
APPROVAL PAGE FOR GRADUATE THESIS OR PROJECT

GS-13

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR

DEGREE OF MASTER OF SCIENCE AT CALIFORNIA STATE UNIVERSITY,

LOS ANGELES BY

Preston T. Smith
Candidate

Mathematics
Department

TITLE: UTILIZING WREATH PRODUCTS TO CONSTRUCT A

SEQUENCE OF CAYLEY GRAPHS WITH LOGARITHMIC

DIAMETER

APPROVED: Dr. Mike Krebs
Committee Chairperson Signature

Dr. Anthony Shaheen

Faculty Member Signature

Dr. Daphne Liu

Faculty Member Signature

Dr. Grant Fraser
Department Chairperson Signature

DATE: June 12, 2013



UTILIZING WREATH PRODUCTS TO CONSTRUCT A

SEQUENCE OF CAYLEY GRAPHS WITH LOGARITHMIC DIAMETER

A Thesis

Presented to

The Faculty of the Department of Mathematics

California State University, Los Angeles

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Preston T. Smith

June 2013



c© 2013

Preston T. Smith

ALL RIGHTS RESERVED

ii



ACKNOWLEDGMENTS

Preparing this thesis has definitely been my most memorable learning expe-

rience at CSULA. I am truly grateful Dr. Krebs, my thesis advisor, gave me the

opportunity to work with him during the 2012/2013 academic year. I certainly ap-

preciated all the comments and suggestions Dr. Krebs provided while I was working

on this thesis. Most of all, I am grateful he encouraged me to write a mathematical

paper.

I would like to also thank Dr. Liu and Dr. Shaheen for serving as committee

members and for all their wonderful comments as well. I want to also thank all of

the professors at CSULA who taught me mathematics, plus all of the students who

studied mathematics with me. I would like to also thank Gustavo A. Gordillo for

helping me with figures. They look amazing!

Most of all, I want to say thanks to my family for all of their love and support

throughout the years.

iii



ABSTRACT

Utilizing Wreath Products to Construct a

Sequence of Cayley Graphs with Logarithmic Diameter

By

Preston T. Smith

In this thesis, we will recursively construct a sequence of groups using semidi-

rect products. Using it, we will then construct a sequence of symmetric multi-subsets

to generate a sequence of 3-regular Cayley graphs with logarithmic diameter. We will

then show that our sequence of Cayley graphs is not an expander family.
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CHAPTER 1

Introduction

If we think of graphs as communication networks, then an expander family is consid-

ered a quick, inexpensive and reliable communication networks, that is, they are good

communication network (see Definition 2.29). Throughout the past few decades, nu-

merous applications of expander families has occurred in computer science, so math-

ematicians are currently searching for necessary and sufficient conditions to construct

expander families with d-regular Cayley graphs, which do in fact exists for each in-

teger d ≥ 3; Moreover, if a sequence of d-regular Cayley graphs is randomly selected,

it will more than likely be an expander family, but constructing an expander family

is nontrivial.

According to [3], no sequence of finite abelian groups yields an expander family.

Also, solvable groups with bounded derived length does not yield an expander family

(§2.4). The optimal diameter growth rate for a sequence of graphs is logarithmic

(§2.2). Expander families do in fact have logarithmic diameter; however, if a sequence

of d-regular Cayley graphs has logarithmic diameter, it is not necessarily an expander

family [3]. For instance, the sequence of cube-connected cycle graphs has logarithmic

diameter but it is not an expander family, and this sequence of 3-regular Cayley

graphs was constructed by applying wreath products [3].

In Chapter 3, we will also utilize wreath products to construct a sequence
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of 3-regular Cayley graphs with logarithmic diameter; nevertheless, Proposition 3.6

shows us that this sequence of Cayley graphs is not an expander family. Currently,

there is no evidence that shows us a sequence of groups formed by iterating semidirect

products with Z2 can possibly yield an expander family, and this serves as a notable

research project.
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CHAPTER 2

Preliminaries

2.1 Cayley Graphs

In this section we begin by stating a general definition of a graph, and we will intro-

duce some basic terminology from graph theory that will be applied throughout this

paper. However, in this paper, we will mainly be interested in Cayley graphs (see

Definition 2.14). Cayley graphs are constructed by elements of a finite group, so we

can derive properties of a graph from properties of the group. Proposition 2.16 will

provided us with a couple of useful facts about Cayley graphs.

We will use the dihedral group Dn throughout this paper, so see Appendix A

for notational conventions and facts about the dihedral group.

Definition 2.1. A multiset is, roughly speaking, a set in which elements are allowed

to be repeated. The number of times a particular element is listed in a multiset is called

the multiplicity of that element. The order of a finite multiset S, denoted by |S|,

is defined to be the number of elements in S, including multiplicity.

From the definition of a multiset, we see that multisets generalize sets. For

example, if X = {α, β, ξ} and Y = {α, α, α, β, β, ξ} are viewed as sets, then X = Y ;

however, if X and Y are seen as multisets, then X 6= Y since α ∈ X is of multiplicity

1 while α ∈ Y is of multiplicity 3. Also, notice that the order of the set Y is 3, but

the order of the multiset Y is 6.
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Definition 2.2. A graph X consists of a vertex set V and an edge multiset E. The

vertex set V can be any collection of objects. The elements of the edge multiset E

are sets of the form {v, w} where v and w are distinct vertices, or {v} where v ∈ V .

An edge of the form {v} is referred to as a loop. Two distinct vertices v and w

are adjacent or neighbors if {v, w} ∈ E, in which case we say the edge {v, w} is

incident to the vertices v and w. A vertex v is adjacent to itself if {v} ∈ E, and we

say the loop {v} is incident to v.

We can easily sketch a graph because they do not require any artistic skills or

even a straightedge and compass. To do so, begin by drawing a dot or a circle for

each vertex anywhere on a piece of paper. If two vertices are adjacent, draw an arc

between their corresponding dots. If a vertex is adjacent to itself, draw a circle at its

corresponding dot.

Figure 2.1: A Graph That is Not Regular
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In our definition of a graph, we allow our graphs to have multiple edges since

E is a multiset; however, some authors refer to a graph with multiple edges as a

multigraph. The main focus of this paper will be graphs with no multiple edges, but

we have stated a general definition so we can observe various examples throughout

this chapter to help us visualize the definitions.

Also, the edges in our definition have no direction because they are defined as

sets. If we were interested in directed graphs in this paper, we could simply define

an edge to be an ordered pair, say, (v, w) where v is called the initial point and w

is called the terminal point, or (v, v) where v is both the initial and terminal point

(that is, a loop). However, we will not be using directed graphs in this paper.

Remark 2.3. The graph in Figure 2.1 has vertex set V = {1, 2, 3, 4}. Notice that the

vertex 1 has a loop, and the vertices 2 and 3 are adjacent. Also, the edge {2, 3} is of

multiplicity 2, that is, there are two edges {2, 3} in the edge set that are incident to

2 and 3.

Definition 2.4. The degree of a vertex v, denoted by deg(v), is the number of edges

incident to v.

Definition 2.5. The order of a graph X, denoted by |X|, equals the cardinality of

the vertex set.

Remark 2.6. In figure 2.1, deg(4) = 1 and deg(3) = 3, and the order of the graph

is 4. The order of the graph is figure 2.2 is 8.

Definition 2.7. A graph is said to be d-regular when every vertex has degree d.

Remark 2.8. The graph in Figure 2.1 is not a regular graph since deg(4) = 1 and

deg(3) = 3. The graphs in Figures 2.2 and 2.5 are both 3-regular graphs. The graph
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in Figure 2.3 is 2-regular. The graph in Figure 2.4 is 4-regular.

Figure 2.2: Cay(Z8, {1, 4, 7})

Definition 2.9. Let X be a graph with vertex set V , and let v0, vn ∈ V . A walk of

length n from v0 to vn in X is a finite sequence in the form

w = (v0, v1, . . . , vn)

where vi is adjacent to vi+1 for i = 0, 1, . . . , n− 1.

Definition 2.10. A graph X with vertex set V is connected if for any x, y ∈ V

there is a walk from x to y. Otherwise, the graph is said to be disconnected.

Figure 2.3: A Disconnected Graph

Remark 2.11. The graph in Figure 2.3 is disconnected since there is no walk from

vertex 1 to the vertex 2. The graphs in Figures 2.2 and 2.4 are connected.
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Definition 2.12. Let X be a graph with vertex set V . The distance between two

vertices x, y ∈ V , denoted by dist(x, y), is defined to be the minimal length of all

walks from x to y; however, if there is no walk from x to y in X, we will define

dist(x, y) =∞. The diameter of X is given by

diam(X) = max
x,y∈V

dist(x, y).

According to our definition, note that diam(X) =∞ if X is disconnected.

Definition 2.13. Let G be a group. A subset Γ of G is called a symmetric subset

of G if γ−1 ∈ Γ for each γ ∈ Γ. We will write Γ⊂sG to denote that Γ is a symmetric

subset of G.

Figure 2.4: Cay(D6, {s, s, r, r2})

Definition 2.14. Let G be a group and Γ⊂sG. The Cayley graph of G with respect

to Γ, denoted Cay(G,Γ), is defined as follows:

(1) G is the vertex set.

(2) Two vertices g, h ∈ G are adjacent if and only if there exists γ ∈ Γ such that

x = yγ.

Remark 2.15. The graphs in Figures 2.2, 2.4, and 2.5 are examples of Cayley graphs.
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Proposition 2.16. Suppose G is a group and Γ⊂sG. Then the following statements

are true:

(1) Cay(G,Γ) is |Γ|-regular, and

(2) Cay(G,Γ) is connected if and only if Γ generates G as a group.

Proof of (1). Suppose g ∈ G is a vertex of Cay(G,Γ), and suppose Γ = {γ1, γ2, . . . , γd}.

Then by definition, the neighbors of g are the vertices gγ1, gγ2, . . . , gγd, which includes

multiplicity since each element of Γ is listed above and γi’s are not necessarily dis-

tinct. Hence, g is adjacent to exactly d vertices, so there are exactly d edges incident

to g, and so the vertex g has degree d = |Γ|. Since g was arbitrary and deg(g) = d,

we see that Cay(G,Γ) is |Γ|-regular as claimed.

Proof of (2). Let 1G be the identity element of the group G and let g ∈ G. Suppose

Cay(G,Γ) is a connected graph, then there is a walk from 1G to g, and so there exist

γ1, . . . , γn ∈ Γ such that

g = (1Gγ1 · · · γn−1)γn = γ1 · · · γn.

Since g is written as a finite product of elements of Γ, this shows us that Γ generates

G as a group.

Conversely, suppose Γ generates G. Let g ∈ G. Then there exist γ1, . . . , γn ∈ Γ

so that g = γ1 · · · γn = 1Gγ1 · · · γn. Notice that 1Gγ1 · · · γn gives the walk

(1G, 1Gγ1, 1Gγ1γ2, . . . , 1Gγ1 · · · γn) = (1G, 1Gγ1, . . . , g).

So, for any g ∈ G there is a walk from 1G to g. Thus, for every h, g ∈ G, there is a

walk from g to h; it can easily be obtained by reversing the order of the walk from g
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to 1G and then traversing the walk from 1G to h. Therefore, Cay(G,Γ) is a connected

graph.

2.2 Diameters of Cayley Graphs

According to [3], the best possible diameter growth rate for a sequence d-regular

Cayley graphs is logarithmic. We begin this section by introducing the type of se-

quence we desire. But, the main purpose of this section is to discuss how we can

find the diameter of a Cayley graph in terms of the underlying group structure in

Proposition 2.22.

Definition 2.17. Let f and g be real-valued functions defined on the set of natural

numbers. If there exists a positive real number C and a natural number N such that

|f(n)| ≤ C|g(n)| for every n > N , we will write f(n) = O(g(n)). Otherwise, we will

write f(n) 6= O(g(n)).

The “big oh” notation tells us the behavior of a function f for large enough

values of n. That is, we will use “big oh” notation to help us estimate the end behavior

of a function f(n) as n tends to ∞ compared to a standard function that is familiar

to us. More precisely, for the purpose of this paper, we will search for a sequence of

graphs whose diameters have a growth rate less than or equal to the growth rate of a

constant multiple of the logarithmic function of the order for sufficiently large values

of n.

Definition 2.18. A sequence (Xn) of graphs is said to have logarithmic diameter

if

diam(Xn) = O(log |Xn|).
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Definition 2.19. Let (Gn) be a sequence of finite groups. If a sequence of d-regular

Cayley graphs Cay(Gn,Γn) has logarithmic diameter, then (Gn) is said to have log-

arithmic diameter.

Definition 2.20. Let Γ be some set. If n ≥ 1, then a word of length n in Γ is an

element of the Cartesian product

Γ× · · · × Γ = Γn.

If G is a group, Γ⊂sG, and w = (w1, ..., wn) ∈ Γn, then we say w evaluates to g ∈ G

if g = w1 · · ·wn.

Definition 2.21. Let G be a group and Γ ⊂ G. If g ∈ G can be written as a word

in Γ, we define the word norm of g in Γ to be the minimal length of any word in Γ

that evaluates to g. If g ∈ G can not be expressed as a word in Γ, we define the word

norm of g in Γ to be ∞.

According to [3], “the standard convention is to say that the word of length 0

evaluates to the identity element. So the identity element has word norm 0.”

Proposition 2.22. Suppose G is a finite group and Γ⊂sG. Let X = Cay(G,Γ). Then

the following statements are true:

(1) X is a connected graph if and only if each element of G can be expressed as a

word in Γ.

(2) Suppose a, b ∈ G and there exists a walk in X from a to b. Then the distance

from a to b is the word norm of a−1b ∈ Γ.

(3) The diameter of X is equal to the maximum of all the word norms in Γ of

elements in G.

10



Proof. (1) The details of this proof are equivalent to part (2) of Proposition 2.16.

(2) Suppose (g0, g1, . . . , gn) is a walk of length n in X from a to b. Note that

g0 = a and gn = b. Since gi−1 and gi are adjacent vertices for each i = 1, . . . , n,

g−1i−1gi ∈ Γ. So, let γi = g−1i−1gi for each i = 1, . . . , n. Then notice that

γ1γ2 · · · γn = g−10 g1g
−1
1 g2 · · · g−1n−1gn = g−10 gn = a−1b,

and so we see that the word (γ1, γ2, . . . , γn) of length n in Γ evaluates to a−1b.

Conversely, if we are given a word of length n in Γ that evaluates to a−1b and

we reverse the procedure above, we will see that there is a corresponding walk

of length n in X from a to b.

Recall that the distance from a to b in X is equal to the minimal length of

all walks in X from a to b, which is equivalent to saying the distance from a

to b in X equals the minimal length of any word on Γ that evaluates to a−1b.

Therefore, the distance from a to b in X is equal to the word norm of a−1b ∈ Γ.

(3) Recall that

diam(X) = max
x,y∈G

dist(x, y).

By (2) dist(x, y) equals the word norm of x−1y ∈ Γ, and so diam(X) equals the

maximum of word norms in Γ of elements in G as desired.
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Figure 2.5: Cay(D4, {s, r, r3})

Remark 2.23. Let X = Cay(D4, {s, r, r3} as shown in Figure 2.5. Notice that the

word norm of sr2 in Γ is 3 since (s, r, r) is a word of minimal length in Γ that evaluates

to sr2, and in fact, diam(X) = 3.

2.3 Isopermetric Constants and Expander Families

The objective of this section is to define the isopermetric constant of a graph, define

an expander family, plus make reference to the Quotients Nonexpansion Principle.

Intuitively speaking, the isopermetric constant is a quantity that measures the rate

information flows through the graph, and according to [3], “the isoperimetric constant

provides some measure of connectivity in a graph.” Roughly speaking, expander fam-

ilies are good communication networks. We will use the Quotients Nonexpansion

Principle in Chapter 3 to show that the sequence of Cayley graphs we will construct

is not an expander family.

Definition 2.24. Let X be a graph with vertex set V and edge set E. Let F ⊂ V .

The set

∂F = {{v, w} ∈ E | v ∈ F,w ∈ V − F}

12



is called the boundary of F .

Notice that ∂F is the set of edges in X connecting F to V −F , that is, the set of

edges incident to a vertex of F and a vertex of V −F . Also, note that ∂F = ∂(V −F ).

Definition 2.25. The isoperimetric constant of a graph X with vertex set V is

defined to be

h(X) = min

{
|∂F |
|F |

: F ⊂ V, |F | ≤ |V |
2

}
= min

{
|∂F |

min{|F |, |V − F |}
: F ⊂ V

}
.

The isoperimetric constant has various names throughout the literature such

as the expansion constant, the edge expansion constant, the conductance, or the

Cheeger constant.

Remark 2.26. Suppose X is a graph with vertex set V . If F ⊂ V with |F | ≤ |V |
2

,

then by definition |∂F | ≥ h(X)|F |, and so we see that the size of the boundary of F

is at least h(X) times the size of F .

Definition 2.27. Suppose (αn) is a sequence of nonzero real numbers. Then (αn)

is said to be bounded away from zero if there exists a real number ε > 0 so that

αn ≥ ε for every n.

Example 2.28. The sequence
(

1
2n

)
is not bounded away from zero, but the sequence(

2n+3
5n+7

)
is bounded away from zero.

Definition 2.29. Suppose d is a positive integer. Suppose (Xn) is a sequence of d-

regular graphs such that |Xn| → ∞ as n → ∞. If the sequence (h(Xn)) is bounded

away from zero, then (Xn) is called an expander family.

Definition 2.30. Let (Gn) and (Qn) be sequences of finite groups. If for each n there

13



exists HnEGn such that Gn/Hn
∼= Qn, we will say (Gn) admits (Qn) as a sequence

of quotients.

Definition 2.31. A sequence (Gn) of finite groups yields an expander family if

for some d ∈ N there is a sequence (Γn), where for each n we have that Γn ⊂sGn with

|Γn| = d, such that the sequence of Cayley graphs Cay(Gn,Γn) is an expander family.

The next proposition, called the Quotients Nonexpansion Principle, was found

in [3], and it is an extremely important result which we will apply in the proof of

Proposition 3.6.

Proposition 2.32 (Quotients Nonexpansion Principle). Let (Gn) be a sequence of

finite groups. If (Gn) admits (Qn) as a sequence of quotients, |Qn| → ∞, and (Qn)

does not yield an expander family, then (Gn) does not yield an expander family.

The details for the proof of the Quotients Nonexpansion Principle can be found

in [3] on page 54.

2.4 Solvable Groups and Derived Length

In this section, we being by reviewing the definition of a commutator subgroup, plus

we will remind ourselves of a few properties in Proposition 2.34 and Proposition 2.36.

Then we will discuss the definition of a solvable group with derived length. In Example

2.40, we will see that the dihedral group Dn is solvable with derived length. The

highlight of this section is Theorem 2.41, which is an important result from [4]; in

short, it states that a sequence of solvable groups with bounded derived length is not

an expander family. We take advantage of Theorem 2.41 by applying it in Example

2.42.
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Definition 2.33. Let G be a group and let g, h ∈ G. The commutator of g and h

is defined by [g, h] = g−1h−1gh. The commutator subgroup of G, denoted G′, is

the subgroup of G generated by all commutators in G, that is, G′ = 〈[g, h] | g, h ∈ G〉.

Notice that [g, h] = g−1h−1gh = 1 if and only if gh = hg; that is [g, h] = 1 if

and only if g and h commute, which explains the name “commutator.” Moreover, a

group G is abelian if and only if [g, h] = 1 for every g, h ∈ G, and so G is abelian if

and only if G′ = 1.

Now, we will introduce some useful statements regarding commutator sub-

groups.

Proposition 2.34. If G is a group, then G′ EG.

Proof. Let g ∈ G and let [α, β] ∈ G′. Then

g[α, β]g−1 = gα−1β−1αβg−1

= gα−1g−1gβ−1g−1gαg−1gβg−1

= (gαg−1)−1(gβg−1)−1(gαg−1)(gβg−1) ∈ G′.

Therefore, gG′g−1 ⊂ G′ for every g ∈ G, and so G′ EG.

Lemma 2.35. Let G be a group. Then G/G′ is abelian.
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Proof. Let αH, βH ∈ G/G′. Then

(αG′)(βG′) = (αβ)G′

= (ββ−1αβ)G′

= (βαα−1β−1αβ)G′

= (βα[α, β])G′

= ((βα)G′)([α, β]G′)

= (βα)G′ since [α, β] ∈ G′

= (βG′)(αG′).

Ergo, G/G′ is an abelian group.

Proposition 2.36. Suppose G is a group. If HEG, then G/H is abelian if and only

if G′ ≤ H.

Proof. Let H E G, and suppose G/H is an abelian group. Then for every α, β ∈ G,

(αH)(βH) = (βH)(αH), and so

1H = (αH)−1(βH)−1(αH)(βH)

= (α−1β−1αβ)H

= [α, β]H.

Hence 1H = [α, β]H for every α, β ∈ G, which implies that [α, β] ∈ H for every

α, β ∈ G. Therefore, G′ ≤ H as claimed.

Conversely, suppose G′ ≤ H. By Lemma 2.35, G/G′ is an abelian group, which

implies that every subgroup of G/G′ is normal. So, H/G′ EG/G′. According to the

Lattice Isomorphism Theorem [2], H E G, and according to the Third Isomorphism
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Theorem [2],

G/H ∼= (G/G′)/(H/G′).

Since G/G′ is an abelian group, the quotient (G/G′)/(H/G′) is also an abelian group.

Therefore, G/H is abelian as desired.

Definition 2.37. Let G be a group. Define the commutator of two subgroups H and

K of G by [H,K] = 〈[h, k] | h ∈ H, k ∈ K〉.

Definition 2.38. Let G be a group. Recursively define a sequence of subgroups of G

as follows:

G(0) = G, G(1) = [G,G], and G(i+1) = [G(i), G(i)] for each i ≥ 1.

This sequence of subgroups is called the derived or commutator series of G, and

we say G(i) is the ith derived subgroup of G.

Definition 2.39. A group G is said to be solvable with derived length n if

G(m) = 1 for some integer m, and n is the smallest nonnegative number such that

G(n) = 1.

For a nontrivial group G, notice that G(1) = G′, and so G is abelian if and

only if G(1) = 1; that is, G is abelian if and only if G is solvable with derived length

1.

Example 2.40. In this example we will find the derived length of the dihedral group

Dn = 〈r, s | rn = s2 = 1, rs = sr−1〉 for each n ≥ 1.

Recall that D1
∼= Z2 and D2

∼= Z2 × Z2, and so we see that D1 and D2 are solvable

of derived length 1 since Z2 and Z2 × Z2 are abelian groups.
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Next, suppose n ≥ 3. Notice that s−1r−1sr = s−1srr = r2 ∈ D′n, and so

〈r2〉 ≤ D′n.

If n is even, let φ : Dn → Z2 × Z2 be defined by φ(rjsk) = (j, k). Clearly, φ

maps Dn onto Z2 × Z2. Let’s show φ is a homomorphism. Let x, y ∈ Dn. Then

x = risj and y = rksl for some i, j, k, l ∈ Z. So,

φ(xy) = φ(risjrksl)

= φ(rir−ksjsl)

= φ(ri−ksj+l)

= (i− k, j + l)

= (i, j) + (−k, l)

= (i, j) + (k, l) since − k ≡2 k

= φ(risj) + φ(rksl)

= φ(x) + φ(y).

So, φ is a homomorphism from Dn onto Z2 × Z2. Note that kerφ = 〈r2〉, and so by

the first isomorphism theorem, 〈r2〉 E Dn and Dn/〈r2〉 ∼= φ(Dn) = Z2 × Z2. So, we

see that Dn/〈r2〉 is abelian, and so D′n ≤ 〈r2〉 by Proposition 2.36. Now, suppose n

is odd. Let φ : Dn → Z2 be defined by φ(risj) = j. Clearly, φ is a surjective map.

Let’s show φ is a homomorphism. Let x, y ∈ Dn. Then x = risj and y = rksl for
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some i, j, k, l ∈ Z, and so

φ(xy) = φ(risjrksl)

= φ(ri−ksj+k)

= j + k

= φ(risj) + φ(rksl)

= φ(x) + φ(y).

Hence, φ is a surjective homomorphism from Dn onto Z2, and so by the first isomor-

phism theorem, kerφ = 〈r〉 = 〈r2〉 ∼= Dn and G/〈r2〉 ∼= Z2. Hence G/〈r2〉 is abelian,

so D′n ≤ 〈r2〉 by Proposition 2.36.

Therefore, D′n = 〈r2〉 for each n ≥ 3, and since 〈r2〉 is abelian, we see that

D
(2)
n = 〈r2〉′ = 1. Ergo, Dn is solvable with derived length 2 for each n ≥ 3.

The next theorem was acquired from [4] and it is a remarkable result in graph

theory because it tells us that a sequence of solvable groups, where each group has

derived length less than or equal to some fix natural number, never yields an expander

family.

Theorem 2.41. Let (Gn) be a sequence of finite nontrivial groups such that |Gn| → ∞.

Let k be a positive integer. For each n, suppose that Gn is solvable with derived length

≤ k. Then (Gn) does not yield an expander family.

We will omit the proof of Theorem 2.41, but we highly encourage an eager

reader to see [4] for the details. The authors of [3] apply Theorem 2.41 to show that

the sequence of cube-connected cycle graphs is not an expander family.

Example 2.42. According to Example 2.40 and Theorem 2.41, the sequence (Dn)
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of dihedral groups does not yield an expander family.

We will refer back to Example 2.42 in the proof of Proposition 3.6.

2.5 Semidirect Products

In this section we begin by recalling the definition of an automorphism of a group.

Then we will define the semidirect products of two groups, which is a generalization

of the direct products of two groups. Plus, we will state some useful facts about

semidirect products to help us achieve our objective. Furthermore, we will consider

a special type of semidirect product called the wreath product.

Definition 2.43. An isomorphism from a group G to itself is called an automor-

phism. The set of all automorphisms of a group G is denoted Aut(G). The set

Aut(G) under function composition is called the automorphism group of G.

According to [2], the automorphism group is in fact a group since function

composition is associative, the identity element Aut(G) is precisely the identity func-

tion on G, and there exists an inverse function for each function in Aut(G).

Definition 2.44. Let H and K be groups. Let θ be a homomorphism from K to

Aut(H). Let G = {(h, k) | h ∈ H, k ∈ K}. Define the binary operation ∗ on G by

(h1, k1) ∗ (h2, k2) = (h1[θ(k1)](h2), k1k2).

The semidirect product of the groups G and K with respect to θ, denoted by HoθK,

is the set G under the binary operation ∗.

When no confusion will arise, we will sometimes omit θ from the subscript.

Before we state some useful facts about semidirect products, let’s make note of a

couple of observations that will be quite useful in the proofs to come. Firstly, because
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θ is a homomorphism, notice that

[θ(k1k2)](h) = [θ(k1)θ(k2)](h) = [θ(k1)]([θ(k2)](h)) (2.1)

for each k1, k2 ∈ K and h ∈ H.

Secondly, because θ(k) for each k ∈ K is a homomorphism,

[θ(k)](h1h2) = [θ(k)](h1)[θ(k)](h2) (2.2)

for every h1, h2 ∈ H.

Theorem 2.45. Let H and K be groups, and let θ : K → Aut(H) be a homomor-

phism. Then H oK is a group.

Proof. Let G = {(h, k) | h ∈ H, k ∈ K}. Let’s begin by verifying the associative law.

Let (h1, k1), (h2, k2), (h3, k3) ∈ G. Since θ is a homomorphism, we have the following

[(h1, k1) ∗ (h2, k2)] ∗ (h3, k3) = (h1[θ(k1)](h2), k1k2) ∗ (h3, k3)

= (h1[θ(k1)](h2)[θ(k1k2)](h3), k1k2k3)

= (h1[θ(k1)](h2)[θ(k1)]([θ(k2)](h3)), k1k2k3)

= (h1[θ(k1)](h2[θ(k2)](h3)), k1k2k3)

= (h1, k1) ∗ (h2[θ(k2)](h3), k2k3)

= (h1, k1) ∗ [(h2, k2) ∗ (h3, k3)].

Hence, for each (h1, k1), (h2, k2), (h3, k3) ∈ G,

[(h1, k1) ∗ (h2, k2)] ∗ (h3, k3) = (h1, k1) ∗ [(h2, k2) ∗ (h3, k3)],

and so the binary operation ∗ on G is associative.
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Next, let 1H , 1K be the identity elements of H and K, respectively. We now

show that (1G, 1K) is the identity element of G. Let (h, k) ∈ G. Since θ is a homo-

morphism, we see that

(1H , 1K) ∗ (h, k) = (1H [θ(1K)](h), 1Hk) = ([θ(1K)](h), k) = (h, k).

Thus, (1H , 1K) ∗ (h, k) = (h, k) for every (h, k) ∈ G, and therefore (1H , 1K) ∈ G is

the identity element.

Finally, let’s show that (h, k)−1 = ([θ(k−1)](h−1), k−1) for every (h, k) ∈ G.

So,

([θ(k−1)](h−1), k−1) ∗ (h, k) = ([θ(k−1)](h−1)[θ(k−1)](h), k−1k)

= ([θ(k−1)](h−1h), 1K)

= ([θ(k−1)](1H), 1K)

= (1H , 1K).

Hence, ([θ(k−1)](h−1), k−1) ∗ (h, k) = (1H , 1K) for each (h, k) ∈ G, and so

(h, k)−1 = ([θ(k−1)](h−1), k−1).

Therefore, the semidirect product of the groups H and K with respect to

homomorphism θ is a group.

As seen in the proof of Theorem 2.45, the computation can easily become

cluttered with excess notation, so we will omit the binary operation ∗ from further

computations. Plus, we will omit the subscripts on the identity elements of H and

K.
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Proposition 2.46. Suppose H,K and θ are defined as in Definition 2.44.

Let H = {(h, 1) | h ∈ H} ⊂ H oK, and let K = {(1, k) | k ∈ K} ⊂ H oK. Then

H and K are subgroups of H oK. Moreover, for each h ∈ H, the map h 7→ (h, 1) is

an isomorphism between H and H. Similarly, for each k ∈ K, the map k 7→ (1, k) is

an isomorphism between K and K.

Proof. Clearly, H and K are nonempty sets because H and K are groups. Let

(h1, 1), (h2, 1) ∈ H. Then

(h1, 1)(h2, 1)−1 = (h1, 1)([θ(1)](h−12 ), 1)

= (h1, 1)(h−12 , 1)

= (h1[θ(1)](h−12 ), 1)

= (h1h
−1
2 , 1).

Since H is a group, h1h
−1
2 ∈ H, and so (h1, 1)(h2, 1)−1 ∈ H. Hence, H is a subgroup

of H o K by the subgroup criterion. Furthermore, a similar computation shows us

that the map h 7→ (h, 1) is a homomorphism from H to H. Notice that the kernel of

the map is the set

ker = {h | h 7→ (1, 1)} = {1}.

Since the map is a homomorphism and ker = {1}, the map is injective (see Corol-

lary A.2). Clearly, by the definition of H, the map is surjective. Therefore, the map

defines an isomorphism between H and H as claimed.
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Similarly, suppose (1, k1), (1, k2) ∈ K. Then

(1, k1)(1, k2)
−1 = (1, k1)([θ(k

−1
2 )](1), k−12 )

= (1, k1)(1, k
−1
2 )

= (1[θ(k1)](1), k1k
−1
2 )

= (1, k1k
−1
2 ).

Thus, (1, k1)(1, k2)
−1 ∈ K since k1k

−1
2 ∈ K. Ergo, K is also a subgroup of H o K.

Moreover, a similar argument shows that the map k 7→ (1, k) is an isomorphism from

K to K.

With Proposition 2.46 in mind, we may occasionally be imprecise and refer

to H as a subgroup of H oK when we really mean its isomorphic copy H, and we

sometimes abuse notation and write h for (h, 1). Likewise, we will regard K as a

subgroup of H oK and sometimes abuse notation by writing k for (1, k).

Suppose θ is defined as in Definition 2.44. To simplify computation, we denote

[θ(k)](h) by kh, and applying this notation to (2.1), we have the following

k1k2h = k1(k2h). (2.3)

Similarly, applying our new notation to (2.2), we see that

k(h1h2) = (kh1)(
kh2). (2.4)

Lemma 2.47. Let h ∈ H and k ∈ K. Then khk−1 = kh in H oK.
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Proof. Let h ∈ H and k ∈ K. Then

khk−1 = [(1, k)(h, 1)](1, k−1)

= (1[θ(k)](h), k1)(1, k−1)

= ([θ(k)](h), k)(1, k−1)

= ([θ(k)](h)[θ(k)](1), kk−1)

= ([θ(k)](h)1, 1)

= ([θ(k)](h), 1)

= (kh, 1).

Hence, khk−1 = kh in H oK for every h ∈ H and k ∈ K.

Lemma 2.47 will be quite useful in the proof of Proposition 3.4.

Proposition 2.48. Suppose H,K and θ are defined as in Definition 2.44. Then H

is a normal subgroup of H oK.

Proof. By Proposition 2.46, H = {(h, 1) | h ∈ H} is a subgroup of H o K and

H ∼= H. So, to prove the proposition, let’s show gHg−1 ⊂ H for each g ∈ H o K.

Let (h, 1) ∈ H. Let g ∈ H oK, then g = (h1, k) for some h1 ∈ H and k ∈ K. Recall

that (h1, k)−1 = ([θ(k−1)](h−11 , k−1) according to Theorem 2.45. Also, notice that
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(h1, 1)(1, k) = (h1, k), and (1, k−1)(h−1, 1) = ([θ(k−1)](h−11 ), k−1) = (h1, k)−1. So,

g(h, 1)g−1 = (h1, k)(h, 1)(h1, k)−1

= (h1, 1)(1, k)(h, 1)(1, k−1)(h−11 , 1)

= (h1, 1)([θ(k)](h), 1)(h−11 , 1)

= (h1[θ(k)](h), 1)(h−11 , 1)

= (h1[θ(k)](h)h−11 , 1).

Since θ maps K to Aut(H), [θ(k)](h) ∈ H, and so h1[θ(k)](h)h−11 ∈ H because H is

a group.

Hence, g(h, 1)g−1 = (h1[θ(k)](h)h−11 , 1) ∈ H. Therefore gHg−1 ⊂ H for every

g ∈ H oK. Ergo, H is a normal subgroup of H oK as claimed.

According to [2], we use the notation o in H oK to tell us that the copy of

H is the normal “factor” in the semidirect product of H and K with respect to θ

because K is not necessarily normal in H o K. In fact, K is normal in H o K if

and only if θ is the trivial homomorphism from K to Aut(H). Also, the semidirect

product of H and K with respect to the identity homomorphism from K into Aut(H)

is identical to the direct product of H and K, and so we see that direct products are

a special case of semidirect products; that is, semidirect products are a generalization

of direct products where the condition of both sets being normal in the product has

been reduced to one set being normal in the product [2].

Proposition 2.49. (H oK)/H ∼= K.

Proof. Suppose ϕ : H oK → K is defined by ϕ(h, k) = k. We begin by showing ϕ is
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a homomorphism. Let (h1, k1), (h2, k2) ∈ H oK. Then

ϕ((h1, k1)(h2, k2)) = ϕ(h1[θ(k1)](h2), k1k2)

= k1k2

= ϕ(h1, k1)ϕ(h2, k2).

Thus ϕ is a homomorphism. Clearly, by definition of HoK, ϕ maps HoK onto K.

Next, notice that

kerφ = {(h, k) | ϕ((h, k)) = 1}

= {(h, 1) | h ∈ H}

= H.

So, by the First Isomorphism Theorem, (H oK)/H ∼= ϕ(H oK).

Therefore (H oK)/H ∼= K as claimed.

2.5.1 Wreath Products

Next, let’s introduce a special type of semidirect product called the wreath product.

It will be useful when we construct certain Cayley graphs in Chapter 3. Let J be a

finite set. Let H and K be groups. Let HJ = ⊕j∈JH be the direct product of |J |

copies of H. Notice that the elements of HJ are |J |-tuples (hj)j∈J , where hj ∈ H for

each j. Let θ be an action of K on J . Then θ induces a homomorphism form K to

Aut(HJ) defined by (hj)j∈J 7→ (hθ(j))j∈J . This map is also denoted by θ. Using this

notation, we can now formally define the wreath product.

Definition 2.50. The wreath product of H and K, denoted H oθ K, is defined by

H oθ K := HJ oθ K.
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When θ is understood, we’ll usually omit the subscript.
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CHAPTER 3

Constructing a Sequence of 3-Regular Cayley Graphs with Logarithmic Diameter

At last, we have finally developed enough machinery to accomplish our goal. In this

chapter we begin by recursively constructing a sequence (Kn) of groups by iterating

semidirect products of Z2. The ideas to construct such a sequence were obtained from

[1]. Then, we will apply wreath products to construct a sequence (Λn) of 3-regular

Cayley graphs. In Proposition 3.4, the proof requires precise bookkeeping skills and

a fair amount of patience. In Corollary 3.5, we will show that the sequence (Λn) has

logarithmic diameter. On a final note, we will show that the sequence (Λn) is not an

expander family.

In this chapter we will use the following notational convention. An element

of Zn2 = Z2 × · · · × Z2 will be written as a string of zeros and ones of length n. For

example, the element (1, 0, 1) ∈ Z2×Z2×Z2 will be represented by 101. Let ei denote

the element of Zn2 with a 1 in the ith coordinate and zeros elsewhere. Let 0 = 0 · · · 0

denote the identity element in Zn2 .

We begin by recursively taking semidirect products of Z2 to construct a se-

quence of groups (Kn) as stated in [1]. Later, we will use (Kn) to construct our

desired sequence of wreath products. Let K1 = Z2 and let K2 = Z2×Z2. Now define

θ2 : Z2 → Aut(K2) by θ2(1) : (a, b) 7→ (b, a), and let K3 = K2 oθ2 Z2. Notice that

K3
∼= D4. Define τ : Z2 → Aut(Dn) by τ(1) : r 7→ r−1, s 7→ rs. For each n ≥ 4, let
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Kn = D2n−2 oτ Z2. According to [1], the mapping defined by

r 7→ (s, 1), s 7→ (1, 1)

shows us that Kn is isomorphic to D2n−1 . Thus |Kn| = 2 · 2n−1 = 2n. Observe that

we have constructed the sequence (Kn) of groups by iterating semidirect products of

Z2. Now, let’s define the sequence of Cayley graphs we wish to show has logarithmic

diameter.

Definition 3.1. Define an action θ of Kn on I = Kn by [θ(a)][b] = ab. With this

action define the the wreath product

Gn = Z2 oθ Kn = ZI2 oθ Kn.

Let Γn = {(e1, 1), γ1, γ2} ⊂ Gn, where γ1 = (0, sr) and γ2 = (0, s). Define Λn to be

the Cayley graph Cay(Gn,Γn).

Remark 3.2. Notice that Γn is a symmetric subset of Gn. So, by Proposition 2.16,

the Cayley graph Λn is 3-regular. Also, note that

γ2γ1 = (0, s)(0, sr) = (0, r),

(γ2γ1)
k = (0, r)k = (0, rk), and

γ2(γ2γ1)
k = (0, s)(0, rk) = (0, srk).

Before we state and prove Proposition 3.4, let’s introduce some new notation

to simplify our computations, and make a few observations. Let fi = ei+2n−1 for

1 ≤ i ≤ 2n−1.

Lemma 3.3. Let θ be the action as in Definition 3.1. For each integer 1 ≤ k ≤ 2n−1,

r1−k
e1 = ek, and srk−1

e1 = fk.
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Proof. To show r1−k
e1 = ek for 1 ≤ k ≤ 2n−1, let’s write [θ(r1−k)](b) in row notation:

r1−k 7→
(

1 · · · rk−1 rk · · · r2
n−1−1 s · · · sr2

n−1−1

r1−k · · · 1 r · · · r−k srk−1 · · · srk−2

)
.

So, the row notation shows us that the first coordinate of e1 is shifted to the kth

coordinate; that is,

r1−k

e1 = r1−k

(1, 0, . . . , 0) = (0, . . . , 1, . . . , 0) = ek.

Similarly, let’s write [θ(srk−1)](b) in row notation:

srk−1 7→
(

1 · · · r2
n−1−1 s · · · srk−1 srk · · · sr2

n−1−1

srk−1 · · · srk−2 r1−k · · · 1 r · · · r−k

)
.

So, we see that the 1st coordinate of e1 is shifted to the (k+2n−1)th coordinate. Thus,

srk−1

e1 = ek+2n−1 = fk

as claimed.

Proposition 3.4. For each n, diam(Λn) ≤ 3 · 2n+1 − 5.

Proof. An arbitrary element of Gn is of the form (ej1ej2 · · · ejkfl1fl2 · · · flm , x), where

1 ≤ j1 < j2 < · · · < jk ≤ 2n−1,

1 ≤ l1 < l2 < · · · < lm ≤ 2n−1,

1 ≤ k,m ≤ 2n−1, and x ∈ D2n−1 .

According to Proposition 2.22, it suffices to show that the word norm of

(ej1ej2 · · · ejkfl1fl2 · · · flm , x) in Γn is less than or equal to 3 · 2n+1 − 5.

Let e = (e1, 1). Then by Lemma 2.47 and Lemma 3.3,

(γ2γ1)
1−je(γ2γ1)

j−1 = (r
1−j

e1, 1) = (ej, 1) for 1 ≤ j ≤ 2n−1,
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and

γ2(γ2γ1)
k−1e(γ2γ1)

1−kγ−12 = (sr
k−1

e1, 1) = (fk, 1) for 1 ≤ k ≤ 2n−1.

So,

(ej1ej2 · · · ejkfl1fl2 · · · flm , x)

=

[
k∏
p=1

(ejp , 1)

][
m∏
s=1

(fls ,0)

]
(0, x)

=

[
k∏
p=1

(γ2γ1)
1−jpe(γ2γ1)

jp−1

][
m∏
s=1

γ2(γ2γ1)
ls−1e(γ2γ1)

1−lsγ−12

]
(0, x)

=

(
(γ2γ1)

1−j1

[
k−1∏
p=1

e(γ2γ1)
jp−jp+1

]
e(γ2γ1)

jk−1γ2(γ2γ1)
l1−1

)

×

([
m−1∏
s=1

e(γ2γ1)
ls+1−ls

]
e(γ2γ1)

1−lmγ−12 (0, x)

)
.

We now find an upper bound for the length of the final expression as a word in Γn. We

see that e appears precisely k + m times, and γ2 and γ−12 both appear alone exactly

one time each. Since γ2 is a element of order 2, technically γ2 = γ−12 , but since this

is a counting argument, we count them separately to help us with the bookkeeping.

Likewise, γ1 = γ−11 , but we will count them separately as well.

Next, let’s consider x ∈ D2n−1 . If x = rp for 1 ≤ p ≤ 2n−1, then x = (γ2γ1)
p. If

x = srp for 1 ≤ p ≤ 2n−1, then x = γ2(γ2γ1)
p. So, in either case, x can be expressed

as a word in {γ1, γ2} with γ2 appearing no more than p + 1 times, and γ1 appearing

no more than p times.

To determine the number of times (γ2γ1)
−1 appears, first note that 1− lm < 0

since lm > 1, and ji − ji+1 < 0 because ji < ji+1 for each 1 ≤ i ≤ k − 1. Also,
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1− j1 ≤ 0 since 1 ≤ j1, and so (γ2γ1)
−1 appears exactly

(j1 − 1) + (j2 − j1) + · · ·+ (jk − jk−1) + (lm − 1) = jk + lm − 2

times.

Finally, let’s determine the number of times (γ2γ1) is listed above. Notice that

jk− 1 > 0, and li+1− li > 0 for each i = 1, . . . ,m− 1. Also, 1− l1 ≤ 0 because 1 ≤ l1,

and so (γ2γ1) appears exactly

(l1 − 1) + (l2 − l1) + · · ·+ (lm − lm−1) + (jk − 1) = lm + jk − 2

times. Hence, we can express (ej1 · · · ejkfl1 · · · flm , x) as a word in Γn where γ1 appears

no more than jk + lm + p− 2 times, γ2 appears no more than jk + lm + p times, γ−11

appears jk + lm− 2 times, γ−12 appears jk + lm− 1 times, and e appears k+m times.

Therefore, the word norm of (ej1 · · · ejkfl1 · · · flm , x) is less than or equal to

4jk + 4lm + k +m+ 2p− 5 ≤ 4 · 2n−1 + 4 · 2n−1 + 2n−1 + 2n−1 + 2 · 2n−1 − 5

= 12 · 2n−1 − 5

= 3 · 2n+1 − 5.

Therefore, diam(Λn) ≤ 3 · 2n+1 − 5.

Corollary 3.5. The sequence (Λn) of Cayley graphs has logarithmic diameter.

Proof. Recall that |Gn| = |ZI2||Kn| = 22n2n, and so log |Gn| = 2n log 2 + n log 2. Let
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C = 6
log 2

. By Proposition 3.4, the following holds for each n:

diam(Λn) ≤ 3 · 2n+1 − 5

= 6 · 2n − 5

≤ 6 · 2n + 6n

=
6

log 2
(2n log 2 + n log 2)

=
6

log 2
log |Gn|.

Therefore, diam(Λn) ≤ C log |Gn| for each n; hence the sequence (Λn) of Cayley

graphs has logarithmic diameter.

Proposition 3.6. The sequence (Λn) is not an expander family.

Proof. According to Proposition 2.48, ZI2 EGn for each n ≥ 1. By Proposition 2.49,

Gn/ZI2 ∼= Kn
∼= D2n−1 for each n ≥ 1.

So, (Gn) admits (D2n−1) as a sequence of quotients. According to Example 2.42, the

sequence (D2n−1) of dihedral groups does not yield an expander family. Hence by

Proposition 2.32, the sequence (Gn) does not yield an expander family, and a fortiori

the sequence (Λn) of Cayley graphs is not an expander family.
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APPENDIX A

Notations and Conventions from Group Theory

If A is a subset of a set B not necessarily proper, it will be denoted by A ⊂ B

throughout this paper. H ≤ G will denote that H is a subgroup of G. If N is a

normal subgroup of G, this fact will be denoted by N E G. The integers mod n will

be denoted by Zn.

The set of natural numbers will be denoted by N = {1, 2, 3, . . . } and Z will

represent the set of integers.

Dn = 〈r, s | rn = s2 = 1, rs = sr−1〉 will denote the dihedral group of order

2n.

The following isomorphism theorems will be referred to throughout the paper.

The proofs of the isomorphism theorems can be found in [2], which is where the

statements were acquired.

Theorem A.1 (The First Isomorpism Theorem). Let G and H be groups. Let

φ : G→ H be a homomorphism. Then kerϕEG and G/ kerφ ∼= φ(G).

Corollary A.2. If ϕ : G → H is a homomorphism, then φ is a one-to-one map if

and only if kerφ = 1.

Theorem A.3 (The Second or Diamond Isomorphism Theorem). Let G be a group,

and let A,B ≤ G. Suppose A ≤ NG(B). Then AB ≤ G, B E AB, A ∩ B E A and

AB/B ∼= A/A ∩B.
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Theorem A.4 (The Third Isomorphism Theorem). Suppose G is a group. Let

H,K EG so that H ≤ K. Then K/H EG/H and

(G/H)/(K/H) ∼= G/K.

Theorem A.5 (The Fourth or Latice Isomorphism Theorem). Suppose G is a group

and N E G. Let X = {A ≤ G | N ≤ A} and Y = {A/N | A/N ≤ G/N}. Then

there is a bijection from X onto Y . In particular, every subgroup of G/N is of the

form A/N where A is a subgroup of G containing N . This bijection has the following

properties for each A,B ≤ G with N ≤ A and N ≤ B.

(1) A ≤ B if and only if A/N ≤ B/N .

(2) If A ≤ B, then |B : A| = |B/N : A/N |.

(3) 〈A,B〉/N = 〈A/N,B/N〉.

(4) (A ∩B)/N = A/N ∩B/N .

(5) AEG if and only if A/N EG/N .
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