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ABSTRACT

Chromatic Numbers of Distance Graphs

with Distance Sets {2, 3, x, y}

By

Aileen Sutedja

A distance graph generated by a given set D of positive integers has the set of

integers as its vertex set and any two vertices m and n are adjacent (share a common

edge) if the absolute difference of m and n is equal to some element d in the set D.

The chromatic number of a distance graph is the minimum number of colors required

to color all vertices such that no adjacent vertices are assigned the same color. We

study the distance graphs generated by D = {2, 3, x, y}, where x and y are any

positive integers. By obtaining bounds for related parameters, such as the density of

sequences with missing differences and the kappa value, we acquire new results and

complete the determination of the chromatic numbers for all distance graphs with D

of the form {2, 3, x, y}.
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CHAPTER 1

Introduction

What is the smallest number of colors needed to color all the points on the Euclidean

plane such that points of unit distance apart get different colors? This question,

known as the Hadwinger–Nelson problem, is one of motivating problems behind the

study of distance graphs. To this day, the problem is still unsolved, but our current

knowledge has narrowed down the plausible answers to be between four and seven

[13, 20].

If the Hadwinger–Nelson problem is reduced to the real line, the answer is

trivial since using two colors alternatively on unit half open intervals satisfies the

condition. Eggleton, Erdős and Skilton [10] raised the complexity of this problem by

introducing a distance set D, where D is a subset of the real line, and asking the

minimum number of colors needed such that any pair of points having an absolute

difference equal to some element of D are assigned different colors. One problem

studied in [10] was when the elements of D are positive integers. For such sets D,

by isomorphism of components, it is sufficient to study the subgraph induced by the

set of integers Z as the vertex set. This subgraph is known as the integral distance

graph.

Given a set D of positive integers, an integral distance graph G(D), or simply

a distance graph, is a graph having the set of integers Z as its vertex set, and two
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vertices m and n are adjacent (connected by an edge) if |m − n| ∈ D. The focus of

the study of distance graphs is to determine the minimum number of colors required

so that no two adjacent vertices in the graph have the same color. This minimum

number is known as the chromatic number of the graph and is denoted by χ(D).

For this thesis, we study the 4-element sets D of positive integers with 2 and

3 in the set. We were inspired by the work done by Kemnitz and Kolberg in [15]

where they gave the solution for D = {2, 3, x, x + s} for x ∈ N, x > 3 and s < 10.

In this work, they applied the theorem of Frobenius to explicitly define proper 3-

colorings for certain sets D. Another outstanding work on this family of sets D is

done by Voigt and Walther [23]. They showed that the distance graph generated by

D = {2, 3, x, x+ s} where x ≥ s2 − 6s+ 3 and s ≥ 10, has chromatic number 3.

Our study used a different approach. We employed two main parameters

µ and κ and successfully obtained the complete solution to the problem of finding

χ({2, 3, x, y}). As we will later present, the parameter µ refers to the density of sets

of forbidden differences and the parameter κ is a parameter related to an intriguing

conjecture known as “The Lonely Runner Conjecture.”

This thesis is organized as such: we begin with preliminary definitions and

statements of pertinent results obtained by other authors. Then, we introduce the

two major parameters, µ and κ, giving their formal definitions and their relations

to other areas of research. Following that, we present our main results, which are

decomposed into a number of theorems with overlapping results. In this Main Results

chapter, we show how we used the parameters κ and µ to get upper and lower bounds

for the chromatic number χ and we also present the algorithms we developed to
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compute critical bounds for the parameters for some values of x and y. At the end,

we consolidate the results and organize them into tabular form for easy reference.
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CHAPTER 2

Definitions and Known Results

There are two parts to this chapter. In Section 2.1, we introduce the notion of a

graph and graph coloring. Various examples and figures are used to illustrate some

concepts. In Section 2.2, we state results on chromatic numbers of distance graphs

obtained by other authors, some of which will be used to build our arguments in the

subsequent chapters.

2.1 Basic Terminology

Definition 2.1.1. A graph G = (V,E) consists of a vertex set V and an edge set E.

The elements of V are called vertices (or nodes), while the elements of E are called

edges and each edge is an unordered pair of distinct vertices of G.

In this thesis, we study one class of graphs where the vertex set and the edge

set are described in the following definition:

Definition 2.1.2. Given a set of positive integers D, the graph G(D) is called an

integral distance graph (or simply a distance graph) generated by the distance set D

if V (G) = Z and E(G) = {mn : m,n ∈ V, |m− n| ∈ D}.

− 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

Figure 2.1: An example of a distance graph with D = {1, 3}

Definition 2.1.3. Two vertices u and v are said to be adjacent if {uv} ∈ E.
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Definition 2.1.4. A subgraph of a graph G is a graph H such that V (H) ⊂ V (G)

and E(H) ⊂ E(G). In particular, if D′ ⊂ D, then the distance graph G(D′) is a

subgraph of the distance graph G(D).

Definition 2.1.5. A path P = {u0, . . . , uk} of length k is a sequence of k + 1 dis-

tinct vertices, starting with u0 and ending with uk such that consecutive vertices are

adjacent.

It is worth emphasizing that the length of a path P refers to the number of

edges in the path, which may or may not equal to the absolute value of the difference

of the end vertices. For instance, the path P0 = {−5,−2, 1, 2, 3} in the distance graph

G({1, 3}) in Figure 2.1 is of the length four, but the difference between the first and

the last vertex in absolute value is |3 − (−5)| = 8. On the other hand, the path

P1 = {−2,−1, 0, 1, 2} has length four and the difference between the first and the last

vertex in absolute value is also |2− (−2)| = 4.

Definition 2.1.6. A cycle C = {u0, . . . , uk−1, uk} is a path of length k such that

u0 = uk and ui ̸= uj for 0 ≤ i, j ≤ k − 1. Since u0 = uk, a cycle is also known as

a closed path. If the length k is an even number, we say that C is an even cycle.

Likewise, if k is an odd number, we say that C is an odd cycle.

Definition 2.1.7. A k-coloring of a graph G is a function f : V (G) → {1, ..., k} from

the vertex set to the set of positive integers less than or equal to k.

The graph in Figure 2.1 can be colored by a periodic function f by repeating

the pattern a, b, c, d on the vertices. The function f , as shown in Figure 2.2, is a

4-coloring of G({1, 3}).

Definition 2.1.8. The coloring f is a proper coloring of G if for every pair u, v of
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a b c d a b c d a b c

Figure 2.2: A 4-coloring of G({1, 3})

adjacent vertices, f(u) ̸= f(v).

The graph in Figure 2.2 has a proper 4-coloring since no adjacent vertices have

the same color. Figure 2.3 shows an improper 3-coloring of the same graph.

a a b b c c a a b b c

Figure 2.3: An improper coloring of G({1, 3})

Definition 2.1.9. The chromatic number of a graph G, denoted by χ(G), is the

minimum k such that the coloring f is a proper k-coloring. If χ(G) = k and f is a

proper k-coloring, we say that f is a chromatic coloring.

Although the function f in Figure 2.2 is a proper 4-coloring of G(D), 4 is not

the chromatic number of G(D) since there are other proper colorings of G(D) using

less than four colors. One such coloring is shown below.

a b a b a b a b a b a

Figure 2.4: A chromatic coloring of G({1, 3})

The coloring in Figure 2.4 is proper and using two colors is the best we can

do for any graph having at least one edge. Hence, the chromatic number of G({1, 3})

is 2.
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Definition 2.1.10. The floor of any real number x, denoted by ⌊x⌋, is the greatest

integer less than or equal to x, and the ceiling of any real number x, denoted by ⌈x⌉,

is the smallest integer greater than or equal to x.

Definition 2.1.11. Let x ∈ R, d ∈ N. Suppose x = qd+r, where |r| ≤ d/2. Then, |r|

is the absolute value of the absolutely least remainder of x (mod d). This is denoted

by |x|d.

For example, let d = 10. Then, |2|10 = |8|10 since 2 = 0 · 10 + 2 and 8 =

1 · 10 + (−2).

Observation 2.1.12. Let x, y ∈ R and d = x+ y. Then |x|d = |y|d.

Definition 2.1.13. Let x ∈ R. The minimum distance to an integer function, de-

noted by || ∗ ||, is defined as: ||x|| := min{⌈x⌉ − x, x− ⌊x⌋}.

Definition 2.1.14. Let S ⊂ R. A number b is called an upper bound for S if x ≤ b,

for all x ∈ S. A number b is called the supremum of S (also called least upper bound),

denoted by supS, if b is the smallest upper bound of S, that is, if c is an upper bound

of S, then b ≤ c.

Similarly, a number b is called a lower bound for S if b ≤ x, for all x ∈ S. A number

b is called the infimum of S (also called greatest lower bound), denoted by inf S, if b

is the largest upper bound of S, that is, if c is a lower bound of S, then c ≤ b.

Let us use one example of S to illustrate the above definition. Let

S = {(−1)n(1 + 1/n) : n ∈ N} = {−2,
3

2
,−4

3
,
5

4
,−6

5
,
7

6
,−8

7
, ...}

When n is odd, the n-th term is a negative number between −1 and −2. When n is

even, it is a positive number between 1 and 3
2
. Thus, any real number a ≤ −2 is a
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lower bound of S and any real number b ≥ 3
2
is an upper bound of S. However, inf S

and supS are unique and they are given by inf S = −2 and supS = 3
2
.

Definition 2.1.15. Let S be a sequence of real numbers. A point y is called a cluster

point of S if for any ε > 0 there are infinitely many x ∈ S with |x− y| < ε.

Definition 2.1.16. Let S be a sequence of real numbers. The limit superior of S,

denoted by lim supS, is the largest cluster point of S, i.e., the supremum of the set

of cluster points. The limit inferior of S, denoted by lim inf S, is the smallest cluster

point of S, i.e., the infimum of the set of cluster points.

Using the same S given in the example after Definition 2.1.14, we have two

cluster points, namely −1 and 1. Hence, in this particular example, lim inf S = −1

and lim supS = 1.

2.2 Known Results

The appeal of distance graphs has produced substantial results in the determination

of the chromatic numbers for various distance sets D. In this section, we state re-

sults obtained by other authors and we will also include a proof when the proof is

considerably concise.

Let us begin by considering sets D with small cardinalities. When |D| ≤ 2,

we can fairly easily find the chromatic number of the corresponding distance graph

G(D).

When D only has one element d, then χ(D) = 2 since

f(x) =


a, for x ≡ 0, 1, ..., d− 1 (mod 2d);

b, for x ≡ d, d+ 1, ..., 2d− 1 (mod 2d).

8



is a proper 2-coloring of G({d}).

When D has more than one element, we may encounter cases when the ele-

ments of D have a common divisor n > 1. Lemma 2.2.1 shows that in such a case, the

chromatic number of the graph generated by D and that by D/n = {di/n : di ∈ D}

is the same. We can therefore assume without loss of generality that gcd(D) = 1.

Lemma 2.2.1. [21] Let D = {d1, d2, ..., dk}. If n ∈ N, n|dα for all dα ∈ D, then

χ(D) = χ(D/n), where D/n = {dα/n : dα ∈ D}.

Before we characterize the chromatic numbers of distance graphs with 2-

element sets D, we will prove a more general result for a set D consisting of just

odd numbers and a lemma about an odd cycle.

Proposition 2.2.2. Let D = {di : di is an odd integer}. Then χ(D) = 2.

Proof. The mapping f : V (G(D)) → {a, b} defined by

f(x) =


a, if x is even;

b, if x is odd.

is a proper 2-coloring of G(D).

Lemma 2.2.3. Let C = {u0, . . . , u2k, u2k+1 = u0}. Then χ(C) = 3.

Proof. Since E(C) ̸= ∅, χ(C) > 1. The mapping f : V (C) → {a, b, c} defined by

f(ui) =



a, if i is even and i ̸= 0;

b, if i is odd and i ̸= 2k + 1;

c, if i = 2k + 1.

is a proper 3-coloring of G(C).

9



To complete the proof, we show that there is no proper 2-coloring of C. Let

Co = {ui : i is odd and 0 ≤ i ≤ 2k} and Ce = {ui : i is even and 0 ≤ i ≤ 2k}.

Then any 2-coloring of C must assign one color to vertices in Co and another color

to vertices in Ce. This coloring cannot be proper since u2k+1 = u0 ∈ Ce and u2k+1 is

adjacent to u2k which is also in Ce. Therefore, χ(C) = 3.

If there is an odd cycle in the graph G, then the chromatic number of G must

be at least 3 since using less than three colors would not allow us to properly color

the odd cycle. This is indeed true for any subgraph of G. If H is a subgraph of G,

then the chromatic number of H is a lower bound for the chromatic number of G

since any coloring function with less than χ(H) colors would not be able to properly

color H. Hence, we can make the following observation:

Observation 2.2.4. If H is a subgraph of G, then χ(H) ≤ χ(G).

If D has finitely many elements, then Lemma 2.2.5 gives an upper bound of

χ(D).

Lemma 2.2.5. [8] For a finite set D, χ(D) ≤ |D|+ 1.

Proof. We color the vertices of the distance graph G(D) recursively with the function

f : Z → N as follows. Let f(0) = 1. Suppose f(j) is defined for −i ≤ j ≤ i, then

we let f(i + 1) to be the minimum positive integer not in the set A = {f(j) : −i ≤

j ≤ i and i + 1 − j ∈ D}. Next, we let f(−i − 1) to be minimum positive integer

not in the set B = {f(j) : −i ≤ j ≤ i + 1 and j − (−i − 1) ∈ D}. Hence, f is a

proper coloring of G(D). Note that the vertex i+1 is adjacent to at most |D| smaller

vertices, so |A| ≤ |D| and similarly, the vertex −i − 1 is adjacent to at most |D|

larger vertices and so, |B| ≤ |D|. Thus, f is a proper |D| + 1 coloring of G(D) and

10



χ(D) ≤ |D|+ 1.

We now prove that when D consists of two elements, we have the following

result:

Proposition 2.2.6. Let |D| = 2, gcd(D) = 1. Then χ(D) =


2, if all di are odd;

3, otherwise.

Proof. If both elements of D are even, then gcd(D) = n > 1. By Lemma 2.2.1,

χ(D) = χ(D/n), so it is sufficient to consider the cases when D has two odd elements

or an odd and an even element.

If both elements of D are odd, then by Proposition 2.2.2, we have χ(D) = 2.

Now consider the other case when the elements of D are of different parity.

Let D = {do, de} where do and de are odd and even positive integers respectively.

We claim that there exists an odd cycle in G(D). Let x be the product of do and

de. Then, there are at least two paths from the integer 0 to the integer x. One

path consists of the following vertices {0, do, 2do, . . . , (de − 1) · do, de · do = x} and

another consists of {0, de, 2de, . . . , (do − 1) · de, do · de = x}. This creates a cycle

{0, d0, 2do, . . . , (de − 1) · do, de · do = x, de · (do − 1), . . . , 2de, de, 0} of length de + do,

which is odd. So, there is an odd cycle in G(D) and thus, by Lemma 2.2.3 and

Observation 2.2.4, we have χ(D) ≥ 3.

Since |D| = 2, by Lemma 2.2.5, χ(D) ≤ |D|+1 = 3. Therefore, χ(D) = 3.

The chromatic number of distance graphs for 3-element sets were studied by

Eggleton et al. [10], Chen el al. [8], and Voigt [22], and in 2002, the problem was

completely settled by Zhu [27].

11



Theorem 2.2.7. [27] Let D = {a, b, c} with a < b < c and gcd(a, b, c) = 1. Then

χ(D) =


2, if a, b, c are odd;

4, if D = {1, 2, 3m} or c = a+ b and b− a ̸≡ 0 (mod 3);

3, otherwise.

The next cardinality ofD is one that we are most interested in. Due to Kemnitz

and Marangio [17, 16], and Liu and Zhu [19], we know that if D = {1, 2, 3, 4m} where

m ∈ N, or if D = {x, y, y − x, y + x} where x and y are odd integers, then χ(D) = 5.

Moreover, Barajas and Serra [1] showed that no other 4-element sets have chromatic

number greater than 4.

Theorem 2.2.8. [1] Let |D| = 4. Then χ(D) ≤ 4 unless D = {1, 2, 3, 4m} where

m ∈ N, or D = {x, y, y − x, y + x} where x and y are odd integers.

In our study of sets D = {2, 3, x, y}, by considering the chromatic number

of the subgraph generated by {2, 3} as given in Proposition 2.2.6 and by Observa-

tion 2.2.4, we have χ(D) ≥ 3. Hence, if {x, y} is neither {1, 4m} nor {5, 8}, then we

have 3 ≤ χ(D) ≤ 4. As mentioned in Chapter 1, we were inspired by Kemnitz and

Kolberg’s study of D = {2, 3, x, x + s} where x > 3 and 1 ≤ s ≤ 9. They showed

that if {x, x+ s} is not listed in Table 2.1, then χ(D) = 3.

The research done by Eggleton et al. and Voigt and Walther on prime dis-

tance sets are also of interest to us. Eggleton et al. [11] proved that if D ⊂ P and

D = {2, 3, x, x+ 2} (that is, x and x+2 are twin primes), then χ(D) = 4. This result

can also be found in Table 2.1. Furthermore, in the following theorem, Voigt and

Walther [24] showed that there are only a finite number of prime sets D without twin

primes such that χ(D) = 4.

12



Table 2.1: Sets D = {2, 3, x, x+ s} with χ(D) = 4 for 1 ≤ s ≤ 9 [15]

s x

1 4, 5, 10

2 x ̸≡ 2 (mod 6)

3 x ̸≡ 3 (mod 9), x ̸= 5

4 5, 6

5 5

6 5

7 4, 5, 6, 10, 11, 12, 16, 17, 22

8 4, 5, 6, 9, 10, 11, 13, 15, 18, 19, 23, 24, 28, 29, 33, 37, 42, 47

9 4, 5, 10

13



Theorem 2.2.9. [24] Let D = {2, 3, p, q} be a set of primes with p ≥ 7 and q > p+2.

Then χ(D) = 4 holds if and only if (p, q) is one of the following:

(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37).

Voigt and Walther [23] also gave us a result on more general 4-element sets.

They proved that χ({2, 3, x, x+ s}) = 3 if s ≥ 10 and x ≥ s2 − 6s+ 3.

In the following chapters, these existing results will be consolidated with our

new results to give the complete solution to the determination of χ({2, 3, x, y}).
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CHAPTER 3

The Parameters µ(D) and κ(D)

Often times, given a distance graph generated by a fixed distance set D, it is difficult

to explicitly define a proper k-coloring and show that any coloring using less than k

colors cannot be a proper coloring. Even if such a coloring is found, we may need

a completely different coloring when just one element in D is changed. This poses

quite a challenge to our current study. The initial attempts to find explicit coloring

functions could not be sufficiently adjusted to work for a more general case. It is only

when we decided to employ the parameters µ(D) and κ(D) that we could broaden our

results. These two parameters allow us to determine the value of χ(D) by “squeezing”

or narrowing the bounds of χ(D).

3.1 The Parameter µ(D)

Let S be a sequence of non-negative integers. For a non-negative integer n, let

S[n] denote the number of elements in S that are less than or equal to n. That is,

S[n] = |S ∩ {0, 1, 2, . . . , n}|. The upper density δ and lower density δ of S are given

by:

δ(S) := lim sup
n→∞

S[n]

(n+ 1)
and δ(S) := lim inf

n→∞

S[n]

(n+ 1)
.

If δ(S) = δ(S), then the common value is called the density of S, and is

denoted by δ(S). That is,

δ(S) := lim
n→∞

S[n]

(n+ 1)
.
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Definition 3.1.1. Let D be a set of positive integers. A sequence S is a D-sequence

if sj − sk ̸∈ D for every sj, sk ∈ S.

Alternatively, one can determine whether a sequence S is a D-sequence by

looking at the sequence of differences between consecutive elements of S. Let S =

s0, s1, s2, . . . with s0 < s1 < s2 < . . .. Then, the difference sequence ∆(S) is given by

∆(S) = δ1, δ2, . . . where δi = si − si−1. By observing that sk − sj = (sk − sk−1) +

(sk−1 − sk−2) + . . . + (sj+1 − sj) =
k∑

i=j+1

δi and sk − sj ̸∈ D for every sj, sk ∈ S, we

get this alternative definition of a D-sequence S:

Definition 3.1.2. A sequence of non-negative integers S is a D-sequence if for any

indices j < k, we have:
k∑

i=j+1

δi ̸∈ D.

Definition 3.1.3. The density of sequences with missing differences in D, denoted

by µ(D), is defined by:

µ(D) := sup {δ(S) : S is a D-sequence}.

The determination of µ(D) is a question posed by Motzkin in an unpublished

collection of problems [6]. This question has largely remained unanswered — getting

the exact value is currently possible only when D has no more than two elements

[6]. In graph theory, µ(D) is closely related to the fractional chromatic number of

distance graphs.

Definition 3.1.4. The fractional chromatic number of a graph G, denoted by χf (G),

is the minimum ratio m/n (m,n ∈ N) of an (m/n)-coloring, where an (m/n)-coloring

is a function ϕ from V (G) to n-element subsets of {1, 2, . . . ,m} such that if uv ∈ E(G)
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then ϕ(u) ∩ ϕ(v) = ∅.

Further discussion about fractional coloring and fractional chromatic number,

including why a minimum ratio exists, can be found in “Algebraic Graph Theory” by

Godsil and Royle [12].

Chang, Liu and Zhu [7] proved the following connection between distance

graphs and µ(D):

Lemma 3.1.5. For any set of positive integers D, the fractional chromatic number

of the distance graph generated by D is given by

χf (D) = 1/µ(D).

In the following lemma, Haralambis [14] showed that by studying D-sequences

S, we can get an upper bound for µ(D).

Lemma 3.1.6. [14] Let D be a set of positive integers, and let α ∈ (0, 1]. If for every

D-sequence S with 0 ∈ S there exists a positive integer n such that S[n]/(n+1) 6 α,

then µ(D) 6 α.

In other words, if µ(D) > α, then there exists a D-sequence S with 0 ∈ S such that

S[n]/(n+ 1) > α for any positive integer n.

3.2 The Parameter κ(D)

In [6], Cantor and Gordon provided a lower bound for µ(D):

µ(D) ≥ sup
gcd(t,d)=1

1

d
min

i
|tdi|d.

This lower bound is denoted by κ(D). We now state equivalent definitions of κ(D)

as given by Haralambis [14].
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Definition 3.2.1. [14] Let D be a finite set of positive integers D = {di : di ∈ N}.

κ(D) = sup
t∈(0,1)

min
i

||tdi|| (3.1)

= sup
gcd(t,d)=1

1

d
min

i
|tdi|d (3.2)

= max
d=di+dj
1≤t≤d/2

1

d
min

i
|tdi|d. (3.3)

where || · || is the minimum distance to an integer function and |x|d denotes the

absolute value of the absolutely least remainder of x (mod d).

Definition 3.2.2. Yet another way of defining κ(D) is:

κ(D) = sup{α ∈ (0, 1/2) : ||td|| ≥ α for some t ∈ (0, 1), for all d ∈ D} (3.4)

The definition of κ(D) in Definition 3.2.1 may make κ(D) seem like it is merely

a parameter defined to describe a known lower bound for µ(D). However, this unas-

suming parameter is involved in a long standing conjecture, popularly known as the

“Lonely Runner Conjecture.” The conjecture was formulated byWills [25] in the study

of diophantine approximations and independently by Cusick [9] in view-obstruction

problems. The unforgettable name is due to Goddyn [4], who contextualized the

problem this way:

Consider k runners running on a circular track of unit length. Each

runner runs at a constant speed different from any other runner. A runner

is said to be lonely when the distance to the nearest runner is at least 1/k.

The conjecture asserts that for each runner, there exists a time t such that

the runner becomes lonely.

This conjecture is usually reformulated in a simpler manner by assuming that the
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speeds of the runners are integers (see [5]). That is, for any set D of positive integers,

there exists t such that ||td|| ≥ 1
k
, for all d ∈ D, or equivalently, κ(D) ≥ 1

|D|+1
. The

conjecture has been confirmed for |D| ≤ 6 (up to seven runners) [2, 3, 5], and remains

open for |D| ≥ 7.

It is known that χf (G) ≤ χ(G) holds for all graphs G, and χ(D) ≤ ⌈1/κ(D)⌉

holds for all sets D [18, 26]. Combining these facts with Lemma 3.1.5 we have:

Lemma 3.2.3. [7, 18, 26] For any given distance set D, it holds that

1/µ(D) ≤ χ(D) ≤ ⌈1/κ(D)⌉.

The following corollary is one that we will often refer to. It illustrates how we

use Lemma 3.2.3 in determining χ(D).

Corollary 3.2.4. Let D be a set of positive integers. If κ(D) ≥ 1/3, then χ(D) ≤ 3;

if µ(D) < 1/3, then χ(D) ≥ 4.

In the next chapter, we will see the application of Corollary 3.2.4 in greater

detail.
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CHAPTER 4

Main Results

At this point, we have every tool we need to accomplish our goal to get the chromatic

number of every integer graph having the distance set D of the form {2, 3, x, y}.

We begin with finding the chromatic numbers for some sets D where three out of

the four elements are fixed. Then we looked at sets D where x and y differ by a

certain constant before we get to the most fascinating part of all, which is finding the

chromatic numbers for infinitely many graphs with sufficiently large x and relatively

large y. The remaining finitely many sets D are then done individually. At the end,

we summarize the established results and our new results in a table.

Let D = {2, 3, x, y}, x < y. From the discussion following Theorem 2.2.8,

unless D = {1, 2, 3, 4m} or {2, 3, 5, 8}, we have 3 ≤ χ(D) ≤ 4. If x = 1, by Theo-

rems 2.2.7 and 2.2.8, the chromatic number is 5 when y is a multiple of 4; otherwise,

the chromatic number is 4.

Henceforth, without loss of generality, for D = {2, 3, x, y}, we will assume that

4 ≤ x < y.

The following lemma will be useful in the next two theorems in proving that

µ(D) < 1/3.

Lemma 4.1.5. Let n ∈ N. If µ(D) ≥ 1/3, then there exists a D-sequence S such

that S[3t] ≥ t+ 1 for all positive integers t such that 3t ≤ n.
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Proof. Let n ∈ N. Since µ(D) ≥ 1/3, we have µ(D) > 1/3−1/10n. By Lemma 3.1.6,

there exists a D-sequence S such that

S[n]

n+ 1
>

1

3
− 1

10n
,

or equivalently,

S[n] >

(
1

3
− 1

10n

)
(n+ 1).

So, for t ∈ N and 3t ≤ n, the inequality can be written as

S[3t] >

(
1

3
− 1

10n

)
(3t+ 1) = t+

1

3
− 3t+ 1

10n
.

Note that:

3t+ 1

10n
≤ n+ 1

10n
<

1

3
,

where the last inequality is obtained from the fact that n ∈ N. So,

t+
1

3
− 3t+ 1

10n
> t and S[3t] > t.

Since S[3t] is an integer, we can conclude that S[3t] ≥ t + 1 for all t ∈ N and

3t ≤ n.

Theorem 4.1.6. Let D = {2, 3, 6, y}, y ≥ 4. Then

χ(D) =


4, if y ≡ 0,±1,±4 (mod 9);

3, otherwise.

Proof. Let D = {2, 3, 6, y}, y ≥ 4. Define f by

f(z) =


a, if z ≡ 0, 1, 5 (mod 9);

b, if z ≡ 3, 4, 8 (mod 9);

c, if z ≡ 2, 6, 7 (mod 9).

21



f is a proper 3-coloring for G(D) for y ̸≡ 0,±1,±4 (mod 9). Hence the result follows.

To prove that χ(D) = 4 for the remaining cases, we will use the second part

Corollary 3.2.4 and show that if y ≡ 0,±1,±4 (mod 9), then µ(D) < 1/3.

Suppose this is not the case, that is, µ(D) ≥ 1/3. Let y = 9k + r, where

k ∈ N and r ∈ {0,±1,±4}. Let n = 9(k + 1). Then, by Lemma 4.1.5, there exists a

D-sequence S such that S[3t] ≥ t+ 1, for any t ≤ n/3 = 3(k + 1).

By substituting various values for t, we figure out the elements of S.

t = 1 : S[3] ≥ 2 ⇒ 0, 1 ∈ S (since 2, 3 ∈ D);

t = 2 : S[6] ≥ 3 ⇒ 5 ∈ S;

t = 3 : S[9] ≥ 4 ⇒ 9 ∈ S;

...

Continuing this process to t = 3(k + 1), we get ∆(S) = 1, 4, 4, 1, 4, 4, . . . , 1, 4, 4 =

δ1, δ2, δ3, δ4, δ5, δ6, . . . , δ3(k+1)−2, δ3(k+1)−1, δ3(k+1) = (1, 4, 4)k+1.

So,

if r = −4, then y =
3k−1∑
i=1

δi;

if r = −1, then y =
3k∑
i=2

δi;

if r = 0, then y =
3k∑
i=1

δi;

if r = 1, then y =
3k+1∑
i=1

δi;

if r = 4, then y =

3(k+1)∑
i=3

δi.
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Therefore, y is a sum of consecutive elements in ∆(S), contradicting S being a D-

sequence.

Theorem 4.1.7. Let D = {2, 3, 10, y} or D = {2, 3, 4, y}, y ≥ 5. Then

χ(D) =


4, if y ≡ 0,±1 (mod 6);

3, otherwise.

Proof. Let D = {2, 3, 10, y} or D = {2, 3, 4, y}, y ≥ 5. Define f by

f(z) =


a, if z ≡ 0, 1 (mod 6);

b, if z ≡ 2, 3 (mod 6);

c, if z ≡ 4, 5 (mod 6).

f is a proper 3-coloring for G(D) for y ̸≡ 0,±1 (mod 6). Hence the result follows.

To prove that χ(D) = 4 for the remaining cases, we proceed as we did in

Theorem 4.1.6 and show that if y ≡ 0,±1 (mod 6), then µ(D) < 1/3.

Suppose this is not the case, that is, µ(D) ≥ 1/3. Let y = 6k+r, where k ∈ N

and r ∈ {0,±1}. Let n = 6(k+1). Then, by Lemma 4.1.5, there exists a D-sequence

S such that S[3t] ≥ t+ 1, for any t ≤ n/3 = 2(k + 1).

Let us consider D = {2, 3, 10, y}. As 2, 3, 10 ∈ D, it must be that either

{0, 1, 5, 6} ⊆ S or {0, 1, 6, 7} ⊆ S. In either case, by considering the values of t with
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S[3t] ≥ t+ 1, we conclude that ∆(S) must be one of the following:

∆(S1) = 1, 5, 1, 5, . . . , 1, 5

= δ1, δ2, δ3, δ4, . . . , δ2k+1, δ2(k+1)

= (1, 5)k+1, or

∆(S2) = 1, 4, 1, 6, 1, 4, 1, 6, . . . , 1, 4, 1, 6

= δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, . . . , δ2k−1, δ2k, δ2k+1, δ2(k+1)

⊃ (1, 4, 1, 6)⌊
k+1
2 ⌋, or

∆(S3) = (1, 4, 1, 6)m(1, 5) for some m ≥ 1

= 1, 4, 1, 6, . . . , 1, 5, . . . , 1, 4, 1, 6, . . . , 1, 5

= δ1, δ2, δ3, δ4, . . . , δ4m+1, δ4m+2, . . . ,

δ2k+1−4m, δ2k+1−4m+1, δ2k+1−4m+2, δ2k+1−4m+3 . . . , δ2k+1, δ2(k+1)

⊃ [(1, 4, 1, 6)m(1, 5)]⌊
k+1

2m+1⌋.

We now show that in each case, for y = 6k+ r, where k ∈ N and r ∈ {0,±1},

y can be written as a sum of consecutive elements in ∆(S).

Case 1: S = S1.

If r = −1, then y =
2k∑
i=2

δi;

if r = 0, 1, then y =
2k+r∑
i=1

δi.
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Case 2: S = S2.

If k is even and r = −1, then y =
2k∑
i=2

δi;

if k is even and r = 0, 1, then y =
2k+r∑
i=1

δi;

if k is odd and r = −1, then y =
2k+1∑
i=2

δi;

if k is odd and r = 0, then y =
2k+1∑
i=1

δi;

if k is odd and r = 1, then y =
2k+2∑
i=3

δi.

Case 3: S = S3.

Note that since ∆(S3) ⊃ [(1, 4, 1, 6)m(1, 5)]⌊
k+1

2m+1⌋, we have
∑
i

δi ≥ 6k + r = y. Let

q ∈ Z such that

(12m+ 6)q ≤ y < (12m+ 6)(q + 1). (4.1)

Taking the first q iterations of (1, 4, 1, 6)m(1, 5), we get a sum of (12m + 6)q. Now

we want to pick the exact number of remaining δi’s such that the total sum equals y.

Subtracting (12m+ 6)q from Equation (4.1), we get

0 ≤ 6[k − (2m+ 1)q] + r < 6(2m+ 1).

If 6[k − (2m + 1)q] + r ≤ 12m, then the remaining δi’s can be picked as in Case 2

(by replacing k with k − (2m + 1)q). If not, then 12m < 6[k − (2m + 1)q] + r <

6(2m+ 1) = 12m+ 6 and r = ±1.

If r = −1, then y =

(4m+2)(q+1)∑
i=2

δi;

if r = 1, then y =

(4m+2)q+4m+1∑
i=1

δi.
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So in each case, y is a sum of consecutive elements in ∆(S), contradicting S

being a D-sequence.

A similar argument holds for D = {2, 3, 4, y}, where we get ∆(S) = (1, 5) =

1, 5, 1, 5, .... Therefore, µ(D) < 1/3 when y ≡ 0,±1 (mod 6) and the result follows.

Theorem 4.1.8. Let D = {2, 3, x, x+ 10}, x ≥ 4. Then

χ(D) =


4, if x = 5;

3, otherwise.

Proof. By Theorem 2.2.7, we have χ(D) = 4 when x = 5. For x ̸= 5, it suffices to

show that κ(D) ≥ 1/3.

Let x = 3k+r, k ≥ 1, r = 0, 1, 2 and n = x+(x+10) = 2x+10 = 6k+2r+10.

By Equation (3.3) in Definition 3.2.1, one way to show that κ(D) ≥ 1/3 is to find an

integer λ such that the following holds for all d ∈ D:

⌈n/3⌉ ≤ |λd|n ≤ n− ⌈n/3⌉. (4.2)

Let us consider the three cases of x with different values of r.

Case 1: x = 3k. Since the case for x = 6 is done in Theorem 4.1.6, we can

assume k ≥ 3. We have ⌈n/3⌉ = 2k + 4, so Equation (4.2) becomes:

2k + 4 ≤ |λd|n ≤ 4k + 6. (4.3)

Let A be a set of integers such that for any a ∈ A, we have |2a|n and |3a|n satisfying

Equation (4.3). It can be easily checked that A = [k + 2, k + 2 + ⌊k/3⌋] ⊂ Z meets

our requirement. Then to show κ(D) ≥ 1/3, it is enough to show that there exists

some λ ∈ A such that |λx|n and |λ(x+ 10)|n satisfy Equation (4.3).
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Since n = x+ (x+ 10), by Observation 2.1.12, |x|n = |(x+ 10)|n. This means

that an integer λ satisfies Equation (4.3) for x if and only if it does so for x + 10 as

well. Note that as k ≥ 3, we have k + 2, k + 3 ∈ A.

If k is even, let λ = k + 3. Then,

(k + 3)x = (k + 3)(3k)

= (3k + 9)k

= (6k + 10 + 8)(k/2)

= (6k + 10)(k/2) + 4k

≡ 4k (mod n).

Therefore, if k is even, λ = k + 3 satisfies Equation (4.3).

If k is odd, let λ = k + 2. Then,

(k + 2)x = (k + 2)(3k)

= (k + 2)(3(k − 1) + 3)

= (3k + 6)(k − 1) + (3k + 6)

= (6k + 10 + 2)((k − 1)/2) + (3k + 6)

= (6k + 10)((k − 1)/2) + 4k + 5

≡ 4k + 5 (mod n).

Therefore, if k is odd, λ = k + 2 satisfies Equation (4.3).

Case 2: x = 3k + 1, for k ≥ 1. We have ⌈n/3⌉ = 2k + 4, so Equation (4.2)

becomes:

2k + 4 ≤ |λd|n ≤ 4k + 8. (4.4)
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Let A = [k + 2, k + 2 + ⌊(k + 2)/3⌋]. Then, |2a|n and |3a|n satisfy Equation (4.4) for

any a ∈ A.

As k ≥ 1, we have k + 2, k + 3 ∈ A. Similar to Case 1, if λ = k + 3 when k is

even and λ = k + 2 when k is odd, then Equation (4.4) is satisfied.

Case 3: x = 3k + 2, for k ≥ 2. We have ⌈n/3⌉ = 2k + 5, so Equation (4.2)

becomes:

2k + 5 ≤ |λd|n ≤ 4k + 9. (4.5)

Let A = [k + 3, k + 3 + ⌊k/3⌋]. Then, |2a|n and |3a|n satisfy Equation (4.5) for any

a ∈ A.

Similar to the previous two cases, if λ = k + 3 when k is even and λ = k + 4

when k is odd, then Equation (4.5) is satisfied.

As mentioned, our methods allow us to find the chromatic numbers for in-

finitely many distance graphs and by Corollary 3.2.4, to show that the distance graph

G(D) has chromatic number 3, it is sufficient to show that κ(D) ≥ 1/3. Hence, we

now revisit Definition 3.2.2 to get an idea of a way to obtain a lower bound for κ(D).

Let θ ∈ (0, 1/2). For a positive integer x, define

Ix(θ) = {t ∈ (0, 1) : ||tx|| ≥ θ}.

That is,

Ix(θ) = {t : p+ θ ≤ tx ≤ p+ 1− θ, 0 ≤ p ≤ x− 1}.

In Definition 3.2.2, κ(D) is defined as:

κ(D) = sup{θ ∈ (0, 1/2) :
∩
d∈D

Id(θ) ̸= ∅}.
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Therefore, to show that κ(D) ≥ 1/3 for D = {2, 3, x, y}, it is sufficient to prove that:

I2(1/3) ∩ I3(1/3) ∩ Ix(1/3) ∩ Iy(1/3) ̸= ∅.

For simplicity, we denote Ix(1/3) by Ix. Each Ix is the union of x disjoint

intervals centered at (2p+1)/2x, 0 ≤ p ≤ x−1, with width 1/3x. Precisely, we write

Ix =
x−1∪
p=0

Ix,p =
x−1∪
p=0

[
3p+ 1

3x
,
3p+ 2

3x

]
.

We call each Ix,p an Ix-interval. Notice that the gap between any two consecutive

Ix-intervals, Ix,p and Ix,p+1, is 2/(3x), twice the length of an Ix-interval.

Since I2 ∩ I3 = [1/6, 2/9] ∪ [7/9, 5/6], by symmetry, to show κ(D) ≥ 1/3 it is

enough to show:

[1/6, 2/9] ∩ Ix ∩ Iy ̸= ∅. (4.6)

Theorem 4.1.9. Let D = {2, 3, x, x+s} where x = 7, 8 and s ≥ 11. Then χ(D) = 3.

Proof. Note that I7 ∩ [1/6, 2/9] = [4/21, 2/9] and I8 ∩ [1/6, 2/9] = [1/6, 5/24]. We

shall show that Equation (4.6) is satisfied for s ≥ 11. That is, Ix∩Ix+s∩[1/6, 2/9] ̸= ∅

for x = 7, 8 and s ≥ 11.

Let x = 7. Then, Ix+s ∩ [4/21, 2/9] ̸= ∅ if

4

21
≤ 3p+ 1

3(7 + s)
≤ 2

9
or

4

21
≤ 3q + 2

3(7 + s)
≤ 2

9

for some 0 ≤ p, q ≤ 6 + s. By rearranging the terms, we can write the first condition

as
63 + 12s

63
≤ p ≤ 77 + 14s

63
and since

∣∣∣∣(77 + 14s)− (63 + 12s)

63

∣∣∣∣ ≥ 1 when s ≥ 24.5,

there must be some integer value for p when s ≥ 25.

For 11 ≤ s ≤ 24, it can be easily checked that the following p values result in

29



Ix+s,p ∩ [4/21, 2/9] ̸= ∅:

p =



3, if 11 ≤ s ≤ 12;

4, if 13 ≤ s ≤ 16;

5, if 17 ≤ s ≤ 21;

6, if 22 ≤ s ≤ 24.

Similarly, when x = 8, we want to show that Ix+s ∩ [1/6, 5/24] ̸= ∅. This

happens if

1

6
≤ 3p+ 1

3(8 + s)
≤ 5

24
or

1

6
≤ 3q + 2

3(8 + s)
≤ 5

24

for some 0 ≤ p, q ≤ 7+s. The first condition can be written as
24 + 4s

24
≤ p ≤ 32 + 5s

24

and since

∣∣∣∣(32 + 5s)− (24 + 4s)

24

∣∣∣∣ ≥ 1 when s ≥ 16, there must be some integer value

for p when s ≥ 16.

For 11 ≤ s ≤ 15, it can be easily checked that the following p values result in

Ix+s,p ∩ [1/6, 5/24] ̸= ∅:

p =


3, if 11 ≤ s ≤ 12;

4, if 13 ≤ s ≤ 15.

Hence, Equation (4.6) is satisfied for x = 7, 8 and s ≥ 11 and so, χ(D) = 3.

Lemma 4.1.10. Let x ≥ 12, x ̸= 15, 16. Then there exists some Ix,p ⊆ [1/6, 2/9].

Proof. For x ≥ 12 and x ̸= 15, 16, it is straightforward to show that there exists

some integer p, 0 ≤ p ≤ x− 1, such that x ≤ 6p + 2 and 9p + 6 ≤ 2x. This implies,

(3p+ 1)/3x ≥ 1/6 and (3p+ 2)/3x ≤ 2/9 and the lemma is proven.

Lemma 4.1.10 tells us that for x ≥ 12, x ̸= 15, 16, there exists some Ix-interval

in [1/6, 2/9]. However, for particular cases, it may be useful to know the values of p for
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which Ix,p-interval intersects with [1/6, 2/9]. So, we developed a way of determining

that based on the value of x, as given in the following lemma:

Lemma 4.1.11. Let pf and pl denote the smallest and largest values of p respectively

such that Ix,p ∩ [1/6, 2/9] ̸= ∅ and let k denote the number of complete Ix-intervals in

[1/6, 2/9]. If x = 6α + r = 9β + t = 18γ + v, where α, β, γ ∈ Z and 0 ≤ r ≤ 5,−3 ≤

t ≤ 5, 0 ≤ v ≤ 17, then

pf =


α, if r = 0, 1, 2, 3, 4;

α+ 1, if r = 5.

pl =


2β − 1, if − 3 ≤ t ≤ 1;

2β, if 2 ≤ t ≤ 5.

k =


γ + 1, if v ≡ 8, 12, 13, 14, 17 (mod 18);

γ, otherwise.

Proof. Let pf and pl denote the smallest and largest values of p respectively such that

Ix,p ∩ [1/6, 2/9] ̸= ∅.

To find pf , we consider two cases – the first case is when only a part of Ix,p-

interval intersects with [1/6, 2/9] and the second is when the entire Ix,p-interval is

within [1/6, 2/9].

Case (pf .i):

3pf + 1

3x
<

1

6
≤ 3pf + 2

3x

x− 4

6
≤ pf <

x− 2

6
.

Let x = 6α + r, for some α ∈ Z and 0 ≤ r ≤ 5. Then, the last line can be

written as:
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α+
r − 4

6
≤ pf < α +

r − 2

6
.

So, for r = 3, 4, there exists an integer value for pf , that is, pf = α.

Case (pf .ii):

1

6
≤ 3pf + 2

3x

pf ≥ x− 2

6
.

Again, if we let x = 6α + r, for some α ∈ Z and 0 ≤ r ≤ 5, the last line can

be written as:

α+
r − 2

6
≤ pf .

Therefore, for r = 0, 1, 2, 5, we have pf = α+

⌈
r − 2

6

⌉
=


α, if r = 0, 1, 2;

α+ 1, if r = 5.

Similarly, to find pl, we consider two cases just as before – the first case being

when only a part of Ix,p-interval intersects with [1/6, 2/9] and the second is when the

entire Ix,p-interval is within [1/6, 2/9].

Case (pl.i):

3pl + 1

3x
≤ 2

9
<

3pl + 2

3x

2x− 6

9
< pl ≤

2x− 3

9
.

Let x = 9β + t for some β ∈ Z and −3 ≤ t ≤ 5, then the last line can be

written as:
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2β +
2t− 6

9
< pl ≤ 2β +

2t− 3

9
.

For t = −3,±2, there exists an integer value for pl given by pl =


2β − 1, if t = −3,−2;

2β, if t = 2.

Case (pl.ii):

3pl + 2

3x
≤ 2

9

pl ≤
2x− 6

9
.

Again, if we let x = 9β + t for some β ∈ Z and −3 ≤ t ≤ 5, then the last line

can be written as:

pl ≤ 2β +
2t− 6

9
.

Therefore, for t ̸= −3,±2, we have pl = 2β +

⌊
2t− 6

9

⌋
=


2β − 1, if t = 0,±1;

2β, if t = 3, 4, 5.

It is crucial for pf ≤ pl in order for Ix ∩ [1/6, 2/9] ̸= ∅ and this is indeed the

case for x ≥ 4, x ̸= 5. Hence, Ix ∩ [1/6, 2/9] ̸= ∅ for x ≥ 4, x ̸= 5.

By considering the different cases, it is easy to compute the number of complete

Ix-intervals within [1/6, 2/9] for each x ≥ 4, x ̸= 5. If we let x = 18γ + v for some

γ ∈ Z and 0 ≤ v ≤ 17, and let k denote the number of complete Ix-intervals, then

k =


γ + 1, if v ≡ 8, 12, 13, 14, 17 (mod 18);

γ, otherwise.
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From this point forward, whenever pf and pl are used, they refer to the same

notations pf and pl as defined in Lemma 4.1.11.

Theorem 4.1.12. Let D = {2, 3, x, y}, 12 ≤ x < y, x ̸= 15, 16. Then χ(D) = 3 for

all y ≥ 2x.

Proof. By Lemma 4.1.10, there exists an interval Ix,p ⊆ [1/6, 2/9]. The length of Ix,p is

1/(3x). Let y ≥ 2x. Then, the gap between any two consecutive Iy-intervals is 2/(3y).

Because 2/(3y) ≤ 1/(3x), each Ix,p-interval must intersect with some Iy-interval. In

particular, the Ix,p-intervals within [1/6, 2/9] must intersect some Iy-interval. Hence,

I2 ∩ I3 ∩ Ix ∩ Iy ̸= ∅ and the result follows.

Theorem 4.1.13. Let D = {2, 3, x, y}. Then χ(D) = 3 for all of the following cases:

(a) x = 9, y ≥ 18, y ̸= 23;

(b) x = 11, y ≥ 22, y ̸= 23, 27, 28, 32, 37, 41, 46;

(c) x = 15, y ≥ 26, y ̸= 35, 41;

(d) x = 16, y ≥ 27, y ̸= 37.

Proof. As in Theorem 4.1.9, we shall prove this theorem by showing that Equa-

tion (4.6) holds for the various pairs of x and y. That is, we wish to show that

I = [1/6, 2/9] ∩ Ix ∩ Iy is nonempty for each x and y.

Case (a): x = 9.

Then I = [1/6, 2/9] ∩ I9 ∩ Iy = [1/6, 5/27] ∩ Iy and I ̸= ∅ if
3pf + 1

3y
≤ 5

27
, or

equivalently if y ≥ 27pf + 9

5
.
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Let y = 6α+ r, for some α ∈ Z and 0 ≤ r ≤ 5. By Lemma 4.1.11,

pf =


α+ 1, if r = 5;

α, otherwise.

When r ̸= 5,

y ≥ 27pf + 9

5
⇐⇒ 6α+ r ≥ 27α+ 9

5
⇐⇒ α ≥ 3− 5

3
r.

Since max{3 − 5
3
r} = 3, which occurs when r = 0, then for y ≥ 6 · 3 = 18 and

y ̸≡ 5 (mod 6), we have y ≥ 27pf + 9

5
.

When r = 5,

y ≥ 27pf + 9

5
⇐⇒ 6α+ 5 ≥ 27(α+ 1) + 9

5
⇐⇒ α ≥ 11

3
.

This implies that for y ≥ 29 and y ≡ 5 (mod 6), we have y ≥ 27pf + 9

5
. Therefore,

for y ≥ 18, y ̸= 23, we have I ̸= ∅ and χ(D) = 3.

Case (b): x = 11.

This case is done similarly using pl instead of pf . Let I = [1/6, 2/9] ∩ I11 ∩ Iy =

[7/33, 2/9] ∩ Iy and I ̸= ∅ if
3pl + 2

3y
≥ 7

33
, or equivalently if y ≤ 33pl + 22

7
.

Let y = 9β + t for some β ∈ Z and −3 ≤ t ≤ 5. By Lemma 4.1.11,

pl =


2β − 1, if − 3 ≤ t ≤ 1;

2β, if 2 ≤ t ≤ 5.

When −3 ≤ t ≤ 1,

y ≤ 33pl + 22

7
⇐⇒ 9β + t ≤ 33(2β − 1) + 22

7
⇐⇒ β ≥ 11 + 7t

3
.

We can easily verify that the last inequality holds for the following cases:
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(1) t = −3,−2,−1 and β ≥ 2 , that is, y ≥ 15,

(2) t = 0 and β ≥ 4, that is, y ≥ 36,

(3) t = 1 and β ≥ 6, that is, y ≥ 55.

When 2 ≤ t ≤ 5,

y ≤ 33pl + 22

7
⇐⇒ 9β + t ≤ 33(2β) + 22

7
⇐⇒ β ≥ 7t− 22

3
.

For t = 2, 3, 4, the last inequality holds if β ≥ 2 and for t = 5, the inequality holds

if β ≥ 5. So, if y ≥ 22, y ̸= 23, 27, 28, 32, 37, 41, 46, we have y ≤ 33pl + 22

7
. Hence,

I ̸= ∅ and χ(D) = 3.

Case (c): x = 15.

This case is similar to Case (a) where x = 9 in that we use pf to determine whether

Equation (4.6) holds. Let I = [1/6, 2/9] ∩ I15 ∩ Iy = ([1/6, 8/45] ∪ {2/9}) ∩ Iy and

I ̸= ∅ if
3pf + 1

3y
≤ 8

45
, or equivalently, y ≥ 45pf + 15

8
.

It can be easily verified that I ̸= ∅ for the following cases:

(1) r = 0, α ≥ 5, that is, y ≥ 30;

(2) 1 ≤ r ≤ 4, α ≥ 3 , that is, y ≥ 19;

(3) r = 5, α ≥ 7, that is, y ≥ 47.

With this, it remains to show that I ̸= ∅ for y = 29. When y = 29, we have pl = 6

and {2/9} ⊂ Iy,6 and so, I ̸= ∅. Therefore, for y ≥ 26, y ̸= 35, 41, we have I ̸= ∅ and

thus, χ(D) = 3.

36



Case (d): x = 16.

This case is done in the same way we did Case (b) where x = 11. Let I = [1/6, 2/9]∩

I16 ∩ Iy = ({1/6} ∪ [5/24, 2/9]) ∩ Iy and I ̸= ∅ when
3pl + 2

3y
≥ 5

24
, or equivalently

when, y ≤ 24pl + 16

5
.

Then, I ̸= ∅ for the following cases:

(1) t ̸= 1, β ≥ 3 , that is, y ≥ 24;

(2) t = 1, β ≥ 5, that is, y ≥ 46.

With this, it remains to show that I ̸= ∅ for y = 28. When y = 28, we have pf = 4

and {1/6} ⊂ Iy,4 and so, I ̸= ∅. Hence, for y ≥ 27, y ̸= 37, we have I ̸= ∅ and thus,

χ(D) = 3.

The next theorem is central to our success in determining the chromatic num-

bers of distance graphs generated by {2, 3, x, y}. It proves that for infinitely many x’s,

if y is large enough relative to x, then the chromatic number of the distance graph is

3. Before we prove the theorem, note that by Lemma 4.1.11, for a given x, we know

the number of Ix-intervals within [1/6, 2/9] and so, we get the following:

Observation 4.1.14. Let γ be a nonnegative integer. If x ≥ 18γ − 1, then γ of the

Ix-intervals are within [1/6, 2/9].

Theorem 4.1.15. If D = {2, 3, x, x+ s} with s ≥ 11 and x ≥ 53, then χ(D) = 3.

Proof. By Corollary 3.2.4 it is enough to show κ(D) ≥ 1/3, which is equivalent to

showing that I = Ix ∩ Ix+s ∩ [1/6, 2/9] ̸= ∅. Assume to the contrary that I = ∅.

Suppose there are exactly k of the Ix-intervals in [1/6, 2/9]. Since x ≥ 53 = 18 ·3−1,

we have k ≥ 3. Let a and b be the smallest and the largest Ix-interval values inside
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[1/6, 2/9]. That is,

a =
3pf + 1

3x
and b =

3pl + 2

3x
,

where as defined in Lemma 4.1.11, pf and pl denote the smallest value and largest

values of p such that Ix,p ∩ [1/6, 2/9] ̸= ∅. Then, the length of the interval [a, b] is

k + 2(k − 1)

3x
=

3k − 2

3x
. Since I = ∅, there must be k − 1 intervals of Ix+s within

[a, b], implying that
k − 1 + 2k

3(x+ s)
=

3k − 1

3(x+ s)
>

3k − 2

3x
. Therefore, s <

x

3k − 2
. Given

the assumption that s ≥ 11, we conclude that x ≥ 33k − 21. Since k ≥ 3, we get

x ≥ 33k− 21 ≥ 18(k+1)− 1 and so, by Observation 4.1.14, there are k+1 intervals

of Ix within [1/6, 2/9], a contradiction.

Lemma 4.1.16. Let x < y < 2x. Then there are α Iy-intervals, where 0 < α < 2,

in the gap between every pair of consecutive Ix intervals.

Proof. Suppose that α = 0. Then there is an Ix-gap with no Iy-intervals, which

is equivalent to having two or more Ix-intervals in an Iy gap. This implies that

2

3x
<

2

3y
⇔ y < x, a contradiction. Thus, α > 0.

Suppose that α ≥ 2. Then

α

3y
+

2(α− 1)

3y
<

2

3x

⇐⇒ 3α− 2

3y
<

2

3x

⇐⇒ y >
x

2
(3α− 2)

Since α ≥ 2, we have
x

2
(3α− 2) ≥ 2x and so, y > 2x, a contradiction.

Therefore, in every Ix-gap, there must be at least a portion of an Iy-interval

and strictly fewer than two of them.
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Lemma 4.1.17. Let D = {2, 3, x, y}, 12 ≤ x < y < 2x, x ̸= 15, 16. Let k denote the

number of complete Ix-intervals in [1/6, 2/9] (note that k ≥ 1). If there are at least

k + 1 Iy-intervals in [1/6, 2/9] and y ≥ 3k + 1

3k − 2
· x, then we have χ(D) = 3.

Proof. To show that χ(D) = 3, it is sufficient to show I = [1/6, 2/9] ∩ Ix ∩ Iy ̸= ∅.

Suppose I = ∅. By Lemma 4.1.16, this is only possible if each of the k Ix-intervals

lies in the k Iy-gaps. This implies:

k

3x
+

2(k − 1)

3x
<

2k

3y
+

(k + 1)

3y

⇐⇒ 3k − 2

3x
<

3k + 1

3y

⇐⇒ y <
3k + 1

3k − 2
· x,

contradicting our assumption that y ≥ 3k + 1

3k − 2
·x. Therefore, I ̸= ∅ and χ(D) = 3.

Theorem 4.1.18. Let D = {2, 3, x, y}, where x < y < 2x and y = x + s, s ≥ 11.

Then χ(D) = 3 for the following cases:

(a) x ≥ 36 and s ≥ 40,

(b) x = 26 and s ≥ 20, i.e. y ≥ 46,

(c) x = 30 and s ≥ 23, i.e. y ≥ 53,

(d) x = 31 and s ≥ 24, i.e. y ≥ 55,

(e) x = 32 and s ≥ 24, i.e. y ≥ 56,

(f) x = 35 and s ≥ 27, i.e. y ≥ 62.

Proof. Note that in all of the above cases, the values of x and y differ by at least 18.

So, if there is k Ix-intervals in [1/6, 2/9], there must be at least k+1 Iy-intervals. We

now show that for the above cases, x and y fulfill the conditions of Lemma 4.1.17 and
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from that, we get our result.

Let y = x+ s. Rewriting the condition for y in Lemma 4.1.17, we have

x+ s ≥ 3k + 1

3k − 2
· x ⇐⇒ (3k − 2)(x+ s) ≥ (3k + 1)x ⇐⇒ s ≥ 3x

3k − 2
.

Let x = 18γ + v, where γ ≥ 2, and 0 ≤ v ≤ 17. From Lemma 4.1.11, the number of

complete Ix-intervals is given by k =


γ + 1, if x ≡ 8, 12, 13, 14, 17 (mod 18);

γ, otherwise.

So,
3x

3k − 2
=

3(18γ + v)

3γ − 2
and this decreases as γ increases. Thus,

3x

3k − 2
is

highest when γ = 2 and v = 17, i.e.
3x

3k − 2
=

3(18γ + v)

3γ − 2
= 39.75.

By the hypothesis of this theorem, we have s ≥ 40, so s ≥ 3x

3k − 2
if and only

if y = x+ s ≥ 3k + 1

3k − 2
· x. By Lemma 4.1.17, we conclude that χ(D) = 3.

When x = 26, 30, 31, 32, 35, we have k = 2. It is easily verified that we have

y = x+ s ≥ 3k + 1

3k − 2
· x for each x and s given in the hypothesis. Thus, the condition

of Lemma 4.1.17 is satisfied and so, χ(D) = 3.

Lemma 4.1.19. If
3k − 2

3k − 5
· x ≤ y < 2x, where x ≥ 35 or x = 26, 30, 31, 32, then any

k consecutive Iy-intervals intersect some Ix-intervals.

Proof. Suppose, to the contrary, Ix ∩ Iy = ∅. Note that since y < 2x, there must be

at least k − 1 Ix-intervals in the length of k Iy-intervals (if there are k − 2 or fewer,

then we get two or more Iy-intervals in an Ix gap, which is impossible when y < 2x).

40



Then,

k

3y
+

2(k − 1)

3y
>

k − 1

3x
+

2(k − 2)

3x

⇐⇒ y <
3k − 2

3k − 5
x.

This contradicts our hypothesis for y and thus, the lemma is proven.

Theorem 4.1.20. If D = {2, 3, x, y}, where 38 ≤ x ≤ 52 and 75 ≤ y < 2x, then

χ(D) = 3.

Proof. To prove the theorem, we shall show that the above values of y satisfy the

condition of Lemma 4.1.19, that is, y ≥ 3k − 2

3k − 5
· x. Since y ≥ 75, there are at

least four complete Iy-intervals in [1/6,2/9]. Let k denote the minimum number of

consecutive Iy-intervals that guarantees some intersection with an Ix-interval. In

other words, we want to show that k ≥ 5y − 2x

3(y − x)
, which is equivalent to showing that

3k − 2

3k − 5
· x ≤ y.

5y − 2x

3(y − x)
≤ 4

⇐⇒ y ≥ 10

7
x

⇐ y ≥ 75 and 36 ≤ x ≤ 52.

Therefore,
3k − 2

3k − 5
·x ≤ y ≤ 2x, for 38 ≤ x ≤ 52 and y ≥ 75. By Lemma 4.1.19,

every consecutive k ≥ 4 Iy-intervals intersect some Ix-intervals. Since y ≥ 75, there

are at least 4 Iy-intervals in [1/6,2/9] and thus, [1/6, 2/9] ∩ Ix ∩ Iy ̸= ∅ and χ(D) =

3.
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Using Theorems 4.1.6, 4.1.7, 4.1.8, 4.1.9, 4.1.12, 4.1.13, 4.1.15, 4.1.18 and

4.1.20, we are left with the following to check:

• x = 9 and y = 23;

• x = 11 and y = 23, 27, 28, 32, 37, 41, 46;

• x = 12, 13, 14 or 17 ≤ x ≤ 34, x ̸= 26, 30, 31, 32, and x+ 11 ≤ y < 2x.

• x = 15 and y = 35, 41;

• x = 16 and y = 37;

• x = 26 and 37 ≤ y ≤ 45;

• x = 30 and 41 ≤ y ≤ 52;

• x = 31 and 42 ≤ y ≤ 54;

• x = 32 and 43 ≤ y ≤ 55;

• x = 35 and 46 ≤ y ≤ 61;

• 36 ≤ x ≤ 52 and x+ 11 ≤ y ≤ min{2x, x+ 40, 75};

Since there are only a finite number of combinations of x and y that we have

yet to settle, we used an algorithm similar to that used in Theorem 4.1.13 to determine

whether κ(D) ≥ 1/3. The algorithm can be found in Appendix B. We also implement

this algorithm on sets D = {2, 3, x, x+s} for 10 ≤ s ≤ 40 and 4 ≤ x ≤ s2−6s+3. For

each s, we listed the values of x for which the algorithm failed to produce κ(D) ≥ 1/3.

The list can be found in Appendix C. In the end, we obtain:

Theorem 4.1.21. Let D = {2, 3, x, x + s} with x ≥ 9, x ̸= 10, and s ≥ 11. Then
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κ(D) ≥ 1/3 (so χ(D) = 3), except (x, x+ s) falls in the following set:

A = {(9, 23), (11, 23), (11, 27), (11, 28), (11, 32), (11, 37), (11, 41), (11, 46),

(15, 35), (15, 41), (16, 37), (17, 29), (18, 31), (23, 36), (23, 41), (24, 37), (28, 41)}.

For the pairs of {x, y} included in A in Theorem 4.1.21, we employed the idea

presented in the proofs of Theorems 4.1.6 and 4.1.7 to show that χ(D) = 4. We wrote

an algorithm to check the non-existence of a D-sequence S such that S[3t] ≥ t+1 for

sufficiently large t and this algorithm is laid out in Appendix A. Using the algorithm,

we confirmed that χ(D) = 4 for all elements in the set A in Theorem 4.1.21, except

for (x, x + s) ∈ {(24, 37), (28, 41)}. In the next theorem, we will show that the

chromatic number of the graphs generated by D = {2, 3, x, y}, where {x, y} is either

{(24, 37), (28, 41)}, is also 4.

Lemma 4.1.22. Let D = {2, 3, x, y}, where x ≡ 0,±1 (mod 6) or y ≡ 0,±1

(mod 6), and f be a proper 3-coloring of G(D). Then, there exist three consecutive in-

tegers z, z+1, z+2 that receive different colors, that is, |{f(z), f(z+1), f(z+2)}| = 3.

Proof. Suppose no such three consecutive integers exists, then any proper 3-coloring

using colors a, b, c must be a periodic function on vertices, repeating the pattern

a, a, b, b, c, c (period 6), contradicting the assumption that x ≡ 0,±1 (mod 6) or

y ≡ 0,±1 (mod 6). Therefore, there must be some three consecutive integers in

G(D) with pairwise-distinct colors.

Theorem 4.1.23. If D = {2, 3, x, y} with (x, y) ∈ {(24, 37), (28, 41)}, then χ(D) = 4.

Proof. Let (x, x + s) = (24, 37). Suppose to the contrary, χ(D) = 3. Let f be

a 3-coloring for G(D) with the colors a, b, c. By Lemma 4.1.22, there exist three
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consecutive integers with distinct colors. Without loss of generality, we may assume

that the three integers are 0, 1, 2, and that f(0) = a, f(1) = b and f(2) = c. This

implies f(3) = c, f(4) = a, f(−1) = a, f(−2) = c, f(−4) = b, and f(6) = b. Consider

the following three cases.

Case 1: f(32) = a. Then we have the following:

f(35) = f(−5) = b, f(30) = f(8) = c

→ f(37) = c, f(−7) = a

→ f(34) = b

→ f(36) = c, f(10) = a

→ f(38) = a, f(12) = f(13) = b

→ f(40) = b, f(14) = c

→ f(16) = a, f(−10) = b

→ f(−8) = f(19) = c

→ f(43) = a

→ f(45) = b

→ f(47) = c

→ f(23) = b

→ f(26) = a

→ impossible to color -11.
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Case 2: f(32) = b. We have

f(35) = a

→ f(33) = f(38) = c

→ f(30) = f(9) = a, f(36) = b

→ f(27) = b, f(−7) = f(12) = c

→ f(24) = c, f(−10) = a

→ f(14) = b

→ f(17) = a

→ f(20) = c, f(15) = b

→ f(23) = b, f(18) = a

→ impossible to color 21.

Case 3: f(32) = c. We have

f(30) = f(8) = a

→ f(33) = f(−7) = c, f(27) = f(5) = b

→ f(36) = b, f(24) = c, f(−10) = f(9) = a

→ f(39) = a, f(12) = c

→ f(42) = c, f(−12) = f(15) = b

→ f(−9) = a

→ f(−6) = c

→ f(−3) = b

→ f(21) = a

→ impossible to color 18.

Therefore, χ({2, 3, 24, 37}) = 4.
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Similarly, suppose χ(D) = 3 when D = {2, 3, 28, 41}. Let f be a 3-coloring for

G(D) with colors a, b, c. Without loss of generality, let us assume f(0) = a, f(1) = b

and f(2) = c. This implies f(3) = c, f(4) = a, f(−1) = a, f(−2) = c, f(−4) = b,

and f(6) = b. Consider the following three cases.

Case 1: f(36) = a. Then we have the following:

f(39) = f(−5) = b, f(8) = f(34) = c

→ f(41) = c, f(11) = f(−7) = a

→ f(13) = f(38) = b, f(9) = c

→ f(10) = a

→ f(12) = b

→ f(40) = f(14) = c

→ f(37) = f(42) = f(16) = a

→ f(44) = b, f(35) = c

→ f(33) = b, f(−6) = a

→ f(5) = a, f(−8) = c

→ f(46) = c

→ f(18) = b

→ f(21) = c

→ f(23) = a

→ impossible to color 20.

46



Case 2: f(36) = b. Then we have

f(39) = f(−5) = a

→ f(42) = f(−7) = f(37) = c

→ f(40) = b, f(34) = f(9) = a

→ f(43) = a, f(12) = c, f(31) = b

→ f(15) = b, f(−10) = a

→ f(−13) = c

→ impossible to color 28.

Case 3: f(36) = c. Then we have

f(34) = a

→ f(37) = f(−7) = c, f(31) = b

→ f(9) = f(−10) = a, f(40) = b

→ f(12) = c, f(43) = a

→ f(15) = b

→ f(−13) = c

→ impossible to color 28.

Therefore, χ({2, 3, 28, 41}) = 4.
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CHAPTER 5

Summary Tables

This last section summarizes the chromatic number of any distance graph with a

distance set of the form {2, 3, x, y} for any positive integers x and y.

If x = 1, then χ({1, 2, 3, y}) =


5, y ≡ 0 (mod 4);

4, otherwise.

Barajas and Serra [1], Kemnitz and Marangio [17, 16], and Liu and Zhu [19], proved

that for x ≥ 4, χ(D) is either 3 or 4, unless {x, y} = {5, 8}, which results in

χ({2, 3, 5, 8}) = 5.

Unless listed in the two tables below, the chromatic number of the distance

graph with distance set D = {2, 3, x, y} where 4 ≤ x < y and {x, y} ̸= {5, 8} is 3.
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Table 5.1: Sets D = {2, 3, x, x+ s} with χ(D) = 4 for 1 ≤ s ≤ 10.

s x References

1 4, 5, 10 [15]

2 x ̸≡ 2 (mod 6) [15]

3 x ̸≡ 3 (mod 9), x ̸= 5 [15]

4 5, 6 [15]

5 5 [15]

6 5 [15]

7 4, 5, 6, 10, 11, 12, 16, 17, 22 [15]

8 4, 5, 6, 9, 10, 11, 13, 15, 18, 19, 23, 24, 28, 29, 33, 37, 42, 47 [15]

9 4, 5, 10 [15]

10 5 Theorem 4.1.8

Table 5.2: Sets D = {2, 3, x, y} with χ(D) = 4 for y ≥ x+ 11.

x y References

4, 10 y ≡ 0,±1 (mod 6) Theorem 4.1.7

5 all positive integers y ̸= 5 [1, 16, 19]

6 y ≡ 0,±1,±4 (mod 9) Theorem 4.1.6

x ≥ 7, x ̸= 10

(x, y) ∈ {(9, 23), (11, 23), (11, 27), (11, 28), (11, 32), new

(11, 37), (11, 41), (11, 46), (15, 35), (15, 41), (16, 37), (some in [24])

(17, 29), (18, 31), (23, 36), (23, 41), (24, 37), (28, 41)}
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APPENDIX A

Algorithm to Show the Non-Existence of a D-sequence S

This algorithm confirms that for certain values of x and y, we cannot find a D-

sequence S, where D = {2, 3, x, y}. This allows us to check the non-existence of such

S for some x and y values in Theorems 4.1.6 and 4.1.7.

import java.util.*;

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

//Prompts the user to enter the values of x and y;

System.out.println("Enter the other two elements of D.");

d1 = 2;

d2 = 3;

d3 = scanner.nextInt();

d4 = scanner.nextInt();

int[] D = {d1, d2, d3, d4};

//initialize S

int[] S = {0,1};

int t_min = 2;
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int t_max = 1000; //to prevent infinite loop

//Create a big array to contain arrays A_t for various t.

//Send the (t+1)^th row,i.e. row index t, to get possible

//candidates to be added into S.

//This will return an array, which we then store in big array.

int[][] bigArray = new int[t_max+1][];

for(int t = t_min; t < t_max+1; t++){

bigArray[t] = A_t(t, S, d3, d4);

//If this is not empty, we have a candidate to put into S.

int sum = 0;

for (int v : bigArray[t]) { sum += v; }

if(sum != 0 && t<t_max ){

//Expand S and put smallest value of A_t into S.

//Delete that value from big array.

S = expand(S);

int index = nonZeroIndex(bigArray[t]);

S[S.length-1]=bigArray[t][index];

bigArray[t][index] = 0;

}

//There might be a D-sequence S.
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else if(sum != 0 && t==t_max)

{System.out.println("We’re still not done at t = "+t_max);}

else{

//retrace to the last/biggest non-zero row t of bigArray,

for(int i = t-1; i > 1; i--){

t=i; int rowSum = 0;

for (int v : bigArray[i]) {rowSum += v;}

if(rowSum != 0){break;}

}

//Keep the first t elements of S, set the (t+1)th element to 0.

S = keepElts(S,t);

//Put the smallest element in bigArray[t] as the (t+1)th element of S

int index = nonZeroIndex(bigArray[t]);

if(index == -1){

index = 0;

System.out.println("There is no such sequence S!");

break;} \\ <-- This is what we hope to get.

S[t]=bigArray[t][index];

//set the previously occupied holder in bigArray to 0

bigArray[t][index]=0;
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}

}

//This finds the possible candidates to be added into S for a given t.

public int[] A_t(int t, int[] setS, int d3, int d4){

int d1 = 2;

int d2 = 3;

java.util.Arrays.sort(setS);

int maxS = setS[setS.length - 1];

//create arrayList listA_t

ArrayList<Integer> listA = new ArrayList<Integer>();

for (int r=maxS+1; r <= 3*t; r++){

int counter = 0;

for (int i=0; i < setS.length; i++){

int s=setS[i];

if (r - s != d1 && r - s != d2 && r - s != d3 && r - s != d4 )counter++;

}

//If r-s != d for all d in D and all s in S,

//then the counter = no. of elements of S.

//Put this r into the array list

if(counter == setS.length){listA.add(r);}

}
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//Convert arrayList to array before returning.

int[] A_t = new int[listA.size()];

A_t = convertIntegers(listA);

//Return A_t.

return A_t;

}

//Convert arraylist<Integer> to array int.

public static int[] convertIntegers(List<Integer> integers) {

int[] ret = new int[integers.size()];

for (int i=0; i < ret.length; i++)

{ret[i] = integers.get(i).intValue();}

return ret;

}

//Increase array size by one. This is used to expand S.

public int[] expand(int[] array) {

int[] temp = new int[array.length+1];

for (int i = 0; i < array.length; i++) {temp[i] = array[i];}

return temp;

}

//Keeping the first t elements of S and make S have length t+1.
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public int[] keepElts(int[] array, int t) {

int[] temp = new int[t+1];

for (int i = 0; i < t; i++) {temp[i] = array[i];}

return temp;

}

//Find index of the first nonzero element in a one dim array.

//Note that since our array is already sorted, we don’t need to rearrange it.

public int nonZeroIndex(int[] array){

int index = -1;

for(int i=0; i<array.length; i++){if(array[i] != 0){index = i; break;}

}

return index;

}

}
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APPENDIX B

Algorithm to Find a Lower Bound for Kappa

This algorithm describes the method we use to find a lower bound of κ using the

definition given in Equation (3.3) in Definition 3.2.1 .

import java.util.Scanner;

public class kappa {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int d1, d2, d3, d4;

//Prompts the user to enter the values of x and y.

System.out.println("Enter the other two elements of D.");

d1 = 2;

d2 = 3;

d3 = scanner.nextInt();

d4 = scanner.nextInt();

int[] D = {d1, d2, d3, d4};
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//Computes all the possible sums of two elements of D and put them in an array.

int[] bases = possibleBase(D);

java.util.Arrays.sort(bases);

int j = bases.length - 1;

long n = bases[j];

long l = 1;

long k = kap(n, l, d1, d2, d3, d4);

do{

while((3 * k) < n && 2*l < n){

l += 1;

k = kap(n, l, d1, d2, d3, d4);

}

//Checks if the lower bound k we found is greater than n/3.

//If it is, we stop and print out the lambda, n and lower bound k of kappa.

//If it is not, we repeat the process with the next possible value of n.

if(3 * k >= n){

System.out.println("The multiplier lambda is "+l+",

N = "+n+" and kappa >= "+ k+ "/"+n);

break;

}
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else{j -= 1;

if(j>=0){n = bases[j]; l = 1;}

}

} while(j >= 0);

//If we have exhausted all possible values of n and did not find a suitable

lower bound for kappa, then we stop the process and

inform the user of the limitation of this method.

if(j<0){

System.out.println("Try another method.");

}

//Returns an array of possible bases n given an array D

public int[] possibleBase(int[] setD){

int[] bases = new int[setD.length * (setD.length - 1) / 2];

int j = setD.length - 1;

int k = j - 1;

for (int i=0;i < bases.length ;i++){

bases[i] = setD[j] + setD[k];

if (k > 0){k -= 1;}

else{j -= 1; k = j - 1;}

}

return bases;
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}

//Returns the smallest absolutely least remainder of lambda d (mod n)

for particular n and lambda.

public long kap(long n, long l, int...setD){

long[] lambdaD = new long[setD.length];

for(int i=0;i < setD.length; i++){

lambdaD[i] = mod(n, setD[i]*l);

}

java.util.Arrays.sort(lambdaD);

long kap = lambdaD[0]; //the smallest value in the array lambdaD

return kap;

}

//Finds absolutely least remainder of x (mod n)

public long mod(long n, long x){

long xModN = Math.min(x % n,n-(x%n));

return xModN;

}

}

}
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APPENDIX C

List of Values of x and s Where Algorithm Fails

By running the program described in Appendix B on sets D = {2, 3, x, x + s} for

10 ≤ s ≤ 40 and 4 ≤ x ≤ s2 − 6s + 3, we find pairs of x and s where the algorithm

fails to find a desirable lower bound for κ. The following list is the output we obtained.

s | Values of x

10 | 5

11 | 5, 6

12 | 5, 6, 11, 17

13 | 4, 5, 6, 10, 18, 23, 24, 28

14 | 4, 5, 9, 10

15 | 4, 5, 10

16 | 5, 6, 11

17 | 5, 6, 11

18 | 5, 23

19 | 4, 5, 10

20 | 4, 5, 6, 10, 15

21 | 4, 5, 6, 10, 11, 16

22 | 5, 6

23 | 5
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24 | 5

25 | 4, 5, 6, 10

26 | 4, 5, 6, 10, 11, 15

27 | 4, 5, 10

28 | 5

29 | 5, 6

30 | 5, 6, 11

31 | 4, 5, 6, 10

32 | 4, 5, 10

33 | 4, 5, 10

34 | 5, 6

35 | 5, 6, 11

36 | 5

37 | 4, 5, 10

38 | 4, 5, 6, 10

39 | 4, 5, 6, 10

40 | 5, 6
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