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Abstract

A graph is called star-extremal if its fractional chromatic number is equal to
its circular chromatic number (also known as the star chromatic number). We
prove that members of a certain family of circulant graphs are star-extremal.
The result generalizes some known theorems of Sidorenko [18] and Gao and Zhu
110]. Then we show relations between circulant graphs and distance graphs and
discuss their star-extremality. Furthermore, we give counter-examples to two
conjectures of Collins [6] on asymptotic independence ratios of circulant graphs.
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1 Introduction

Given a positive integer n and a set S C {1,2,3,---,|n/2]}, let G(n,S) denote the
graph with vertex set V(G) = {0,1,2,--- ,n—1} and edge set F(G) = {wv : [u—v|, €
S}, where |z, := min{|z|,n — |z|} is the circular distance modulo n. Then G(n,S)
is called the circulant graph of order n with the generating set S.

Circulant graphs have been investigated in different fields. Such graphs are
“star-polygons” to geometers [7]. The well-known Adém’s conjecture [1] states:
G(n,S) and G(n,S’) are isomorphic if and only if 8 = kS = {ks : s € S} for
some unity k£ in the ring Z,. Alspach and Parsons [2] proved that this conjecture
does not hold in general. However, it is true for some special classes of circulant
graphs. Parsons [15] characterized the set Aj of connected circulant graphs G(n, S)
such that the neighbors N(z) for each vertex x induce a k-cycle in G(n,S). Then
Adédm’s conjecture was established for circulant graphs in Aj.

In this article, we explore the star-extremality of circulant graphs. A graph is
called star-extremal if its fractional chromatic number and circular chromatic number,
defined below, are equal.

A fractional coloring of a graph (7 is a mapping ¢ from Z((), the set of all
independent sets of (G, to the interval |0, 1] of real numbers such that 3= {c(/) : z €
I'and I € Z(G)} > 1 for any vertex = in . The fractional chromatic number x ¢(G)
of G is the infimum of the weight, w(c) = > {c(I) : I € Z(G)}, of a fractional coloring
c of (&. For a different but equivalent definition of the fractional chromatic number,
we refer the reader to [17].

Let k£ and d be positive integers such that £ > 2d. A (k, d)-coloring of a graph

G = (V, ) is a mapping ¢ from V to {0,1,- -, k—1} such that |c¢(z) — c(y)|x > d for



any edge zy in (. The circular chromatic number x.(G) of GG is the infimum of k/d
for which there exists a (k, d)-coloring of G. The circular chromatic number is also
known as the star-chromatic number in the literature [20].

For any graph @, it is well-known [22] that

max{w(G), S} < (@) < xe(@) <x(@) and [xo(G)] = x(@), ()

where w(Q) is the clique number (i.e., the maximum number of vertices of a complete
subgraph in G); «(G) is the independence number (i.e., the maximum number of
vertices of an independent set in (7.) Hence, a graph (i is star-extremal if the equality
holds in the second inequality in (*).

The notion of star-extremality for graphs arose from the study of the chromatic
number and the circular chromatic number of the lexicographic product of graphs.
The lexicographic product G[H| of G and H is the graph with vertex set V(G) xV (H)
and in which (vy,w)(vs,w2) is an edge if and only if vvy € E(G) or vy = vy and
wywy € F(H) (Informally, we substitute a copy of H for each vertex of G.) It
was proved in [10] that, if G is star-extremal, then x.(G[H]) = x.(G)x(H) for any
graph H. Therefore for any star-extremal graph (, the circular chromatic number,
and hence the chromatic number, of the lexicographic product G;|H] is determined
by x.(G) and x(H). Klavzar [12] also used star-extremal graphs to investigate the
chromatic numbers of lexicographic products of graphs.

The star-extremality for circulant graphs was first discussed by Gao and Zhu
[10]. They proved that if all the vertices of G(n,S) have degree < 3, then G(n,S)
is star-extremal. On the other hand, there exist non star-extremal circulant graphs
(see Section 3 below or [10].) In general, it seems a difficult problem to determine
whether or not an arbitrary circulant graph is star-extremal.

As circulant graphs are vertex-transitive, we know that

Xf(nv S) - n/a(nv S)v (**)



where x¢(n, S) and a(n, S) denote, respectively, the fractional chromatic number and
the independence number for G(n, S). Therefore the determination of the indepen-
dence number of a circulant graph is equivalent to the determination of its fractional
chromatic number. Recently, Codenotti et al. [5] have proved that it is N P-complete
to compute the independence number for general circulant graphs. However, for some
circulant graphs including the ones discussed in this article, the independence number
can be computed in polynomial time.

In Section 2, we focus on the family of circulant graphs whose generating set S
consists of consecutive integers. Given integers k < k' <n/2, let Sy ;s denote the set
{k,(k+1),---,k'}. We will determine the exact value of a(n, Sy ) for any n > 2k’
and k' > (5/4)k. This result is used to prove that the circulant graphs G(n, Si ) are
star-extremal for all n > 2k and k' > (5/4)k.

For some special values of k, k', and n, the circulant graphs G(n, Sy ) have
appeared in several articles. It was proved in [10] that G(n,S1 ) (e, £k = 1) is
star-extremal for all n > 2k’. When k' = 2k — 1 and n > 4k — 1, the circulant graph
G(n, Skap—1) is a triangle-free regular graph with degree 2k. Sidorenko [18] proved
that a(n, Syor_1) = 2k for 6k —2 < n < 8k — 3 and applied this result to answer
a question of Erddés [16], namely, the existence of triangle-free regular graphs on
n(# 3,7,9) vertices with its independence number equal to the degree. Gao and Zhu
[10] then applied Sidorenko’s result to show that the circulant graphs G(n, Sgor—1)
are star-extremal for 6k — 2 <n <8k — 3.

Let 7 denote the set of all integers. For a given finite set .S of positive integers,
the distance graph, denoted by G/(Z,S), has Z as its vertex set and wv forms an
edge if |u —v| € S. Thus the distance graph G(Z,S) can be viewed as the limit
of circulant graphs (G(n,S) as n approaches infinity. In Section 3, we explore the
relation of star-extremality between circulant graphs and distance graphs for general

sets 5.



The independence ratio of a graph G is defined to be a(G)/|V (G)]. In Section
4, we show that for a given 5, the fractional chromatic number of the distance graph
G(Z,S) is equal to the reciprocal of the asymptotic independence ratio of circulant
graphs (i(n,S) as n approaches infinity. Applying this fact, we present counter-
examples to two conjectures of Collins [6] on the asymptotic independence ratio of

circulant graphs.

2 Circulant graphs with interval generating sets

We shall discuss the star-extremality of circulant graphs whose generating sets are
of the form Sy = {k,(k+ 1),---,k'}, where k£ < k' < n/2. For the case that
k' > (5/4)k, we determine the exact values of a(n, Sy ) for all n. Using this result,
we show that such circulant graphs are star-extremal.

One of the tools we shall use is the following multiplier method, which was first
used in [10] and has been applied to solve problems concerning coloring of circulant
graphs as well as distance graphs [3, 19]. Given a circulant graph G(n,S) and a
positive integer ¢, let

Ae(n, S) == min{|ti|, : i € S},

and let

A(n, S) == max{A\(n,S): t =1,2,3,---},

where the multiplications ¢i are carried out modulo n and |z|, is the circular distance
modulo n. For any positive integer ¢, the mapping ¢ on {0,1,2,---,n — 1} defined
by ¢(i) = ti is an (n, Ai(n,S))-coloring for G(n,S) (multiplications are carried out
modulo n.) Hence, x.(n,5) < n/A(n,S). Combining this with (*) and (**), we

obtain the following result.



Lemma 1 ([10]) Let G(n,S) be a circulant graph. Then A(n,S) < a(n,S). More-
over, if A(n,S) = a(n,S), then xs(n,S) = x.(n,5) = n/a(n,5), ie, G(n,S) is

star-extremal.

The value of A(n,S) can be calculated in polynomial time. To be precise, we

have the following:

Lemma 2 Let G(n,S) be a circulant graph. Then A(n,S) = \(n,S) = |ts|, =

|t(—=s)|n for somet, 1 <t <[n/2], ands € S.

Proof. By definition, A:(n,S) = Ap—t(n,S) = Ay(n,S) for any t = ¢’ (mod n), and
[ts|n = [t(—$)]|n- Q.E.D.

Sidorenko [18] proved that a(n,Sgak—1) = 2k if 6k —2 < n < 8k — 3. Later
on, Gao and Zhu [10] proved that A(n, Sy or—1) = 2k under the same condition on n.

Combining these two results with Lemma 1, the following was obtained in [10].

Theorem 3 If k' = 2k — 1, then the circulant graphs G(n, Sy ) are star-extremal

for all n, where 6k —2 <n <8k — 3.

Other special sub-families of the circulant graphs G(n, S ) that have been

studied include the following two.

Theorem 4 ([10]) If k' < n/2, then G(n,S1) is star-extremal and x¢(n,S1 ) =

Xc(n, Sl,k’) - n/Lk,"?J

Theorem 5 ([10]) Suppose k' = k+1 <n/2. If n—2k < min{k,(}, then G(n, Sy i)

is star-extremal and x ¢(n, Spp) = xe(n, Sk ) = n/k.



The proofs of Theorems 4 and 5 are obtained, respectively, by showing a(n, Sy )
= A(n, S1p) = |75 and a(n, Spw) = A(n, Syp) = k under the assumptions on k
and k'

We note here that the circulant graphs G/(n,S) ;) in Theorem 4 are indeed
powers of the cycle C, on n vertices. Given n and r, the r-th power of C,,, denoted
by C7, has the same vertex set as (,, and u,v are adjacent if their distance on the
cycle C,, is not greater than r. Therefore G(n, Sy y) = C¥ by definition.

In their study of the circular chromatic number of planar graphs Gao, Wang, and
Zhou (9] defined a family of planar graphs @,, called triangular prisms, which have
vertex set V' = {ug, uy, ua, - -+, Up_1} U{vo, v1, 9, - -+, v,_1}, and edge set I consisting
of two n-cycles (ug, w1, -+, up_1) and (vo, vy, -+, vp_1) and 2n edges (u;, v;), (Uir1, ;)
for every 0 < i <n—1 (up = u,). In 9], the argument to compute the values of
X£(Qr) is long. The proof can be shortened considerably by applying known results
in circulant graphs. The family of planar graphs @), are precisely the second powers
of even cycles. Indeed, (vy, uy, v1, U, Vo, -+, Up_1, Un_1, Ug) is & cycle of length 2n, and
Qn = C3 . Hence, by Theorem 4, x ;(Qn) = X:(Qn) = 2n/LkQ%J

Now we consider the general family of circulant graphs G(n, Sy ). We view
the vertices of GG(n, Sy ) as circularly ordered in the clockwise direction, and denote
by |a, b] the set of integers {a,a + 1,a + 2,---, b}, where the addition is taken under
modulo n. For example, [2,5] = {2,3,4,5} and [5,2] = {5,6,---,n —1,0,1,2}.

Lemma 6 Suppose I is an independent set of G(n,Syw). Then, for any j, the

cardinality of I N [j,j + k+ K — 1] is at most k.

Proof. By symmetry, it suffices to show that for any independent set I, the car-
dinality of I N[0,k + & — 1] is at most k. Suppose i € [0,k + k' — 1] is the least
element of I. Theni+ ki +k+1,--- i+ kK &l Let A=1]i+ 1,i+k—1/NTI and
B=1li+tkK+1,K+k=1]NI. Ifz € A, then z+ k" ¢ B. Thisimplies |[A|+|B| < k—1.
Therefore [I N[0,k + £ —1]| < k. Q.E.D.



Lemma 7 Suppose G = G(n, Sy ) withn=q(k+k)+r,0<r <k+k—1 Then

A (G) = gk if0<r<K;
A(G)Z{ Ai1(G) =gk +r—FK if F+1<r <K +E-1

Proof. It suffices to show that A\,(G) = gk when 0 <r < kK and A1 (G) = gk +r—F
when ¥ + 1 <r <k +Ek—-1.
If0<r <Kk, then

AQ(G) — Hlln{ qka Q(k + 1)7 Q(k + 2)7 Tty qklv
n—qk,n—qlk+1),n—qk+2), - ,n—qk}

Because gk < gk +1)<---<gkl andn—qgk>n—qlk+1)>n—qk+2)>--- >
n — gk’, it is enough to show n — gk’ > gk. This is true since n — gk’ = gk + r > gk.
IfE+1<r<kK+ k-1, then

Agr1(G) = min{ (g+ Dk, (g+ 1)(k+1),(¢g+ D(k+2), -, (¢g+ DF,
n_(qTLl)kvn_(QTLl)(k)Jr1)7"'7n_(q7L1)k/ }

Because (q+ 1)k < (g+ D)(k+1) < (¢g+1)(k+2) <+ < (¢+ 1)K andn—(q+ 1)k >
n—(qg+1)(k+t1)>n—(qg+1)(k+2)> - >n—(q+ 1)k = gk+r—F, it is enough to
show gk+r—Fk < (q+1)k—1. Thisis truesince gk +r—Fk < gk+ (k+k —1)—k =
(g+ 1)k —1. Q.E.D.

Theorem 8 Suppose G = G(n, Sy ) and k' > (5/4)k. Let n = q(k + k') + r, where
0<r<k+kK—1. Then

B | gk if 0<r <K,
OZ(G)A(G){ ghtr—k ifE+1<r<k+k—L

Equivalently, a(G) = AM(G) = gk + max{0,r — k'}.

Proof. Let n=gqk+ k) +7r, 0<r <k+ Kk —1. By Lemmas 1 and 7, it suffices
to show that a(G) < gk + max{0,r — k'}. If ¢ = 0, the result follows from Lemma 6.
Thus we may assume g > 1.

Assume to the contrary that «(G) > gk + max{0,r — k'}. Let I be a maximum

independent set of G. Regard [ as a disjoint union of I-intervals, where an I-interval
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is a maximal interval [a,b| consisting of vertices in I. Then the length (namely,
the number of vertices) of any [-interval is between 1 and k. By Lemma 6 and
the assumption that ¢ > 1, there are at least two [-intervals. Assume that the
independent set I chosen has the minimum number of I-intervals among all maximum
independent sets of (.

Two I-intervals [a,b] and [¢,d] are called consecutive if b+ 1,¢c—1]N1 = 0.
Note that the consecutive “relation” is not symmetric, i.e., [a,b] and |c,d| being
consecutive does not imply that [c,d| and [a, b] are consecutive. (Indeed, ¢, d| and
la, b] are not consecutive if |a, b] and [c, d| are consecutive and I contains more than
two [-intervals.) For two consecutive [-intervals [a, b| and |c, d], the cardinality of the
set (b4 1,c — 1] is called the gap between them.

First we show that if [a,b] and [c, d]| are two consecutive [-intervals, then b +
E+1<c+k—1 (or equivalently, b — k+1 < c— k' —1). Here we assume, without
loss of generality, that 0 < a < b < ¢ < d < n — 1. Suppose to the contrary that
b+k +1>c+k. Forany b+ 1 <z <c—1,ifyisadjacent to x then straightforward
calculations show that ¥ is adjacent either to b or to ¢. Hence none of the neighbors of
x isin I. This implies that the set I' = TU[b+ 1, ¢— 1] is independent with |I'| > ||,
which contradicts our choice of I.

Next we show that the gap between any two consecutive [-intervals is at most
k — 2. Suppose to the contrary that there exist consecutive [-intervals [a, b] and |c, d]
such that |[b+ 1,c¢—1]| > k—1. Since [a,b] C I, it follows from the definition of S} s
that [a + k, b+ K']NIT = 0. Hence b+ 1,b+ k'] NI = 0. We partition the interval
b+ K +1,b (=[0,n—1]—[b+1,b+ E]) into sub-intervals of length k+ &', except the
last sub-interval which may have size less than k+ &' (when r > '+ 1.) If 0 <r < ¥/,
then the number of such sub-intervals is equal to q. By Lemma 6, |I| < gk, which
is contrary to our assumption. If ¥ +1 < r < k+ k' — 1, then the number of such

sub-intervals is equal to ¢ + 1, and the last interval has size r — k. Again, it follows



from Lemma 6 that |I| < gk+r—k’, which is contrary to our assumption. Therefore,
the gap between any two consecutive [-intervals is at most & — 2.

Now we show that the gap between any two consecutive [-intervals is greater
than 2(k" — k). Assume to the contrary that [a, b| and |c, d| are consecutive [-intervals

with gap ¢, t < 2(k — k). Let
I'=({Upb+1l,c—1)—(b+ K +1l,c+k—1]Ub—k+1,c—K —1]).

It is clear that I’ is an independent set of G with |I'| > |I| +t—2(t — (K —k)) > ||
Hence, I’ is a maximum independent set with less intervals than I, which is contrary
to our assumption.

We conclude that the gap between any two consecutive I-intervals is between
2(K' — k) + 1 and k£ — 2. In particular, this implies that 2(k' — k) +1 < k — 2, for
otherwise, we have already arrived at a contradiction. Now by the assumption that
k' > (5/4)k, the gap between any two consecutive I-intervals is between £ + 1 and
k — 2. This implies that any set of k consecutive vertices in GG intersects exactly two
I-intervals.

For any consecutive [-intervals [a,b] and [¢, d], we claim that |[a, b]| + |[¢,d]| <
E —1. First we note that |[a, d]| < k. For otherwise, we would have d > a + k. This
implies ¢ > b+ k' + 1 since [a + k,b+ k'] NI = 0. Then the gap between [a,b] and
[e, d] would be greater than k — 2, a contradiction. It follows that |[a, b]| + |[c, d]| <
k—2(kK —k)—1<%—1since ¥ > (5/4)k.

Now choose two consecutive [-intervals |a, b] and [c, d| such that |[a, b]| + |[c, d]|
is the largest among all pairs of consecutive [-intervals. Let |u,v| be the [-interval
preceding |a, b] (i.e., |u,v| and |a, b] are consecutive [-intervals) and let [z, y| be the I-
interval following [c, d]. Since |I]| > gk > k and since the union of any two consecutive
I-intervals contains at most g — 1 vertices, we know that there are at least five I-
intervals. So the intervals |a, b], |c,d|, [u,v], and [z,y] are distinct.

We now show that |z,y] (respectively, |u,v]) is the only [-interval included in

10



b+ K + 1, ¢+ k—1]| (respectively, in [b— k+ 1,¢— k' — 1]). Because |a,b], [c,d] C I,
we have ([a+ k, b+ K']UJc+k,d+ K'])NI = 0. In addition, by the arguments above,
la, b, [c,d] and [c, d], [x,y| are the only two [-intervals included in |a,a + k£ — 1] and
lc,c+ k — 1], respectively. Hence [z,y| C[b+ k' + 1,c¢+ k— 1] and [z,y] is the only
I-interval included in [b+ k' + 1,¢+ k —1]. Similarly, we can show that |u,v] is the
only [-interval included in b —k+ 1,c— k' —1].

According to the choice of [a,b] and [c, d|, we have |[u, v]| < ||¢,d]| and ||z, y]| <

|la, b]|. Therefore |[u, v]| + |[z,y]| <|la,b]| + |[c,d]| < & —1. Let
I'=({Ub+1,c—1]) = ([u,v] Uz, y]).

By the discussion in the previous paragraph, it is clear that I’ is an independent set

with
k k
I'N>|I+=+1—(=—1)>|I
2+ 5+ 1= = 1) > 1],
which contradicts our maximality assumption about 1. Q.E.D.

Corollary 9 If k' > (5/4)k, then G(n, Sy ) is star-extremal.

Theorem 10 Suppose G = G(n, Spp) withn =gk + k) +r, 0 <r <k+ kK —1,
and
1 K kK
q > — — .
k—k k+FK (E—K)k+F)

Then G is star-extremal. Moreover, the values of a(G) and A\(G) are the same as in

Theorem 8.

Proof. Let I be a maximum independent set of (G. The [-intervals are similarly
defined as in the proof of Theorem 8. Assume that the chosen set I has the minimum
number of [-intervals among all maximum independent sets of G. Then the gap
between any two consecutive [-intervals, as shown in the proof of Theorem 8, is

between 2(k' — k) + 1 and k — 2.

11



In the following, we show that for any 4, |[I N [i,¢ + k+ k' —1]] <2k — K. Let
a be the least element of I N [i,i+ k+ k' — 1] and let [a,b] be the first non-empty
intersection of an [-interval with [i,4 + k£ + &’ — 1]. Note that when a = 4, [a, b may
be a part of an [-interval. Similarly, let [c, d] be the last non-empty intersection of
an I-interval with |a, a + k]. By the proof of Theorem 8, [a,b] and [, d] are the two
I-intervals included in [a,a + k — 1], so |a, b] # [c, d].

In addition, it is true that I N[c— (k' —k),c—1] = @ since the gap between any
two consecutive [-intervals is at least 2(k' — k) > k' — k. Because I N ([c+ k,d+ k'|U

la+ k,a+ K1) =0, the following is clear.
INiyi+k+k—-1cInfaa+k+k —1]=[c,dU(IN(AUB)),

where A = [a, c— (K —k)—1|U[d+1,a+k—1] and B = [a+F, c+k—1|U[d+ K +1,a+ k+
k'—1]. For each vertex x € A, we have z+ k' € B. Soifz € INA, thenz+k € B—1,
and vice versa. This one-to-one correspondence implies that [IN(AUB)| < |A| = |B].
Therefore, [I N[i,i + k+ K —1]| <|A| + |le,d]| =k — (K — k) =2k —F.

Foreach 0 <i<n—1,letn;, = |[INii+ k+ k' —1]|. Then

n—1
(k+ )T = 3 ns < n(2k — k).

0
Now if 0 < r < K/, then by Lemmas 1 and 7, it suffices to show that a(G) = |I] < gk.

Assume to the contrary that |I| > gk + 1. Since n < g(k + k') + kK, we have
(k+ k) gk +1) < (q(k+F)+K)2k—F).

A contradiction emerges after simplifying this inequality.
If ' <r < k+ K —1. It sufffices to show that |I| < gk +r—FK. If |I| >

gk +r— K + 1, then
(E+E)qgk+r—K+1)<(qlk+K)+r)(2k—F).

This inequality leads to a contradiction, too. Q.E.D.

12



3 Circulant graphs and distance graphs

Circulant graphs and distance graphs are closely related. Given a finite set S of
positive integers, the distance graph (G(Z, S) can be viewed as the limit of the sequence
of circulant graphs G/(n,S) as n approaches infinity. Therefore, for a given 9, if
G(n,S) is star-extremal for all n, then G(Z, S) is star-extremal. However, the reverse
of this implication is not always true. Take S = {1,3,4,5}. It is known [3] that
G(Z,S) is star-extremal, while it was proved [10] that x;(10,5) = 5 < x.(10,5) = 6.
So (G(10, S) is not star-extremal.

In this section, we prove that, for a given S, if the distance graph G(Z,5)
is star-extremal, then there exist infinitely many n such that the circulant graphs
G(n,S) are star-extremal.

The fractional chromatic number y((7,S) for a distance graph G(Z,5) has
very close connections with T-coloring [13] and an earlier number theory problem
about the density of sequences with missing differences. For references about these
connections, we refer the reader to [4, 11, 14]. Among the results in [4], it is proved
that y(Z,5) always exists and is a rational number for any finite S.

A homomorphism (or edge-preserving map) from a graph i to another graph
H is a mapping f : V(G) — V(H) such that f(u)f(v) € E(H) if wv € E(G). If such
a homomorphism exists, we say that ¢ admits a homomorphism to H and denote
this by G — H. If G — H, then we have x¢(G) < xs(H) and x.(G) < x.(H) by

composition of functions.

Lemma 11 For a given S, G(Z,5) — G(n,S) for all n > 2max S, where max S

denotes the largest member of the set S.

Proof. Define a mapping f: 7 — [0,n — 1] by f(x) =  mod n. It is easy to verify
that f is a homomorphism from G(7,5) to G(n, S). Q.E.D.
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Corollary 12 For a given S, x.(Z,5) < x.(n,5) and x:(Z,5) < x¢(n,S) for all

n > 2maxS.

Theorem 13 If G(Z,S) is star-extremal for a given S, then there ezists a positive

integer m such that G(km,S) is star-extremal for any positive integer k.

Proof. By a result in [4|, we may assume x.(Z,5) = x¢(Z,5) = p/q for some
rational number p/q. Let d = max S. According to Corollary 12, it is enough to show
that, for some m > 2d, there exists a (p, g)-coloring for any G'(km,S) because we

would then have

p/q = xs(Z,5) < xp(mk,S) < x.(mk,S) < p/q.

Since x.(Z,S) = p/q, by a result in [10], there exists a (p, ¢)-coloring f : 7 —
0,p—1] of G(Z,5). Partition non-negative integers into blocks such that each block
consists of p? consecutive vertices. Consider the restriction of f to these blocks. By the
pigeonhole principle, there exist two blocks with the same color sequence. Let x and y
be the leading vertices of these two blocks such that x < y. Then f(x+1i) = f(y+ 1)
for 0 <i < p?—1. Let m = y — . Define the mapping f'(j) = f(z + j) for
0 <j<m—1. It is clear that f"is a (p, g)-coloring for GG(m, S).

For k > 2, define a mapping f” : [0, km — 1] — [0,p — 1] by f"(v) = f/(v mod
m). It is clear that f” is a (p, ¢)-coloring for G'(km, S). Q.E.D.

4 Independence ratio

In this section, we discuss relations between the independence ratio and the fractional
chromatic number of circulant graphs and distance graphs. Based on these relations,

we give counter-examples to two conjectures of Collins [6].
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Let S = {ay,as,---,a;} be a set of positive integers with a; < ay < --- < ;. In
her study of the asymptotic independence ratio of the circulant graphs GG(n, S), Collins
introduced the S-graph, denoted by G(5), which has vertex set V = {0,1,2,---, a1+
a; — 1} and edge set ¥ = {uv : |u —v| € S}. Note that G(5) is not necessarily a
circulant graph.

Given n and S, let u(n,S) = a(n,S)/n and p(S) = a(G(S))/(a1 + a;) de-
note the independence ratio of the circulant graph G(n,S) and the S-graph G(S5),
respectively. The asymptotic independence ratio L(S) of a given set S is defined in
6] by

L(S) = lim u(n,S).

According to (**), we have u(n,S) = 1/xs(n,S). Combining this with the fact that

X¢(Z,5) = lim,_ xs(n,S), the following result is obtained.
Theorem 14 L(S) = 1/x¢(Z,S) for any given S.

A set S = {ay, a0, -, a1}, a1 < ay < -+ < ap, | > 2, is called reversible if
ay+ap = ay +ag =0 = aptary. Collins [6] proved that L(S) = u(S) if S is

reversible and proposed the following:

Conjecture 1 (/6/) Suppose S = {ay, a0, -, a1}, a3 < as < -+ < a;, | > 2, is a

reversible set. Then a(n,S) = |nu(S)]| for any integer n satisfing n > a; + 2aq;.

We now give a counter-example to Conjecture 1. The interval set S}, » studied
in Section 2 is reversible. However, by Lemma 6 and Theorem 8, we have u(Sy ) =
k/(k+ k) and a(n, Sy p) # [np(Skw)| when k' > (5/4)k, n = q(k + k') + r, and
r >k + 1.

For a non-reversible set S, Collins [6] gave two methods for constructing re-
versible sets from §. Let S = {a1,a0,---,q;} and let x = a;_1 + a; and y = a; + q;.
Define § = SU (z — ) (here & — S is the set {z —i | i € §}) and S = S U (y — 9).
Collins [6] showed that L(S) > max{u(5), 4(S)} and proposed the following:

15



Conjecture 2 (/6]) L(S) = max{u(S), u(S)}.

13

For a counter-example to this conjecture, take S = {1,2,3,6}. It is known

and easy to see that w(Z,5) = x(Z,5) = 4, so x¢(Z,5) = x.(4,5) = 4.

Hence L(S) = 1/4. But § = {1,2,3,6,7,8}, S = {1,2,3,4,5,6}, u(S) = 2/9, and

w(S) = 1/7.
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