Cal State Los Angeles Department of Mathematics
Complex Analysis Comprehensive Examination
Spring 2023

Committee: Akis, Shaheen*

Directions: Do five of the following seven problems. If you turn in more than five, the best five will be used.

1. Let $f(z)=e^{\bar{z}}$. Show that $f^{\prime}(z)$ does not exist for any complex number z.
2. Let $S=\{x+i y \mid 0 \leq x \leq 2$ and $3 \pi / 4<y \leq 5 \pi / 4\}$.
(a) Sketch S.
(b) What is the image of S under the function $f(z)=e^{z}$? Sketch it. Label some points on the graph so that it is accurately described.
3. Calculate $\int_{\gamma} \frac{1}{\left(z^{2}+z+1\right)^{2}} d z$ where γ is the circle $|z|=2$ oriented counterclockwise.
4. Find all the singular points and residues of $f(z)=\frac{1}{e^{z}-1}$.
5. Show that $z^{6}+9 z^{4}+z^{3}+2 z+4$ has four roots inside the unit circle.
6. Suppose that $f(z)=u(x, y)+i v(x, y)$ is a continuous function on a compact region R and $f(z)$ is analytic and non-constant in the interior of R. Show that the component function $u(x, y)$ attains a maximum value on the boundary of R and never in the interior of R.
7. If possible, find an entire function $f(z)$ that maps the real and imaginary axes onto themselves, and such that $f(0)=0, f(1)=1, f(-1)=-1$, $f(i)=-i, f(-i)=i$. If no such function exists, then explain why it does not exist.
