 figure ;

197 plot(x,total_sus_population (x));

198 title(’Suseptable Population ’);

199 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

200 ylabel (’Population ’);

201 grid;

202

203 figure ;

204 plot(x,total_inf_population (x));

205 axis ([0 1200 0 10000]);

206 title(’Infected Population ’);

207 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

208 ylabel (’Population ’);

209 grid;

210

211 figure ;

212 plot(x,total_rec_population (x));

213 axis ([0 1200 0 10000]);

214 title(’Recovered Population ’);

215 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

216 ylabel (’Population ’);

217 grid;

218

219 figure ;

220 plot(x,total_population(x));

221 title(’Total Population ’);

222 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

223 ylabel (’Population ’);

224 grid;

225

226 figure ;

227 plot(x,total_BH (x));

228 title(’BH Vibrio Population ’);

229 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

230 ylabel (’Population ’);

231 grid;

232

233 figure ;

234 plot(x,total_BL (x));

235 title(’BL Vibrio Population ’);

236 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

237 ylabel (’Population ’);

238 grid;
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APPENDIX B

Matlab - 2nd Order Accurate Age-Structured Cholera Model - Jacobian Matrix

1 function [] = SIR_AgeStructured_2nd_order_Matrix_v10 ()

2 %% Project - Age Structured Cholera Model

3 % Author : John Szijjarto

4 % Date: 10/27/12

5 % Title : 2nd Order Accurate Epidemic Cholera Model - Matrix Method

6 %

7 %

8 % Running the Program :

9 % Reference Simulation - Variable Settings

10 % reference_sim = true;

11 % Hi Rate Shedding Simulation - Variable Settings

12 % reference_sim = false;

13 % xi = 1000000000;

14 % Low Rate Shedding Simulation - Variable Settings

15 % reference_sim = false;

16 % xi = 100;

17 %

18

19 %% %%%%%% Matlab Environment Commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 %

21 clear all ; % Close /Delete all figures

22 close all ; % Free system memory

23 clc ; % Clear command window

24

25 outfile_1 = fopen(’output .txt ’,’w’);

26

27

28 %% %%%%%% Simulation Control Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 %

30

31 reference_sim = false ; % if true , run ref sim (ie. no infected pop )

32

33 %xi = 1000000000; % Hi Rate of shedding of cholera vibrios from

34 xi = 100; % Lo Rate of shedding of cholera vibrios from

35 % infected human of age a.

36

37 %% %%%%%% Model Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 %

39 k = 1/50; % detla_t = 1/50 of a week

40 h = 1; % delta_a = 1 week

41 alpha = 1; % Proportionality factor (wave speed )

42 b = (1/50)*(1/52); % normal mortality rate in deaths per week

43

44 % Declare the S, I, R Arrays and zero out all values .

45 %

46 % need to double the age parameter to handle RHS boundary

47 m = 3744*2; % cols -> total age = 72 * 52 = 3744 weeks * 2

48 n = 24/k; % rows -> total time = 24 weeks

49

50 S = zeros (m,n); % Suseptable population

51 I = zeros (m,n); % Infected population

52 R = zeros (m,n); % Recovered population

53

54 BH = zeros(n ,1); % Concentration of HI vibrio at time t

55 BL = zeros(n ,1); % Concentration of non -HI vibrio at time t

56

57 A = 72; % Upper bound on human age

58
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59 kappa_L = 1000000; % Saturation Constant of non -Hi vibrios at age a

60 kappa_H = kappa_L /700; % Saturation Constant of Hi vibrios at age a

61 beta_L = 1.5/7*7; % Ingestion rate of non -Hi vibrios at age a

62 beta_H = 1.5/7*7; % Ingestion rate of Hi vibrios at age a

63 lambda = 0*7; % Human recruitment rate (non -newborns entering pop )

64 gamma_1 = 1/5*7; % recovery rate of untreated cholera

65 gamma_2 = 1/3*7; % recovery rate of treated cholera

66 u = 0*7; % antiboitic treatment rate - humans age a at time t

67 H2O = 0.9; % hydration therapy related mortality .(h(a,t) in eq)

68 % This is a percentage value.

69 delta_L = 1/30*7; % Death rate of vibrio in the environment .

70

71 eta = 0.1; % Relative amount of stool per unit time - no units

72

73 chi = 1/5*24*7; % Rate of vibrio moving from HI to non -HI state .

74

75

76 %% %%%%% Initial Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77 %

78 eighteen_years_old = 936; % Age in weeks

79 nineteen_years_old = 988; % Age in weeks

80

81 % Initial Conditions for I (Infected )

82 %

83 if (reference_sim == false) % reference sim contains no infected people

84 % Include one 18 year old infected human

85 for a=(m -1): -1:0

86 if (a>= eighteen_years_old) && (a< nineteen_years_old)

87 I(a+1 ,0+1) = 1/52.0;

88 else

89 I(a+1 ,0+1) = 0.0;

90 end

91 end

92 end

93

94 % Initial Conditions for R (Recovered ) and S (Susceptible )

95 one_year_old = 52; % Age in weeks

96 for a=(m-1): -1:0

97 % Susceptable and Recovered Population

98 % 2.67094017 * 52wks * 72yrs = 10000 people

99 %

100 if (a<= one_year_old) % if age <1 year -old then immune (ie. in R group )

101 R(a+1 ,0+1) = 2.67094017;

102 S(a+1 ,0+1) = 0.0;

103 else

104 R(a+1 ,0+1) = 0.0;

105 S(a+1 ,0+1) = 2.67094017;

106 if ( reference_sim == false) % Hi or Low rate shedding scenario

107 if (a>= eighteen_years_old) && (a<nineteen_years_old)

108 S(a+1 ,0+1) = 2.67094017 - 1/52.0; %minus 1 infected person

109 end

110 end

111 end

112 end

113

114

115

116

117 %% %%%%% Boundary Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118 % Note: Boundary conditions for R (Recovered ) array are created

119 % within the main simulation loop.

120 %

121 for t = 0:(n-1)

122 % Susceptable and Infected Population

123 S(0+1,t+1) = 0.0;

124 I(0+1,t+1) = 0.0;

125 end

126
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127

128 %% %%%%% Run the Simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

129 %

130 % Generate All Other Interior Grid Points

131 %

132 for t = 0:(n-1)

133

134 % Calculate current hyperinfective (BH) and non - hyperinfective (BL)

135 % cholera bacteria populations

136 dBH = get_dBH (I,t,BH ,xi ,chi ,eta ,A,k,h);

137 BH(t+1+1) = BH(t+1) + dBH;

138 dBL = get_dBL (chi ,BH ,delta_L ,BL ,t,k,h);

139 BL(t+1+1) = BL(t+1) + dBL;

140

141 % Include new born babies into the recovered population this week

142 fecundity = 0;

143 for age =779:1:2339

144 fecundity = fecundity ...

145 + (S(age +1,t+1) + I(age +1,t+1) + R(age +1,t+1))...

146 * (1/5) * (sin ((age -780)/1560*3.14159))^2;

147 end

148 R(0+1,t+1)= fecundity /52; %Divided by 52 weeks /year (~8 born per week)

149

150 % Main Loop

151 vibrio = (beta_L *BL(t+1+1)/( kappa_L +BL(t+1+1)) ...

152 + beta_H *BH(t+1+1)/( kappa_H +BH(t+1+1)));

153 recovery = gamma_1 *(1-u)+ gamma_2 *u;

154 for a=1:m-2

155

156 c1 = 1/k + 1/2*( vibrio + b);

157 c2 = -1/2* omega(a+1);

158 c3 = 1/k + 1/2*( b + (1- H2O )* delta (a+1) + recovery );

159 c4 = -1/2* vibrio ;

160 c5 = 1/k + 1/2*( b + omega (a+1));

161 c6 = -1/2* recovery ;

162

163 d1 = 1/k*S(a+1,t+1) + 1/2* lambda ...

164 - (alpha /(2*h))*(S(a+1+1, t+1) - S(a-1+1, t+1))...

165 + (alpha ^2*k/(2*h^2))*( S(a+1+1, t+1)...

166 -2*S(a+1,t+1)+ S(a-1+1,t+1))...

167 + 1/2* lambda ...

168 - 1/2*( vibrio + b)* S(a+1,t+1)...

169 + 1/2* omega (a+1)* R(a+1,t+1)...

170 - (k*alpha /(4*h))* lambda ...

171 + (k*alpha /(4*h))*( vibrio + b) * S(a+1+1,t+1)...

172 - (k*alpha /(4*h))* omega(a+1+1)* R(a+1+1,t+1)...

173 + (k*alpha /(4*h))* lambda ...

174 - (k*alpha /(4*h))*( vibrio + b)* S(a-1+1, t+1)...

175 + (k*alpha /(4*h))* omega(a -1+1)* R(a-1+1,t+1);

176

177 d2 = 1/k*I(a+1,t+1)...

178 - (alpha /(2*h))*(I(a+1+1, t+1)-I(a-1+1,t+1))...

179 + (k*alpha ^2/(2* h^2))*( I(a+1+1, t+1) - 2*I(a+1,t+1) ...

180 + I(a-1+1,t+1))...

181 + 1/2* vibrio *S(a+1,t+1)...

182 - 1/2*(b+(1- H2O )* delta (a+1) + recovery )*I(a+1,t+1)...

183 - (alpha *k/(4*h))* vibrio *S(a+1+1,t+1)...

184 + (alpha *k/(4*h))*(b + (1- H2O )* delta(a+1+1) ...

185 + recovery )*I(a+1+1,t+1)...

186 + (alpha *k/(4*h))* vibrio *S(a-1+1, t+1)...

187 - (alpha *k/(4*h))* (b + (1- H2O )* delta (a -1+1) ...

188 + recovery )*I(a-1+1,t+1);

189

190 d3 = 1/k*R(a+1,t+1)...

191 - (alpha /(2*h))*(R(a+1+1, t+1)-R(a-1+1,t+1))...

192 + (k*alpha ^2/(2* h^2))*( R(a+1+1, t+1)...

193 -2*R(a+1,t+1)+R(a-1+1,t+1))...

194 + 1/2* recovery *I(a+1,t+1)...
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195 - 1/2*(b+ omega(a+1))* R(a+1,t+1)...

196 - (alpha *k/(4*h))* recovery *I(a+1+1,t+1)...

197 + (alpha *k/(4*h))* (b+ omega (a+1+1))* R(a+1+1,t+1)...

198 + (alpha *k/(4*h))* recovery * I(a-1+1,t+1)...

199 - (alpha *k/(4*h))* (b + omega(a -1+1))* R(a-1+1,t+1);

200

201 A = [c1 0 c2;

202 c4 c3 0;

203 0 c6 c5];

204

205 B = [d1;

206 d2;

207 d3];

208

209 X = A\B;

210

211 %x=[S(i,j+1); I(i,j+1); R(i,j+1)]

212 S(a+1,t+1+1) = X(1);

213 I(a+1,t+1+1) = X(2);

214 R(a+1,t+1+1) = X(3);

215

216 end ;

217

218 % total_I_mortalities(t+1+1) = total_I_mortalities(t+1) + I_mortalities;

219 if (mod(t ,100) == 0)

220 fprintf (’t = %d\n’, t); % This is just a program status output

221 end

222 end ;

223

224

225

226 %% %%%%% Output Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

227 %

228

229 % %%%%% Print Population Totals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

230 total_sus_population = zeros(n ,1); % column vector of length n

231 total_inf_population = zeros(n ,1); % column vector of length n

232 total_rec_population = zeros(n ,1); % column vector of length n

233 total_population = zeros (n ,1); % column vector of length n

234

235 fprintf (outfile_1 ,...

236 ’\nSUSEPTABLE INFECTED RECOVERED TOTAL -POPULATION BIRTHS \r\n\r\n’);

237

238 for t=0:(n -1)

239 for a=0:(m/2-1)

240 total_sus_population (t+1) = total_sus_population (t+1) ...

241 + S(a+1,t+1);

242 total_inf_population (t+1) = total_inf_population (t+1) ...

243 + I(a+1,t+1);

244 total_rec_population (t+1) = total_rec_population (t+1) ...

245 + R(a+1,t+1);

246 end

247 total_population(t+1) = total_sus_population (t+1) ...

248 + total_inf_population(t+1)...

249 + total_rec_population(t+1);

250

251 fprintf (outfile_1 ,’%f %f %f %f %f\r\n’ ,...

252 total_sus_population (t+1) ,...

253 total_inf_population (t+1) ,...

254 total_rec_population (t+1), ...

255 total_population(t+1) ,...

256 R(0+1,t+1)); % Print Births for each week

257 end

258 fclose (outfile_1 );

259

260

261 % Produce 2D Plots

262 %
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263

264 x=1:1:n -1;

265

266 figure ;

267 plot(x,total_sus_population (x),’b’,x,total_inf_population (x),’r’ ,...

268 x, total_rec_population(x),’g’);

269 title(’Lo Rate Shedding - Human Populations ’);

270 xlabel (’Time: 3.36 hrs /step’);

271 ylabel (’Population ’);

272 legend (’Susceptible ’, ’Infected ’, ’Recovered ’);

273 grid;

274

275 figure ;

276 plot(x,BH(x),’b’,x,BL(x),’r’);

277 title(’Lo Rate Shedding - Vibrio Populations ’);

278 xlabel (’Time: 3.36 hrs /step’);

279 ylabel (’Vibrio Population ’);

280 legend (’BH Vibrio ’, ’BL Vibrio ’);

281 grid;

282

283 figure ;

284 plot(x,total_sus_population (x));

285 title(’Susceptible Population ’);

286 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

287 ylabel (’Population ’);

288 grid;

289

290 figure ;

291 plot(x,total_inf_population (x));

292 title(’Infected Population ’);

293 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

294 ylabel (’Population ’);

295 grid;

296

297 figure ;

298 plot(x,total_rec_population (x));

299 title(’Recovered Population ’);

300 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

301 ylabel (’Population ’);

302 grid;

303

304 figure ;

305 plot(x,total_population(x));

306 title(’Total Population ’);

307 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

308 ylabel (’Population ’);

309 grid;

310

311 figure ;

312 plot(x,BH(x));

313 title(’BH Vibrio Population ’);

314 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

315 ylabel (’Population ’);

316 grid;

317

318 figure ;

319 plot(x,BL(x));

320 title(’BL Vibrio Population ’);

321 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

322 ylabel (’Population ’);

323 grid;

324

325 end % Main Program

326

327 %% %%%%%% Sub Functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

328 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

329 %

330 function db_h = get_dBH (I_,t_,BH_ ,xi_ ,chi_ ,eta_ ,A_ ,k_ ,h_)
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331 % Return change in HI vibrio population

332 sum = 0;

333 for age = 0:( A_*52 -2) % age is in weeks

334 sum = sum + I_(age +1+1, t_ +1) + I_(age +1,t_ +1);

335 end ;

336 sum = xi_*eta_*h_ *(1/2)* sum;

337 dt = k_;

338 db_h = dt*h_*(sum - chi_*BH_(t_ +1));

339 end

340

341 function db_l = get_dBL (chi_ ,BH_ ,delta_L_ ,BL_ ,t_ ,k_ ,h_)

342 % Return change in non -HI vibrio population

343 % second order accuracy midpoint scheme used here.

344 k1 = chi_*BH_(t_+1) - delta_L_ *BL_ (t_ +1);

345 k2 = chi_* (BH_(t_+1)+ BH_(t_ +1+1))/2 - delta_L_ * (BL_(t_ +1)+1/2* k1*k_);

346 db_l = k2 * k_;

347 end

348

349 function w = omega(a_)

350 % Return age specific rate of waning immunity

351 ten_years_old = 520; % Age in weeks

352 if a_ <= ten_years_old

353 w = (1/365); % days

354 else

355 w = 1/(2*365); % days

356 end ;

357 w = w * 7; % convert to weeks

358 end

359

360 function d = delta (a_)

361 % Return age specific disease related mortality rate

362 ten_years_old = 520; % Age in weeks

363 if (a_ <= ten_years_old)

364 d = 0.032;

365 else

366 d = 0.007;

367 end ;

368 d = d * 7; % convert to weeks

369 end
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APPENDIX C

Derivation of Explicit Equations for Second Order Accurate Age-Structured Model

The purpose of this section is to take the second order age-structured partial differen-

tial equations and convert them into their Lax Wendroff finite difference form. These

equations are in an explicit form. The Matlab code in Appendix D refers to these

equations.

The Gobbert model [9] PDE equations (ignoring the ODE’s for now) are:

∂S

∂t
+ α

∂S

∂a
= Λ(a, t) + ω(a)R(a, t)− βL(a)

BL(t)

KL(a) +BL(t)
S(a, t)

−βH(a)
BH(t)

KH(a) +BH(t)
S(a, t)− b(a)S(a, t),

(C.1)

∂I

∂t
+ α

∂I

∂a
= βL(a)

BL(t)

KL(a) +BL(t)
S(a, t) + βH(a)

BH(t)

KH(a) +BH(t)
S(a, t)

−b(a)I(a, t)− (1− h(a, t))∆(a)I(a, t)

−γ1(1− u(a, t))I(a, t)− γ2u(a, t)I(a, t),

(C.2)

∂R

∂t
+ α

∂R

∂a
= γ1(1− u(a, t))I(a, t) + γ2u(a, t)I(a, t)− b(a)R(a, t)

−ω(a)R(a, t),

(C.3)

To simplify these equations, we define the following functions:

D(a, t) = βL(a)
BL(t)

KL(a) +BL(t)
+ βH(a)

BH(t)

KH(a) +BH(t)
(C.4)

E(a, t) = b(a) + (1− h(a, t))∆(a) + γ1(1− u(a, t)) + γ2u(a, t) (C.5)
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F (a, t) = γ1(1− u(a, t)) + γ2u(a, t) (C.6)

G(a, t) = b(a) + ω(a) (C.7)

Equations C.1 through C.3 then simplify to:

∂S

∂t
+ α

∂S

∂a
= Λ(a, t) + ω(a)R(a, t)− (D(a, t) + b(a))S(a, t) (C.8)

∂I

∂t
+ α

∂I

∂a
= D(a, t)S(a, t)− E(a, t)I(a, t), (C.9)

∂R

∂t
+ α

∂R

∂a
= F (a, t)I(a, t)−G(a, t)R(a, t), (C.10)

Using the Lax-Wendroff Scheme (Strikwerda [17], eq 3.1.1), the corresponding

second order finite difference equations are presented below.

C.1 Infected Population

Converting equation C.9 into its Lax-Wendroff form, we get

Ii,j+1 = Ii,j −
αk

2h
(Ii+1,j − Ii−1,j) +

α2k2

2h2
(Ii+1,j − 2Ii,j + Ii−1,j)

+
k

2
{Di,j+1Si,j+1 −Ei,j+1Ii,j+1}

+
k

2
{Di,jSi,j − Ei,jIi,j}

−
αk2

4h
{Di+1,jSi+1,j − Ei+1,jIi+1,j}

+
αk2

4h
{Di−1,jSi−1,j −Ei−1,jIi−1,j}
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Solving for Ii,j+1 we get

Ii,j+1 =
2

2 + kEi,j+1

[

Ii,j −
αk

2h
(Ii+1,j + Ii−1,j) +

α2k2

2h2
(Ii+1,j − 2Ii,j + Ii−1,j)

]

+
k

2 + kEi,j+1
[Di,j+1Si,j+1 +Di,jSi,j − Ei,jIi,j]

−
αk2

h(4 + 2kEi,j+1)
[Di+1,jSi+1,j − Ei+1,jIi+1,j −Di−1,jSi−1,j + Ei−1,jIi−1,j]

(C.11)

Define the following functions:

V =
2

2 + kEi,j+1

[

Ii,j −
αk

2h
(Ii+1,j + Ii−1,j) +

α2k2

2h2
(Ii+1,j − 2Ii,j + Ii−1,j)

]

X =
αk2

h(4 + 2kEi,j+1)
[Di+1,jSi+1,j −Ei+1,jIi+1,j −Di−1,jSi−1,j + Ei−1,jIi−1,j ]

so that Equation C.11 simplifies to

Ii,j+1 = V −X +
k

2 + kEi,j+1

[Di,j+1Si,j+1 +Di,jSi,j − Ei,jIi,j ] (C.12)

C.2 Recovered Population

Converting equation C.10 into its Lax-Wendroff form, we get

Ri,j+1 = Ri,j −
αk

2h
(Ri+1,j −Ri−1,j) +

α2k2

2h2
(Ri+1,j − 2Ri,j +Ri−1,j)

+
k

2
{Fi,j+1Ii,j+1 −GiRi,j+1 + Fi,jIi,j −GiRi,j}

−
αk2

4h
{Fi+1,jIi+1,j −Gi+1Ri+1,j − Fi−1,jIi−1,j +Gi−1Ri−1,j}
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Solving for Ri,j+1 we get

Ri,j+1 =
2

2 + kGi

[

Ri,j −
αk

2h
(Ri+1,j − Ri−1,j) +

α2k2

2h2
(Ri+1,j − 2Ri,j +Ri−1,j)

]

+
k

2 + kGi

[Fi,j+1Ii,j+1 + Fi,jIi,j −GiRi,j]

−
αk2

h(4 + 2kGi)
[Fi+1,jIi+1,j −Gi+1Ri+1,j − Fi−1,jIi−1,j +Gi−1Ri−1,j ]

(C.13)

Define the following functions:

Y =
2

2 + kGi

[

Ri,j −
αk

2h
(Ri+1,j −Ri−1,j) +

α2k2

2h2
(Ri+1,j − 2Ri,j +Ri−1,j)

]

Z =
αk2

h(4 + 2kGi)
[Fi+1,jIi+1,j −Gi+1Ri+1,j − Fi−1,jIi−1,j +Gi−1Ri−1,j ]

so that Equation C.13 simplifies to

Ri,j+1 = Y − Z +
k

2 + kGi

[Fi,j+1Ii,j+1 + Fi,jIi,j −GiRi,j ] (C.14)

In Euqattion C.14, Ri,j+1 is a function of Ii,j+1. Plugging Equation C.12 into

Equation C.14, we now have Ri,j+1 as a function of Si,j+1

Ri,j+1 =
k2Fi,j+1Di,j+1

(2 + kGi)(2 + kEi,j+1)
Si,j+1 + Y − Z +

k

2 + kGi

[Fi,jIi,j −GiRi,j ]

+
k

2 + kGi

Fi,j+1

[

V −X +
k

2 + kEi,j+1
(Di,jSi,j − Ei,jIi,j)

]

(C.15)
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C.3 Susceptible Population

Converting equation C.8 into its Lax-Wendroff form, we get

Si,j+1 = Si,j −
αk

2h
(Si+1,j − Si−1,j) +

α2k2

2h2
(Si+1,j − 2Si,j + Si−1,j)

+
k

2
{Λi,j+1 + ωiRi,j+1 − (Di,j+1 + bi)Si,j+1}

+
k

2
{Λi,j + ωiRi,j − (Di,j + bi)Si,j}

−
αk2

4h
{Λi+1,j + ωi+1Ri+1,j − (Di+1,j + bi+1)Si+1,j}

−
αk2

4k
{−Λi−1,j − ωi−1Ri−1,j + (Di−1,j + bi−1)Si−1,j}

(C.16)

In Euqattion C.16, Si,j+1 is a function of Ri,j+1. Plugging Equation C.15 into

Equation C.16, we now have Si,j+1 as a function of Si,j+1.

Si,j+1 =
kωi

2

(

k2Fi,j+1Di,j+1

(2 + kGi)(2 + kEi,j+1)

)

Si,j+1

+
kωi

2

(

Y − Z +
k

2 + kGi

[Fi,jIi,j −GiRi,j ]

)

+
kωi

2

(

k

2 + kGi

Fi,j+1

[

V −X +
k

2 + kEi,j+1

(Di,jSi,j −Ei,jIi,j)

])

+
k

2
(Λi,j+1 − (Di,j+1 + bi)Si,j+1 + Λi,j + ωiRi,j − (Di,j + bi)Si,j)

−
αk2

4h
(Λi+1,j + ωi+1Ri+1,j − (Di+1,j + bi+1)Si+1,j)

−
αk2

4h
(−Λi−1,j − ωi−1Ri−1,j + (Di−1,j + bi−1)Si−1,j)

+ Si,j −
αk

2h
(Si+1,j − Si−1,j) +

α2k2

2h2
(Si+1,j − 2Si,j + Si−1,j)

(C.17)

Solving for Si,j+1 in Equation C.17 we get
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Si,j+1 =
1

1− kωi

2

k2Fi,j+1Di,j+1

(2+kGi)(2+kEi,j+1)
+ k

2
(Di,j+1 + bi)

∗ [

kωi

2

(

Y − Z +
k

2 + kGi

[Fi,jIi,j −GiRi,j]

)

+
kωi

2

(

k

2 + kGi

Fi,j+1

[

V −X +
k

2 + kEi,j+1
(Di,jSi,j −Ei,jIi,j)

])

+
k

2
(Λi,j+1 + Λi,j + ωiRi,j − (Di,j + bi)Si,j)

−
αk2

4h
(Λi+1,j + ωi+1Ri+1,j − (Di+1,j + bi)Si+1,j)

−
αk2

4h
(−Λi−1,j − ωi−1Ri−1,j + (Di−1,j + bi−1)Si−1,j)

+ Si,j −
αk

2h
(Si+1,j − Si−1,j) +

α2k2

2h2
(Si+1,j − 2Si,j + Si−1,j)

]

(C.18)

C.4 The Second Order Accurate Model Algorithms

To summarize, below are the three algorithms (and their sub-functions) that represent

the susceptible, infected, and recovered populations.
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Susceptible Population

Si,j+1 =
1

1− kωi

2

k2Fi,j+1Di,j+1

(2+kGi)(2+kEi,j+1)
+ k

2
(Di,j+1 + bi)

∗ [

kωi

2

(

Y − Z +
k

2 + kGi

[Fi,jIi,j −GiRi,j]

)

+
kωi

2

(

k

2 + kGi

Fi,j+1

[

V −X +
k

2 + kEi,j+1

(Di,jSi,j −Ei,jIi,j)

])

+
k

2
(Λi,j+1 + Λi,j + ωiRi,j − (Di,j + bi)Si,j)

−
αk2

4h
(Λi+1,j + ωi+1Ri+1,j − (Di+1,j + bi)Si+1,j)

−
αk2

4h
(−Λi−1,j − ωi−1Ri−1,j + (Di−1,j + bi−1)Si−1,j)

+ Si,j −
αk

2h
(Si+1,j − Si−1,j) +

α2k2

2h2
(Si+1,j − 2Si,j + Si−1,j)

]

(C.19)

Infected Population

Ii,j+1 = V −X +
k

2 + kEi,j+1
[Di,j+1Si,j+1 +Di,jSi,j − Ei,jIi,j ] (C.20)

Recovered Population

Ri,j+1 = Y − Z +
k

2 + kGi

[Fi,j+1Ii,j+1 + Fi,jIi,j −GiRi,j ] (C.21)

With the following sub-functions:

D(a, t) = βL(a)
BL(t)

KL(a) +BL(t)
+ βH(a)

BH(t)

KH(a) +BH(t)

E(a, t) = b(a) + (1− h(a, t))∆(a) + γ1(1− u(a, t)) + γ2u(a, t)

F (a, t) = γ1(1− u(a, t)) + γ2u(a, t)
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G(a, t) = b(a) + ω(a)

V =
2

2 + kEi,j+1

[

Ii,j −
αk

2h
(Ii+1,j − Ii−1,j) +

α2k2

2h2
(Ii+1,j − 2Ii,j + Ii−1,j)

]

X =
αk2

h(4 + 2kEi,j+1)
[Di+1,jSi+1,j −Ei+1,jIi+1,j −Di−1,jSi−1,j + Ei−1,jIi−1,j ]

Y =
2

2 + kGi

[

Ri,j −
αk

2h
(Ri+1,j −Ri−1,j) +

α2k2

2h2
(Ri+1,j − 2Ri,j +Ri−1,j)

]

Z =
αk2

h(4 + 2kGi)
[Fi+1,jIi+1,j −Gi+1Ri+1,j − Fi−1,jIi−1,j +Gi−1Ri−1,j ]
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APPENDIX D

Matlab - 2nd Order Accurate Age-Structured Cholera Model - Explicit Equations

1 function [] = SIR_AgeStructured_2nd_order_explicit ()

2 %% Project - Age Structured Cholera Model

3 % Author : John Szijjarto

4 % Date: 10/27/11

5 % Title : (2,2) Order Accurate Lax -Wendroff Scheme Epidemic Cholera Model

6 % (2) Order Accurate - Midpoint Scheme for dBL /dt ODE

7 %

8 % Running the Program :

9 % Reference Simulation - Variable Settings

10 % reference_sim = true;

11 % Hi Rate Shedding Simulation - Variable Settings

12 % reference_sim = false;

13 % xi = 1000000000;

14 % Low Rate Shedding Simulation - Variable Settings

15 % reference_sim = false;

16 % xi = 100;

17 %

18

19 %% %%%%%% Matlab Environment Commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 %

21 clear all ; % Close /Delete all figures

22 close all ; % Free system memory

23 clc ; % Clear command window

24

25 outfile_1 = fopen(’output .txt ’,’w’);

26

27

28 %% %%%%%% Simulation Control Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 %

30

31 reference_sim = false ; % if true , run ref sim (ie. no infected pop )

32

33 %xi = 1000000000; % Hi Rate of shedding of cholera vibrios from

34 xi = 100; % Lo Rate of shedding of cholera vibrios from

35 % infected human of age a.

36

37 %% %%%%%% Model Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 %

39 k = 1/50; % detla_t = 1/50 of a week

40 h = 1; % delta_a = 1 week

41 alpha = 1; % Proportionality factor (wave speed )

42 b = (1/50)*(1/52); % normal mortality rate in deaths per week

43

44 % Declare the S, I, R Arrays and zero out all values .

45 %

46 % Extend the age dimension (m) out twice as far to handle RHS boundary

47 m = 3744*2; % cols -> total age = 72 * 52 = 3744 weeks

48

49 n = 24/k; % rows -> total time = 24 weeks

50

51 S = zeros (m+2,n); % Suseptable population

52 I = zeros (m+2,n); % Infected population

53 R = zeros (m+2,n); % Recovered population

54

55 BH = zeros(n ,1); % Concentration of HI vibrio at time t

56 BL = zeros(n ,1); % Concentration of non -HI vibrio at time t

57

58 A = 72; % Upper bound on human age
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59

60 kappa_L = 1000000; % Saturation Constant of non -Hi vibrios at age a

61 kappa_H = kappa_L /700; % Saturation Constant of Hi vibrios at age a

62 beta_L = 1.5/7*7; % Ingestion rate of non -Hi vibrios at age a

63 beta_H = 1.5/7*7; % Ingestion rate of Hi vibrios at age a

64 lambda = 0*7; % Human recruitment rate (non -newborns entering pop )

65 gamma_1 = 1/5*7; % recovery rate of untreated cholera

66 gamma_2 = 1/3*7; % recovery rate of treated cholera

67 u = 0*7; % antiboitic treatment rate - humans age a at time t

68 H2O = 0.9; % hydration therapy related mortality .(h(a,t) in eq)

69 % This is a percentage value.

70 delta_L = 1/30*7; % Death rate of vibrio in the environment .

71

72 eta = 0.1; % Relative amount of stool per unit time - no units

73

74 chi = 1/5*24*7; % Rate of vibrio moving from HI to non -HI state .

75

76

77 %% %%%%% Initial Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

78 %

79 eighteen_years_old = 936; % Age in weeks

80 nineteen_years_old = 988; % Age in weeks

81

82 % Initial Conditions for I (Infected )

83 %

84 if (reference_sim == false) % reference sim contains no infected people

85 % Include one 18 year old infected human

86 for a=(m -1): -1:0

87 if (a>= eighteen_years_old) && (a< nineteen_years_old)

88 I(a+1 ,0+1) = 1/52.0;

89 else

90 I(a+1 ,0+1) = 0.0;

91 end

92 end

93 end

94

95 % Initial Conditions for R (Recovered ) and S (Susceptible )

96 one_year_old = 52; % Age in weeks

97 for a=(m-1): -1:0

98 % Susceptable and Recovered Population

99 % 2.67094017 * 52wks * 72yrs = 10000 people

100 %

101 if (a<= one_year_old) % if age <1 year -old then immune (ie. in R group )

102 R(a+1 ,0+1) = 2.67094017;

103 S(a+1 ,0+1) = 0.0;

104 else

105 R(a+1 ,0+1) = 0.0;

106 S(a+1 ,0+1) = 2.67094017;

107 if ( reference_sim == false) % Hi or Low rate shedding scenario

108 if (a>= eighteen_years_old) && (a<nineteen_years_old)

109 S(a+1 ,0+1) = 2.67094017 - 1/52.0; %minus 1 infected person

110 end

111 end

112 end

113 end

114

115

116

117

118 %% %%%%% Boundary Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 % Note: Boundary conditions for R (Recovered ) array are created

120 % within the main simulation loop.

121 %

122 for t = 0:(n-1)

123 % Susceptable and Infected Population

124 S(0+1,t+1) = 0.0;

125 I(0+1,t+1) = 0.0;

126 end
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127

128

129 %% %%%%% Run the Simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

130 %

131 % Generate All Other Interior Grid Points

132 %

133 for t = 0:(n-1)

134 % Calculate current hyperinfective (BH) and non - hyperinfective (BL)

135 % cholera bacteria populations

136 dBH = get_dBH (I,t,BH ,xi ,chi ,eta ,A,k,h);

137 BH(t+1+1) = BH(t+1) + dBH;

138 dBL = get_dBL (chi ,BH ,delta_L ,BL ,t,k,h);

139 BL(t+1+1) = BL(t+1) + dBL;

140

141 % Suseptable Population - Generate one row %%%%%%%%%%%%%%%%%%%%%%%%%%%

142 for a=1:(m-1)

143 S(a+1,t+1+1) = ...

144 1/( 1 ...

145 - k/2* omega (a+1)*k^2*( gamma_1 *(1-u)+ gamma_2 *u)...

146 *( beta_L *BL(t+1+1)/( kappa_L +BL(t+1+1)) ...

147 + beta_H *BH(t+1+1)/( kappa_H +BH(t +1+1)))...

148 /((2+ k*(b + omega(a+1)))...

149 *(2+k*(b + (1- H2O )* delta(a+1) ...

150 + gamma_1 *(1-u) + gamma_2 *u)) )...

151 + k/2*(( beta_L *BL(t+1+1)/( kappa_L +BL(t+1+1)) ...

152 + beta_H *BH(t+1+1)/( kappa_H +BH(t+1+1)))+ b)...

153 )...

154 * (...

155 k/2* omega(a+1) ...

156 * (...

157 2/(2+k*(b + omega(a+1))) ...

158 * ( R(a+1,t+1) ...

159 - alpha*k/(2*h)*(R(a+1+1,t+1)...

160 -R(a+1-1,t+1)) ...

161 + (alpha*k)^2/(2* h^2)* (R(a+1+1,t+1)...

162 -2*R(a+1,t+1)+R(a+1-1,t+1))...

163 )...

164 - alpha*k^2/(h*(4+2* k*(b + omega (a+1))))...

165 * ( (gamma_1 *(1-u)+ gamma_2 *u)*I(a+1+1,t+1) ...

166 - (b + omega (a+1+1))* R(a+1+1,t+1) ...

167 -(gamma_1 *(1-u)+ gamma_2 *u)*I(a+1-1,t+1) ...

168 + (b + omega (a+1 -1))* R(a+1-1,t+1) ...

169 )...

170 + k/(2+k*(b + omega(a+1)))*(( gamma_1 *(1-u)...

171 +gamma_2 *u)*I(a+1,t+1)...

172 - (b + omega (a+1))*R(a+1,t+1))...

173 + k/(2+k*(b + omega(a+1)))...

174 *( gamma_1 *(1-u)+ gamma_2 *u)...

175 * (...

176 2/(2+k*(b + (1- H2O )* delta(a+1) ...

177 + gamma_1 *(1-u) + gamma_2 *u)) ...

178 * ( I(a+1,t+1) ...

179 - alpha *k/(2*h)*( I(a+1+1,t+1) ...

180 - I(a+1-1,t+1)) ...

181 + (alpha*k)^2/(2* h^2)...

182 *(I(a+1+1,t+1)...

183 - 2*I(a+1,t+1)...

184 + I(a+1-1,t+1)...

185 )...

186 )...

187 - alpha*k^2/(h*(4+2* k*(b + (1- H2O )...

188 *delta(a+1) + gamma_1 *(1-u)...

189 +gamma_2 *u)))...

190 * (( beta_L *BL(t+1)/( kappa_L +BL(t+1))...

191 + beta_H *BH(t+1)/( kappa_H +BH(t+1)))...

192 *S(a+1+1, t+1) ...

193 - (b + (1- H2O )* delta(a+1+1)...

194 + gamma_1 *(1-u) + gamma_2 *u)...
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195 *I(a+1+1,t+1) ...

196 - (beta_L *BL(t+1)/...

197 (kappa_L +BL(t+1))+ beta_H *BH(t+1)...

198 /( kappa_H +BH(t+1)))* S(a+1-1,t+1) ...

199 + (b + (1- H2O )* delta(a+1 -1)...

200 + gamma_1 *(1-u) + gamma_2 *u)...

201 *I(a+1-1,t+1) ...

202 )...

203 + k/(2+k*(b + (1- H2O )* delta(a+1)...

204 + gamma_1 *(1-u) + gamma_2 *u))...

205 * (( beta_L *BL(t+1)/( kappa_L +BL(t+1))...

206 + beta_H *BH(t+1)/( kappa_H +BH(t+1)))...

207 *S(a+1,t+1)...

208 -(b + (1- H2O )* delta(a+1)...

209 + gamma_1 *(1-u) + gamma_2 *u)...

210 *I(a+1,t+1))...

211 )...

212 ) ...

213 + k/2 ...

214 * ( ...

215 omega(a+1)*R(a+1,t+1) -(( beta_L *BL(t+1)...

216 /( kappa_L +BL(t+1)) + beta_H *BH(t+1)...

217 /( kappa_H +BH(t+1)))+ b)*S(a+1,t+1)...

218 )...

219 - alpha*k^2/(4* h) ...

220 * (...

221 omega(a+1+1)* R(a+1+1, t+1)...

222 - (( beta_L *BL(t+1)/( kappa_L +BL(t+1))...

223 + beta_H *BH(t+1)/( kappa_H +BH(t+1)))+ b)...

224 *S(a+1+1, t+1)...

225 - omega(a+1 -1)* R(a+1-1,t+1)...

226 + (( beta_L *BL(t+1)/( kappa_L +BL(t+1))...

227 + beta_H *BH(t+1)/( kappa_H +BH(t+1)))+ b)...

228 *S(a+1-1,t+1)...

229 )...

230 + S(a+1,t+1)...

231 - alpha*k/(2*h)* (S(a+1+1,t+1)-S(a+1-1,t+1))...

232 + alpha ^2*k^2/(2* h^2) * (S(a+1+1,t+1) -2* S(a+1,t+1)...

233 +S(a+1-1,t+1))...

234 );

235 end ; % Suseptable population loop %%%%%%%%%%%%%%%%%%%%%%%%%%%

236

237 % Infected Population - Generate one row

238 for a=1:(m-1)

239 I(a+1,t+1+1) = ...

240 2/(2+k*(b + (1- H2O )* delta(a+1) + gamma_1 *(1-u)+ gamma_2 *u)) ...

241 * ( I(a+1,t+1) ...

242 - alpha *k/(2*h)*( I(a+1+1,t+1) - I(a+1-1,t+1)) ...

243 + (alpha*k)^2/(2* h^2)*(I(a+1+1,t+1)...

244 - 2*I(a+1,t+1) + I(a+1-1,t+1)...

245 )...

246 )...

247 + k/(2+k*(b +(1- H2O )*delta (a+1) + gamma_1 *(1-u) + gamma_2 *u)) ...

248 * ( (beta_L *BL(t+1+1)/( kappa_L +BL(t+1+1))...

249 + beta_H *BH(t+1+1)/( kappa_H +BH(t+1+1)))* S(a+1,t+1+1) ...

250 + (beta_L *BL(t+1)/( kappa_L +BL(t+1)) + beta_H *BH(t+1)...

251 /( kappa_H +BH(t+1)))* S(a+1,t+1) ...

252 - (b + (1- H2O )* delta(a+1) + gamma_1 *(1-u)...

253 + gamma_2 *u)*I(a+1,t+1) ...

254 )...

255 - alpha*k^2/(h*(4+2* k*(b + (1- H2O )* delta (a+1) + gamma_1 *(1-u)...

256 + gamma_2 *u)))...

257 * ( (beta_L *BL(t+1)/( kappa_L +BL(t+1)) + beta_H *BH(t+1)...

258 /( kappa_H +BH(t+1)))* S(a+1+1,t+1) ...

259 - (b + (1- H2O )* delta(a+1+1) + gamma_1 *(1-u)...

260 + gamma_2 *u)*I(a+1+1,t+1) ...

261 - (beta_L *BL(t+1)/( kappa_L +BL(t+1)) + beta_H *BH(t+1)...

262 /( kappa_H +BH(t+1)))* S(a+1-1,t+1) ...
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263 + (b + (1- H2O )* delta(a+1-1) + gamma_1 *(1-u)...

264 + gamma_2 *u)*I(a+1-1,t+1) ...

265 );

266 end ; % Infected population loop

267

268

269 % Recovered Population %%%%%%%%%%%%%%%%%%%%%%%%%%%

270 %

271 % Include new born babies into the recovered population this week

272 fecundity = 0;

273 for age =779:1:2339

274 fecundity = fecundity ...

275 + (S(age +1,t+1) + I(age +1,t+1) + R(age +1,t+1))...

276 * (1/5) * (sin ((age -780)/1560*3.14159))^2;

277 end

278 R(0+1,t+1)= fecundity /52; %Divided by 52 weeks /year (~8 born per week)

279

280

281 % Recovered Population - Generate one row

282 for a=1:(m-1)

283 R(a+1,t+1+1)= ...

284 2/(2+k*(b + omega(a+1))) ...

285 * ( R(a+1,t+1) ...

286 - alpha *k/(2*h)*(R(a+1+1,t+1) - R(a+1-1,t+1)) ...

287 + (alpha*k)^2/(2* h^2)* (R(a+1+1,t+1) -2* R(a+1,t+1)...

288 +R(a+1-1,t+1))...

289 )...

290 + k/(2+k*(b + omega(a+1))) ...

291 * ( (gamma_1 *(1-u)+ gamma_2 *u)*I(a+1,t+1+1) ...

292 + (gamma_1 *(1-u)+ gamma_2 *u)*I(a+1,t+1) ...

293 - (b + omega(a+1))*R(a+1,t+1) ...

294 )...

295 - alpha*k^2/(h*(4+2* k*(b + omega(a+1))))...

296 * ( (gamma_1 *(1-u)+ gamma_2 *u)*I(a+1+1,t+1) ...

297 - (b + omega (a+1+1))* R(a+1+1, t+1) ...

298 - (gamma_1 *(1-u)+ gamma_2 *u)*I(a+1-1,t+1) ...

299 + (b + omega (a+1 -1))* R(a+1-1,t+1) ...

300 );

301 end % Recovered population loop

302

303 if (mod(t ,100) == 0)

304 fprintf (’t = %d\n’, t); % This is just a program status output

305 end

306 end % Main time loop

307

308 %% %%%%% Output Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

309 %

310

311 % %%%%% Print Population Totals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

312 total_sus_population = zeros(n ,1); % column vector of length n

313 total_inf_population = zeros(n ,1); % column vector of length n

314 total_rec_population = zeros(n ,1); % column vector of length n

315 total_population = zeros (n ,1); % column vector of length n

316

317 fprintf (outfile_1 ,...

318 ’\nSUSEPTABLE INFECTED RECOVERED TOTAL -POPULATION BIRTHS \r\n\r\n’);

319

320 for t=0:(n -1)

321 for a=0:(m/2-1)

322 total_sus_population (t+1) = total_sus_population (t+1) ...

323 + S(a+1,t+1);

324 total_inf_population (t+1) = total_inf_population (t+1) ...

325 + I(a+1,t+1);

326 total_rec_population (t+1) = total_rec_population (t+1) ...

327 + R(a+1,t+1);

328 end

329 total_population(t+1) = total_sus_population (t+1) ...

330 + total_inf_population(t+1)...
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331 + total_rec_population(t+1);

332

333 fprintf (outfile_1 ,’%f %f %f %f %f\r\n’ ,...

334 total_sus_population (t+1) ,...

335 total_inf_population (t+1) ,...

336 total_rec_population (t+1), ...

337 total_population(t+1) ,...

338 R(0+1,t+1)); % Print Births for each week

339 end

340 fclose (outfile_1 );

341

342

343 % Produce 2D Plots

344 %

345

346 x=1:1:n -1;

347

348 figure ;

349 plot(x,total_sus_population (x),’b’,x,total_inf_population (x),’r’ ,...

350 x, total_rec_population(x),’g’);

351 title(’Lo Rate Shedding - Human Populations ’);

352 xlabel (’Time: 3.36 hrs /step’);

353 ylabel (’Population ’);

354 legend (’Susceptible ’, ’Infected ’, ’Recovered ’);

355 grid;

356

357 figure ;

358 plot(x,BH(x),’b’,x,BL(x),’r’);

359 title(’Lo Rate Shedding - Vibrio Populations ’);

360 xlabel (’Time: 3.36 hrs /step’);

361 ylabel (’Vibrio Population ’);

362 legend (’BH Vibrio ’, ’BL Vibrio ’);

363 grid;

364

365 figure ;

366 plot(x,total_sus_population (x));

367 title(’Susceptible Population ’);

368 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

369 ylabel (’Population ’);

370 grid;

371

372 figure ;

373 plot(x,total_inf_population (x));

374 title(’Infected Population ’);

375 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

376 ylabel (’Population ’);

377 grid;

378

379 figure ;

380 plot(x,total_rec_population (x));

381 title(’Recovered Population ’);

382 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

383 ylabel (’Population ’);

384 grid;

385

386 figure ;

387 plot(x,total_population(x));

388 title(’Total Population ’);

389 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

390 ylabel (’Population ’);

391 grid;

392

393 figure ;

394 plot(x,BH(x));

395 title(’BH Vibrio Population ’);

396 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

397 ylabel (’Population ’);

398 grid;
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399

400 figure ;

401 plot(x,BL(x));

402 title(’BL Vibrio Population ’);

403 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

404 ylabel (’Population ’);

405 grid;

406

407 end % Main Program

408

409 %% %%%%%% Sub Functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

410 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

411 %

412 function db_h = get_dBH (I_,t_,BH_ ,xi_ ,chi_ ,eta_ ,A_ ,k_ ,h_)

413 % Return change in HI vibrio population

414 sum = 0;

415 for age = 0:( A_*52 -2) % age is in weeks

416 sum = sum + I_(age +1+1, t_ +1) + I_(age +1,t_ +1);

417 end ;

418 sum = xi_*eta_*h_ *(1/2)* sum;

419 dt = k_;

420 db_h = dt*h_*(sum - chi_*BH_(t_ +1));

421 end

422

423 function db_l = get_dBL (chi_ ,BH_ ,delta_L_ ,BL_ ,t_ ,k_ ,h_)

424 % Return change in non -HI vibrio population

425 % second order accuracy midpoint scheme used here.

426 k1 = chi_*BH_(t_+1) - delta_L_ *BL_ (t_ +1);

427 k2 = chi_* (BH_(t_+1)+ BH_(t_ +1+1))/2 - delta_L_ *(BL_ (t_ +1)+ 1/2*k1*k_);

428 db_l = k2 * k_;

429 end

430

431 function w = omega(a_)

432 % Return age specific rate of waning immunity

433 ten_years_old = 520; % Age in weeks

434 if a_ <= ten_years_old

435 w = (1/365); % days

436 else

437 w = 1/(2*365); % days

438 end ;

439 w = w * 7; % convert to weeks

440 end

441

442 function d = delta (a_)

443 % Return age specific disease related mortality rate

444 ten_years_old = 520; % Age in weeks

445 if (a_ <= ten_years_old)

446 d = 0.032;

447 else

448 d = 0.007;

449 end ;

450 d = d * 7; % convert to weeks

451 end
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APPENDIX E

Plot Results of Matlab Code for the Second Order Accurate Age-Structured Cholera
Model

Figure E.1: Reference Simulation - Suseptable Population - 2nd Order Accuracy
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Figure E.2: Reference Simulation - Infected Population - 2nd Order Accuracy

Figure E.3: Reference Simulation - Recovered Population - 2nd Order Accuracy
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Figure E.4: Reference Simulation - Total Population - 2nd Order Accuracy

Figure E.5: Reference Simulation - BH Vibrio Population - 2nd Order Accuracy
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Figure E.6: Reference Simulation - BL Vibrio Population - 2nd Order Accuracy
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Figure E.7: High Rate Shedding Sim - Human Populations - 2nd Order Accuracy
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Figure E.8: High Rate Shedding Sim - Total Pop - 2nd Order Accuracy
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Figure E.9: High Rate Shedding Sim - Vibrio Populations - 2nd Order Accuracy
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Figure E.10: Low Rate Shedding Sim - Human Populations - 2nd Order Accuracy
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Figure E.11: Low Rate Shedding Sim - Total Population - 2nd Order Accuracy
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Figure E.12: Low Rate Shedding Sim - Vibrio Populations - 2nd Order Accuracy
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APPENDIX F

Matlab Code - The Effects of Cholera on Children Versus Adults

1 function [] = SIR_AgeStructured_Children_V3 ()

2 %% Project - Age Structured Cholera Model

3 % Author : John Szijjarto

4 % Date: 09/17/12

5 % Title : Study the Effects of Cholera on Children Using Gobbert ’s Model

6 % First Order Accurate Epidemic Cholera Model

7 %

8 % Immunity Waning function is enabled only for people < 1 year old . This

9 % makes for more realistic output when the time frame is only 24 weeks.

10 % In other words the time frame is much less than the 1 year required

11 % for humans to begin loosing immunity to the current outbreak . This

12 % prevents newly recovered humans from unrealistically getting reinfected

13 % within the 24 week timeframe .

14 %

15 %

16 %% %%%%%% Matlab Environment Commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 %

18 clear all ; % Close /Delete all figures

19 close all ; % Free system memory

20 clc ; % Clear command window

21

22 if ~exist (’./temp ’, ’dir ’) % create ’./ temp ’ dir if doesn ’t already exist

23 mkdir(’./ temp’);

24 end

25 outfile_1 = fopen(’./temp/output .txt ’,’w’);

26

27 %% %%%%%% Simulation Control Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28

29 reference_sim = false ; % if true , run ref sim (ie. no infected pop )

30 xi = 1000000000; % Hi Rate of shedding of cholera vibrios from

31 %xi = 100; % Lo Rate of shedding of cholera vibrios from

32 % infected human of age a.

33

34 %% %%%%%% Model Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35

36 k = 1/50; % detla_t = 1/50 of a week

37 h = 1; % delta_a = 1 week

38 alpha = 1; % Proportionality factor (wave speed )

39 b = (1/50)*(1/52); % normal mortality rate in deaths per week

40

41 % Population Parameters

42 N = 10000; % Population Sice

43

44 % Declare the S, I, R Arrays and zero out all values .

45 %

46 m = 3744; % cols -> total age = 72 * 52 = 3744 weeks

47 n = 24/ k; % rows -> total sim time = 24 weeks or ~6 months

48

49 S = zeros(m,n); % Suseptable population

50 I = zeros(m,n); % Infected population

51 R = zeros(m,n); % Recovered population

52 BL = zeros(n ,1); % Less -infective vibrio population

53 BH = zeros(n ,1); % highly -infective vibrio population

54

55 total_I_mortalities_adults = zeros (n ,1);

56 total_I_mortalities_children = zeros (n ,1);

57

58 total_sus_population_adults = zeros (n,1); % col vect of length n
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59 total_inf_population_adults = zeros (n,1); % col vect of length n

60 total_rec_population_adults = zeros (n,1); % col vect of length n

61 total_population_adults = zeros (n,1); % col vect of length n

62

63 total_sus_population_children = zeros(n ,1); % col vect of length n

64 total_inf_population_children = zeros(n ,1); % col vect of length n

65 total_rec_population_children = zeros(n ,1); % col vect of length n

66 total_population_children = zeros(n ,1); % col vect of length n

67

68 percent_I_mortalities_children = zeros (n,1);

69 percent_I_mortalities_adults = zeros (n,1);

70 percent_I_children = zeros (n,1);

71 percent_I_adults = zeros (n,1);

72

73

74 A = 72; % Upper bound on human age : 72 years

75 kappa_L = 1000000; % Half saturation constant (Less -infective )

76 kappa_H = kappa_L /700; % Half saturation constant (Hyper -infective )

77 beta_L = 1.5/7*7; % Ingestion rate (Less -infective )

78 beta_H = 1.5/7*7; % Ingestion rate (Hyper -infective )

79

80 lambda = 0.0*7; % Human recruitment rate (non -newborns entering pop )

81 gamma_1 = 1/5*7; % recovery rate of untreated cholera

82 gamma_2 = 1/3*7; % recovery rate of treated cholera

83 u = 0.0; % antiboitic treatment rate for humans of age a at time t

84 H2O = 0.0; % hydration therapy related mortality . (h(a,t) in model )

85 % This is a percentage value .

86

87 delta_L = 1/30*7; % Death rate of vibrio in the environment .

88 eta = 0.1; % Relative amount of stool per unit time - no units

89 chi = 1/5*24*7; % Rate of vibrio moving from HI to non -HI state .

90

91 ten_years_old = 520;

92

93 %% %%%%% Boundary Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94 %

95 % Note: Boundary conditions for R array are created

96 % within the main simulation loop.

97 %

98 for t = 0:(n-1)

99 S(0+1,t+1) = 0.0; % Susceptable Population

100 I(0+1,t+1) = 0.0; % Infected Population

101 end

102

103

104 %% %%%%% Initial Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

105 %

106 eighteen_years_old = 936; % Age in weeks

107 nineteen_years_old = 988; % Age in weeks

108

109 % Initial Conditions for I (Infected )

110 %

111 if (reference_sim == false) % reference sim contains no infected people

112 % Include one 18 year old infected human

113 for a=(m -1): -1:0

114 if (a>= eighteen_years_old) && (a< nineteen_years_old)

115 I(a+1 ,0+1) = 1/52.0;

116 else

117 I(a+1 ,0+1) = 0.0;

118 end

119 end

120 end

121

122 fifteen_years_old = 780; % age in weeks

123 sixty_five_years_old = 3380; % age in weeks

124 seventy_two_years_old = 3744; % age in weeks

125

126 % Pop distribution 40.1\% aged 0-14, 56.1\% aged 15-64, and 3.8\% aged 65+.
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127 N1 = (N*.401)/(15 -0)/52; % #humans < 15 years old per week age segment

128 N2 = (N*.561)/(65 -15)/52; % #humans >= 15 & < 65 years old per week age seg

129 N3 = (N*.038)/(72 -65)/52; % #humans >= 65 & < 72 years old per week age seg

130

131 % Initial Conditions for R (Recovered ) and S (Susceptible )

132 one_year_old = 52; % Age in weeks

133

134 for a=(m-1): -1:0

135 % Susceptable and Recovered Population

136 if (a<one_year_old) % if age <1 year -old then immune (ie. in R group)

137 R(a+1 ,0+1) = N1;

138 S(a+1 ,0+1) = 0.0;

139 end

140 if (a>= one_year_old && a< fifteen_years_old)

141 R(a+1 ,0+1) = 0.0;

142 S(a+1 ,0+1) = N1;

143 end

144 if (a>= fifteen_years_old && a<sixty_five_years_old )

145 R(a+1 ,0+1) = 0.0;

146 S(a+1 ,0+1) = N2;

147 end

148 if (a>= sixty_five_years_old && a<seventy_two_years_old )

149 R(a+1 ,0+1) = 0.0;

150 S(a+1 ,0+1) = N3;

151 end

152 end

153

154

155 %% %%%%% Run the Simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

156 %

157 % Generate All Other Interior Grid Points

158 %

159 births = 0; % not currently utilized

160 I_mortalities_adults = 0; % infected adult mortalities

161 I_mortalities_children = 0; % infected children mortalities

162

163 for t = 0:(n-1)

164

165 % Suseptable Population - Generate one row

166 for a=1:(m-1)

167 S(a+1,t+1+1) = ...

168 (1-k*alpha/h)* S(a+1,t+1) ...

169 + k*alpha/h* S(a-1+1,t+1) ...

170 + k*lambda ... % recruitment

171 - k*beta_L *BL(t+1)/( kappa_L +BL(t+1))* S(a+1,t+1)... % BL infected

172 - k*beta_H *BH(t+1)/( kappa_H +BH(t+1))* S(a+1,t+1)... % BH infected

173 - k*b * S(a+1,t+1) ... % natural mortalities

174 + k*omega(a+1,t+1,k)* R(a+1,t+1); % pop losing immunity

175 end

176

177 % Infected Children Adults - Generate one row

178 for a=1: ten_years_old

179 I(a+1,t+1+1) = ...

180 (1-k*alpha/h)* I(a+1,t+1) ...

181 + k*alpha/h* I(a-1+1,t+1) ...

182 + k*beta_L *BL(t+1)/( kappa_L +BL(t+1))* S(a+1,t+1)... % BL infected

183 + k*beta_H *BH(t+1)/( kappa_H +BH(t+1))* S(a+1,t+1)... % BH infected

184 - k*b * I(a+1,t+1) ... % natural mortalities

185 - k*(1- H2O )*delta (a)*I(a+1,t+1) ... % infected mortalities

186 - k*gamma_1 *(1-u)*I(a+1,t+1) ... % pop recovering w/o antibiotics

187 - k*gamma_2 *u*I(a+1,t+1); % pop recovering with antibiotic

188 I_mortalities_children = I_mortalities_children ...

189 + k*(1- H2O )* delta(a)*I(a+1,t+1);

190 end

191

192 % Infected Population Adults - Generate one row

193 for a=( ten_years_old+1):(m-1)

194 I(a+1,t+1+1) = ...
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195 (1-k*alpha/h)* I(a+1,t+1) ...

196 + k*alpha/h* I(a-1+1,t+1) ...

197 + k*beta_L *BL(t+1)/( kappa_L +BL(t+1))* S(a+1,t+1)... % BL infected

198 + k*beta_H *BH(t+1)/( kappa_H +BH(t+1))* S(a+1,t+1)... % BH infected

199 - k*b * I(a+1,t+1) ... % natural mortalities

200 - k*(1- H2O )*delta (a)*I(a+1,t+1) ... % infected mortalities

201 - k*gamma_1 *(1-u)*I(a+1,t+1) ... % pop recovering w/o antibiotics

202 - k*gamma_2 *u*I(a+1,t+1); % pop recovering with antibiotic

203 I_mortalities_adults = I_mortalities_adults ...

204 + k*(1- H2O )* delta(a)*I(a+1,t+1);

205 end

206

207 % Include new born babies into the recovered population this week

208 fecundity = 0;

209 for age =779:1:2339

210 fecundity = fecundity ...

211 + (S(age +1,t+1) + I(age +1,t+1) + R(age +1,t+1))...

212 * (1/5) * (sin ((age -780)/1560*3.14159))^2;

213 end

214 R(0+1,t+1)= fecundity /52; %Divided by 52 weeks /year

215 births = births + k* fecundity /52;

216

217 % Recovered Population - Generate one row

218 for a=1:(m-1)

219 R(a+1,t+1+1) = ...

220 (1-k*alpha/h)* R(a+1,t+1) ...

221 + k*alpha /h * R(a-1+1,t+1) ...

222 + k*gamma_1 *(1-u)*I(a+1,t+1) ... % pop recovering w/o antibiotics

223 + k*gamma_2 *u*I(a+1,t+1) ... % pop recovering with antibiotics

224 - k*b * R(a+1,t+1) ... % natural mortalities

225 - k*omega (a+1,t+1,k)* R(a+1,t+1); % recovered - loosing immunity

226 end

227

228 % Calculate current hyperinfective (BH) and non - hyperinfective (BL)

229 % cholera bacteria populations

230 dBH = get_dBH (I,t,BH ,xi ,chi ,eta ,A,k,h);

231 dBL = get_dBL (chi ,BH ,delta_L ,BL ,t,k,h);

232 BH(t+1+1) = BH(t+1) + dBH;

233 BL(t+1+1) = BL(t+1) + dBL;

234

235 total_I_mortalities_adults (t+1) = I_mortalities_adults;

236 total_I_mortalities_children (t+1) = I_mortalities_children ;

237

238 if (mod(t ,100) == 0)

239 fprintf (’t = %d\n’, t); % This is just a program status output

240 end

241 end

242

243 %% %%%%% Output Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

244 %

245

246 % Print Population Totals

247 fprintf (outfile_1 ,...

248 ’\nSUSEPTABLE INFECTED -Adults INFECTED -Children RECOVERED TOT -POP \r\n’);

249 for t = 0:1:(n-1)

250 for a=0: ten_years_old

251 total_sus_population_children (t+1) = ...

252 total_sus_population_children (t+1) + S(a+1,t+1);

253 total_inf_population_children (t+1) = ...

254 total_inf_population_children (t+1) + I(a+1,t+1);

255 total_rec_population_children (t+1) = ...

256 total_rec_population_children (t+1) + R(a+1,t+1);

257 total_population_children (t+1) = ...

258 total_sus_population_children (t+1) ...

259 + total_inf_population_children (t+1)...

260 + total_rec_population_children (t+1);

261

262 percent_I_children(t+1) = ...
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263 total_inf_population_children (t+1)...

264 /total_population_children (t+1)*100;

265 percent_I_mortalities_children (t+1) = ...

266 total_I_mortalities_children (t+1)...

267 /total_population_children (t+1)*100;

268 end

269 for a=( ten_years_old +1):(m -1)

270 total_sus_population_adults (t+1) = ...

271 total_sus_population_adults (t+1) + S(a+1,t+1);

272 total_inf_population_adults (t+1) = ...

273 total_inf_population_adults (t+1) + I(a+1,t+1);

274 total_rec_population_adults (t+1) = ...

275 total_rec_population_adults (t+1) + R(a+1,t+1);

276 total_population_adults (t+1) = ...

277 total_sus_population_adults (t+1)...

278 + total_inf_population_adults (t+1)...

279 + total_rec_population_adults (t+1);

280 percent_I_adults(t+1) = ...

281 total_inf_population_adults (t+1)...

282 /total_population_adults (t+1)*100;

283 percent_I_mortalities_adults (t+1) = ...

284 total_I_mortalities_adults (t+1)...

285 /total_population_adults (t+1)*100;

286 end

287 fprintf (outfile_1 , ’%f %f %f %f %f\r\n’ ,...

288 total_sus_population_adults (t+1) ,...

289 total_inf_population_adults (t+1) ,...

290 total_inf_population_children (t+1) ,...

291 total_rec_population_adults (t+1) ,...

292 total_population_adults (t+1));

293 end

294 fclose (outfile_1 );

295

296 % Produce 2D Plots

297 %

298

299 x=1:1: n;

300

301 figure ;

302 plot(x,total_sus_population_adults (x),’r’ ,...

303 x, total_sus_population_children (x),’b’);

304 title(’Susceptible Population ’);

305 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

306 ylabel (’Population ’);

307 legend (’Adults ’,’Children ’);

308 grid;

309 saveas (gcf ,’./ temp/ SUSCEPTABLE_POPULATION .fig ’);

310

311 figure ;

312 plot(x,total_inf_population_adults (x),’r’ ,...

313 x, total_inf_population_children (x),’b’);

314 %axis ([0 1200 0 10000]);

315 title(’Infected Population ’);

316 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

317 ylabel (’Population ’);

318 legend (’Adults ’,’Children ’);

319 grid;

320 saveas (gcf ,’./ temp/ INFECTED_POPULATION.fig ’);

321

322 figure ;

323 plot(x,total_rec_population_adults (x),’r’ ,...

324 x, total_rec_population_children (x),’b’);

325 %axis ([0 1200 0 10000]);

326 title(’Recovered Population ’);

327 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

328 ylabel (’Population ’);

329 legend (’Adults ’,’Children ’);

330 grid;
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331 saveas (gcf ,’./ temp/ RECOVERED_POPULATION.fig ’);

332

333 figure ;

334 plot(x,total_population_adults (x),’r’ ,...

335 x, total_population_children (x),’b’);

336 title(’Total Population ’);

337 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

338 ylabel (’Population ’);

339 legend (’Adults ’,’Children ’);

340 grid;

341 saveas (gcf ,’./ temp/ TOTAL_POPULATION.fig ’);

342

343 figure ;

344 plot(x,BH(x));

345 title(’BH Vibrio Population ’);

346 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

347 ylabel (’Population ’);

348 grid;

349 saveas (gcf ,’./ temp/ BH_POPULATION.fig ’);

350

351 figure ;

352 plot(x,BL(x));

353 title(’BL Vibrio Population ’);

354 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

355 ylabel (’Population ’);

356 grid;

357 saveas (gcf ,’./ temp/ BL_POPULATION.fig ’);

358

359 figure ;

360 plot(x,percent_I_adults(x),’r’,x, percent_I_children(x),’b’);

361 title(’Percentage Infected ’);

362 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

363 ylabel (’Population ’);

364 legend (’Adults ’,’Children ’);

365 grid;

366 saveas (gcf ,’./ temp/ Percentage_Infected.fig ’);

367

368

369 figure ;

370 plot(x,percent_I_mortalities_adults (x),’r’ ,...

371 x, percent_I_mortalities_children (x),’b’);

372 title(’Percentage Infected Mortalities ’);

373 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

374 ylabel (’Population ’);

375 legend (’Adults ’,’Children ’);

376 grid;

377 saveas (gcf ,’./ temp/ Percentage_Infected_Mortalities .fig ’);

378

379 figure ;

380 plot(x,total_I_mortalities_adults (x),’r’ ,...

381 x, total_I_mortalities_children (x),’b’);

382 title(’Total Infected Mortalities ’);

383 xlabel (’Time: 3.36hrs /step - 24 weeks total ’);

384 ylabel (’Population ’);

385 legend (’Adults ’,’Children ’);

386 grid;

387 saveas (gcf ,’./ temp/ Total_Infected_Mortalities .fig ’);

388

389

390 fclose (’all ’);

391

392 end % Main Program

393

394 %% %%%%%% Sub Functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

395 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

396 %

397 function db_h = get_dBH (I_,t_,BH_ ,xi_ ,chi_ ,eta_ ,A_ ,k_ ,h_)

398 % Return change in HI vibrio population
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399 sum = 0;

400 for age = 0:( A_*52 -2) % age is in weeks

401 sum = sum + I_(age +1+1, t_ +1) + I_(age +1,t_ +1);

402 end ;

403 sum = xi_*eta_*h_ *(1/2)* sum;

404 dt = k_;

405 db_h = dt*h_*(sum - chi_*BH_(t_ +1));

406 end

407

408 function db_l = get_dBL (chi_ ,BH_ ,delta_L_ ,BL_ ,t_ ,k_ ,h_)

409 % Return change in non -HI vibrio population

410 dt = k_;

411 db_l = dt*h_*(chi_*BH_(t_ +1) - delta_L_ *BL_(t_ +1));

412 end

413

414 function w = omega(a_ ,t_ ,k_)

415 % Return age specific rate of waning immunity

416 one_year_old = 52;

417 ten_years_old = 520; % Age in weeks

418 w = 0;

419 if a_ <= one_year_old

420 w = (1/365); % days

421 elseif ((a_ > ten_years_old) &&(t_ >104/ k_)) % 10+ lose immunIty in 2yrs

422 w = 1;

423 elseif ((a_ <= ten_years_old) &&(t_ >52/k_)) % <10 lose immunity in 1 yr

424 w = 1;

425 end ;

426 end

427

428

429 function d = delta (a_)

430 % Return age specific disease related mortality rate

431 ten_years_old = 520; % Age in weeks

432 if (a_ <= ten_years_old)

433 d = 0.032;

434 else

435 d = 0.007;

436 end ;

437 d = d * 7; % convert to weeks

438 end
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