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ABSTRACT

Wavelet-Like Representation of Multivariate Periodic Functions

on Scattered Data by Periodic Translation Networks

By

Eugene Shvarts

This thesis is intended to study and develop the machinery of analysis necessary to

perform good approximations of multivariate periodic functions defined using partial

information, with which one can retrieve local information about their smoothness.

The techniques combine aspects of harmonic analysis, approximation theory, and

learning theory. Pioneering work in this field by Mhaskar and his collaborators over

the past two decades has led to wavelet–like expansions where the terms are defined

using global information such as Fourier coefficients, and yet can reveal local smooth-

ness of a target function. New techniques allow explicit constructions of periodic

translation networks with a priori performance guarantees, without invoking further

optimization routines. The novel contribution of this thesis is such a construction

in which the terms are defined using scattered data of the target function, and the

local smoothness of the target function is characterized by the local behaviour of the

constituent networks.
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CHAPTER 1

Learning Theory and the Approximation Paradigm

This thesis is a survey of intertwined topics in learning theory, harmonic analysis,

and approximation theory in which we wish to present concerns and methods from

each subject as aspects of one overarching problem with an elegant solution. Let

R denote the real numbers, C denote the complex numbers, and let the notation

n = 1, 2, . . . choose n as a positive integer. For q = 1, 2, . . ., Aq denotes the set

of q-tuples {(x1, x2, . . . , xq)|xi ∈ A, i = 1, 2, . . . , q}. Boldface symbols will denote

vectors, whose number of components, and the domain in which these components

take their values, should be clear from context. If x has q components, we denote

them x = (x1, x2, . . . , xq).

• Learning theory asks, when one receives from some source, data of the

form {(xk,yk)}nk=1, what is the functional relationship which either reproduces

f(xk) = yk exactly, or else to a desired degree of accuracy? The provided data

is of course finite, and generally created by a natural source which can some-

times be modelled broadly, but for which theoretically determining the explicit

functional relationship is prohibitively difficult. The mathematical difficulties

here lie in solving optimization problems or developing approximative models,

which we will outline in this chapter.

• Approximation theory is the quantitative study of the error inherent in mod-
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eling a function using a limited model. The constraints involve the complexity

of model used, and the amount of information available - generally the model

must conform to some physical principles, and the data may consist of finitely

many known values, or expansion coefficients. Hence the data may describe

either local or global properties of the function, but in any case we require suf-

ficient data to make a specific conclusion - approximation theory makes this

connection between quality and density of data, and consequential accuracy of

the model in whatever sense is desired explicit and rigorous, and these ideas are

used throughout the thesis.

• Harmonic analysis connects the information available about a function in var-

ious representations. Fundamental are the Fourier series expansion and Fourier

transform, along with the concept of smoothness of a function. These ideas

are incorporated when classifying precisely how well approximation models re-

cover behavior of target functions, specifically in regard to how localized such

an approximation is. These topics are discussed in Chapter 2.

The classical learning theory problem asks how one should go about determining

or constructing a function f which somehow captures the information present in some

given data, usually in the form of pairs of vectors, {(xk,yk)}nk=1. For example, in [10]

, Mhaskar and Khachikyan studied the behavior of flour markets, in which the values

of three indices determined the price of flour. This problem of time series prediction

involved using the values of each index for the past two months to predict the value of

each index for the next month – the function which accomplished this hence mapped a
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six-dimensional real vector to a three-dimensional one. In 1978, data from the Boston

housing market was collected and used by Harrison and Rubinfeld in [9] to model the

average value that a home in some locality should expect to have. This regression

problem used thirteen variables representing dimensions including crime and tax rates,

accessibility to major business centers, ethnic and financial background, and regional

pollution, in order to determine the functional reliance of the final value on each of

these dimensions. A key feature of the analysis was eliminating noise introduced in

the data, in the form of a dimension known to be statistically uncorrelated with the

average value, in this case the “river adjacency” dimension.

Access to accurate, highly scalable techniques for machine learning is critical for

modern applications, as databases become ubiquitous and potential learning problems

involve high-dimensional spaces. Bornstein and collaborators constructed a database

of people, specifying some 115 attributes which could be of use in identifying high-

value individuals for US Army applications [2]. This classification problem involves

selecting between finitely many possibilities (i.e. no threat, possible threat, imme-

diate threat) a value corresponding to some function of the (possibly many) input

dimensions, and may involve dimension-reduction techniques.

It is useful to note that in each case, even when the output data is a vector,

such a function may be broken down into several individual single-output coordinate

functions, and any multiple-dimensional output scheme reduces to a single output.

This is because the components of the output vector are not interdependent - they

each rely only on the input data. Hence for the remainder of the thesis we consider

only data of the form {(xk, yk)}nk=1, and specifically restrict our attention to xk ∈ Rq
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and yk ∈ C, for all k, where the dimension q will be given or assumed from context.

1.1 The Optimization and Approximation Paradigms

For the following discussion, the expected value of a probability distribution P will

be denoted E[P ], as in [25]; the following analysis is found there as well. We will

not dwell on the rigors of probability theory here, and present this background for

motivational purposes. Technical details may be pursued in [8].

Now, without any hint or assumed structure to inform our analysis beyond the

data itself, a natural construction is to assume a joint probability distribution P (x, y)

from which the data is drawn. The conditional probability may be represented in this

way via the relationship P (x, y) = P (x)P (y|x). Foreshadowing the introduction of

optimization, we are then interested in the function which minimizes the expected

average error

I[f ] := E
[
(y − f(x))2

]
=

∫
Rq×C

(y − f(x))2P (x, y) dx dy ,

over f in some space F consisting of functions Rq → C. Appropriate choice of

F makes this problem well-posed - in [25], the space of differentiable functions with

bounded derivative is taken. The ideal candidate for such a minimizer is the regression

function f0(x) which evaluates the expected value of returning y from P (x, y), given

x.

Proposition 1.1. Let F be the set of differentiable functions with bounded derivative,

Rq → C. Let the regression function be defined

f0(x) =

∫
C
yP (x, y) dy .
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Then I[f0] ≤ I[f ], f ∈ F .

Proof. We proceed as follows: add and subtract the regression function when evalu-

ating the expected average error for f ∈ F , and obtain

I[f ] =

∫
Rq×C

(y − f(x))2P (x, y) dx dy

=

∫
Rq×C

(y − f0(x) + f0(x)− f(x))2P (x, y) dx dy

=

∫
Rq×C

P (x, y)(y − f0(x))2 dx dy +

∫
Rq×C

P (x, y)(f0(x)− f(x))2 dx dy

+ 2

∫
Rq×C

P (x, y)(y − f0(x))(f0(x)− f(x)) dx dy .

In the third term, notice that if (using Fubini’s theorem) we integrate against y first,

the factor
∫
C P (x, y)(y − f0(x))dy is zero by the definition of f0. The second may be

freely integrated against y, and the first is seen to be I[f0], so we have

I[f ] = I[f0] +

∫
Rq
P (x)(f0(x)− f(x))2dx ≥ I[f0] ,

as the integral expression is non-negative, and we are done. Note that f0 is then

unique, as the condition for the integral expression to vanish nontrivially is f = f0.

This regression function will now be called the target function, as we will spend

the remainder of the discussion determining how we may best characterize and ap-

proximate it. Note from the proof of Proposition 1.1 that the expected average error

expression has the decomposition I[f ] = E [(f0(x)− f(x))2] + I[f0]. In learning the-

ory these terms are denoted bias and variance respectively; in approximation theory

they are model-based or approximation error, and estimation error or noise. Our

focus lies entirely with the bias term, as we would like to fix an adequate choice
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of models, and restrict our attention to the behavior of those models. Because the

probability distribution itself is unknown, we must be careful to make our estimations

only in the supremum norm. This point is critical and will be harped on several times

in Chapter 3. Whatever inherent estimation error this produces will be considered

given, as the focus of this thesis will not be on noise reduction or fine-tuning models.

The opposite is true - we would like to achieve the maximum generality possible for a

sufficiently broad choice of models, which in our case will involve certain well-known

function spaces Rq → C. There is an inherent difficulty to achieving arbitrarily ac-

curate approximation in terms of minimizing the expected average error. Enlisting

more complicated models allows us to shrink the bias, but will necessarily complicate

the expression for, and conditions on the variance - this fact is known in this context

as the bias–variance tradeoff (discussed in [25]).

One interpretation of the learning theory problem is function extension - consid-

ering the given data to be training data for some function f such that f(xk) = yk for

all k, we would like to extend whatever dependence is present on this set to a larger

domain in Rq. This yields a solution with an interpolatory condition. However, the

function space containing a potential choice of model will necessarily be quite large

in order to reliably interpolate data that may both consist of many points, and have

no prior assumed or known distribution – so-called scattered data. Hence we must

develop some salient criterion, whether due to parsimony, aesthetics, or physical lim-

itations, by which to select an appropriate model. The traditional method is then to

develop a corresponding energy functional, and represent this criterion as minimizing

the energy functional - this is called the optimization paradigm.
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To generalize slightly, let X be a normed linear space, and q a positive integer.

We will refer to elements of X as models, and require that each f ∈ X maps Rq → C.

Then, a choice of models is represented by H ⊂ X. In this light, the optimization

problem with interpolatory conditions asks, given the energy functional ‖ · ‖E : X →

C, determine the existence and uniqueness of

arg min
f∈H
{‖f‖E : f(xk) = yk for k = 1, 2, . . . , n} .

For instance, in the univariate case, consider the subspace of real-valued functions

with continuous second derivative, among continuous real-valued functions. For a

given target function, the optimization problem of minimizing the curvature together

with interpolatory conditions is solved by a cubic spline function [20]. Polynomial

interpolation is of course possible as well, but this situation does not generalize in

a straightforward manner to the case of multiple dimensions. To see this, consider

R2. Given data on two points x1,x2, when y1 6= y2, no constant map will interpolate

the data, but there is not enough information to uniquely determine an interpolating

linear map, which has three parameters. Even when given data on three points

{xk}3k=1, should they be collinear, then a linear interpolatory polynomial will exist

only when f is already linear, and in that case will still not be unique [1].

Given a differential operator L acting on functions over Rq, consider its Green’s

function G. Golomb-Weinberger theory (see [12]) explains that the optimization prob-

lem of minimizing the L2(Rq) norm of any function f for which Lf exists, with interpo-

latory conditions, is solved by a linear combination of terms of the form {G(◦,xk)}nk=1.

When L is translation invariant, so that Lf(x + a) = Lf(x) for a ∈ Rq, then the
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Green’s function take the form G(x, s) = G(x − s), and so the solution to the op-

timization problem is a network of translates of G. The word network here refers

to a linear combination taken with respect to different evaluations of an activation

function. Given a finite set C, common examples of networks include the following:

• A translation network has the form x 7→
∑
y∈C

ayΦ(x−y), with activation function

Φ : Rq → C and parameters ay ∈ C.

• A neural network has the form x 7→
∑
y∈C

ayφ(x ·y− by), with activation function

φ : R→ C and parameters ay, by ∈ C.

• A radial basis function (RBF) network has the form x 7→
∑
y∈C

ayφ(‖x − y‖),

with activation function φ : R→ C and parameters ay ∈ C.

The last case, of RBFs, is of particular interest because they appear as solutions

for many repeatedly encountered optimization problems of the Golomb-Weinberger

variety. Dyn mentions several in [5], one of which we reproduce.

Let ∂j denote the partial derivative with respect to the jth coordinate xj. We will

use the notation Dr to represent the differential operator ∂r1x1∂
r2
x2
. . . ∂

rq
xq . Further, it

will be useful to denote the collection of all integer lattice points whose coordinates

are non-negative as Zq+ = {k ∈ Zq : kj ≥ 0, j = 1, 2, . . . , q}. Analogously, Rq
+ = {r ∈

Rq : rj ≥ 0, j = 1, 2, . . . , q}. Generally, for any real-valued expression r, we denote

r+ to be r when r ≥ 0 and 0 otherwise.
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Example 1.1.1. The surface splines are

φ(t) =


t2k−q log t , q even ,

t2k−q, q odd ,

(1.1.1)

with k an integer satisfying 2k > q. The corresponding RBF interpolant minimizes

the functional

Rk(f) =

∫
Rq

∑
r∈Zq+,|r|1=k

(Drf)2 dx .

Note that |r|1 = |r1|+ |r2|+ . . .+ |rq| is the `1 norm, which will be introduced formally

at the start of Chapter 2. The functions (1.1.1) are fundamental solutions of the kth

iterated Laplacian: ∆kφ(‖x‖) = cδ(x).

A benefit of using the combination of optimization and interpolatory conditions

for selecting a model is that the data often does arise from some physical process,

which may directly inform the appropriate choice of energy functional. Additionally,

these conditions (again, especially for physical problems) are prolific in the mathemat-

ical literature, and for the solution of many given optimizations, there exist effective

algorithms, numerical methods, and theoretical results which simplify matters con-

siderably. However there is a flip-side, which is that real-world data is inherently

noisy to some degree, and any type of noise present in data will significantly erode

the quality of an approximation by a model satisfying interpolatory conditions.

Should the form of the noise be understood, we may take a loss functional ‖ · ‖L :

X → C to represent a factor which damps this noise. Then we need a method

for determining the accuracy of the estimation, as we are no longer interpolating.

In general, regularization is balancing between these two factors. Traditionally, the

9



Figure 1.1: The image on the left depicts a rat neuron. Neurons fire when their elec-

tric potential exceeds a certain threshold value. The term “neural network” arises in

conjunction with the similarity found between the architecture of actual neuron cells,

and the topology of an artificial neural network, pictured on the right. The hidden

layer is the nonlinearity, or activation function, and represents the analogous depen-

dence on electric potential. The image copyrights are held by Testuya Tatsukawa

2010 and Unikom Center 2010-2012, respectively.
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optimization problem with Tikhonov regularization asks, given the loss functional

‖ · ‖L, and a choice of a positive constant δ, determine the existence and uniqueness

of

arg min
f∈H

{
n∑
k=1

(f(xk)− yk)2 + δ‖f‖L

}
.

Additionally, we wish to explore the dependence of this quantity on δ. As δ → 0, we

recover the case of pure interpolation. For large δ, the loss functional dominates. This

may not be desirable, as for example if we wish to minimize the curvature, taking

δ → ∞ we will recover a linear approximation, which is rarely sufficient. Hence

finding the appropriate δ is a matter of fine-tuning to the conditions surrounding

each particular problem.

Figure 1.2: Two curves approximating a univariate real-valued function on nine data

points. One is the eighth degree interpolating polynomial, whose oscillations are so

wide that they are cut off and appear as near-vertical lines. The other is a lower

degree polynomial fit through an unknown regression routine in Apple’s Grapher

application, the oscillations of which are significantly damped in comparison.

Suppose, however, that we wish to determine the functional relationship in some
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extremely large data set by first solving the corresponding optimization problem

on a subset of that data, and then scaling up a seemingly correct solution. This

turns out to be impractical, as when the data set changes, the entire optimization

problem must be recalculated from scratch. Further, in addition to not informing

us what the bounds on the loss functional should be when regularizing, the method

does not produce a bound on the size of the minimal function it produces. Given a

desired degree of accuracy ε, there is no performance guarantee which states when a

chosen network is sufficiently large to achieve this accuracy. Most precipitously, by

the nature of computational methods for optimization such as steepest descent, we

cannot guarantee that solutions found are global optimizers – they may only be local

optimizers.

For these reasons, another paradigm is required - instead of imposing conditions

on our model in the form of energy and loss functionals, we will base our analysis

directly on the target function and systematically approximate it. This is the approx-

imation paradigm. Inherently, we now have performance guarantees and bounds on

the functionals involved, but along with these come also scalability, broader appli-

cation, and in fact good estimation to a solution of the optimization problem itself.

Our setting is as follows (and as is detailed in [15, 20]):

Let X be a normed linear space with norm ‖ · ‖, H ⊂ X , and f ∈ X . The degree

of approximation of f from H is the distance (in the sense of X ) between f and H,

precisely defined as

dist (X ; f,H) = inf
T∈H
‖f − T‖ . (1.1.2)
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Clearly f is in the closure of H if and only if dist (X ; f,H) = 0, and we note that

considering different norms (equivalent to choosing a different space X ) may change

this distance as well. The typical situation presents a sequence of nested subsets

V0 ⊂ V1 ⊂ V2 ⊂ . . . of X - these sets represent our model, and their being nested

implies larger indices cannot give larger degrees of approximation. Then we think of

dist (X ; f,Vm) as a nonincreasing function of m, and consider the rate of approxima-

tion as m → ∞. The natural questions of approximation theory which arise from

this context can be summarized as follows:

• Does dist (X ; f,Vm) → 0 as m → ∞? Judicious choices of {Vm} allows rep-

resentation of a target function arbitrary well for sufficiently large index (for

example the degree of a polynomial, or the number of nodes in a network). This

is called the density property, because it implies that
∞⋃
m=0

Vm is dense in X .

• What are the properties of elements v∗m of Vm which give the best possible

approximation, i.e. ‖f − v∗m‖ = dist (X ; f,Vm)? When considering infinite di-

mensional spaces, when do such v∗m’s exist? Here the properties of the model

are critical, as relying on a best approximation means the resulting solution

can inherit undesired behavior. In the case of polynomial approximation for ex-

ample, the best approximation is characterized by the Chebyshev Alternation

Theorem (see [29]). For applications which prefer or require monotone conver-

gence to monotone target functions, best polynomial approximation is then a

dead end.

• How are desirable properties of the target function f tied with desirable con-

13



structions of the Vm’s? When considering a particular model, direct theorems

establish expected rates of approximation for a given target function, while con-

verse theorems determine properties of a target function based on a given rate

of approximation. These can be used to establish limitations on algorithms,

and inform their construction. Such conditions are generally posed in terms of

smoothness of the function (appropriately defined), or asymptotic behavior of

the rate of approximation.

• How does one apply the theory? For instance, when given a data set representing

finitely many (potentially noisy) inputs and corresponding outputs to a target

function f , how does one construct vm(f) ∈ Vm to be a ‘good’ approximation

as mentioned above? An example of a ‘good’ approximation condition is

‖f − vm(f)‖ ≤ c dist (X ; f,Vbm/2c) ,

with c a constant independent of m and f . The flexibility of this order-of-

magnitude bound may reduce computation time in applications. In the process,

we would like vm to have other desirable properties, such as being a linear

operator X → Vm.

Classically, the most well-known approaches to some of these questions lie in trigono-

metric polynomial approximation on the unit circle. Exploring these results requires

the introduction of the usual associated concepts and function spaces, as discussed in

detail in [15] . This will be the primary focus of Chapter 2.
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CHAPTER 2

Wavelet-Like Representation by Multivariate Trigonometric Polynomials

In this chapter, we start by introducing the tools of harmonic analysis of periodic

functions necessary for our study. Then we describe the development of linear oper-

ators which reproduce trigonometric polynomials and provide good approximations

to multivariate periodic functions. We conclude with the construction of a function

expansion exhibiting wavelet-like properties, permitting analysis of local smoothness.

2.1 Trigonometric Polynomial Fundamentals

Let q be a positive integer, which will be considered a fixed parameter for the remain-

der of this thesis. The natural domain for periodic complex-valued functions of a

single variable is [−π, π] with the endpoints identified; e.g. for any f , f(−π) = f(π).

We will denote this domain T, and its Cartesian product with itself q times as Tq.

The notion of measurability allows us to define norms for functions on Tq. For

this chapter we will require only the standard Lebesgue measure, and so for the

remainder we will say “measurable” to mean “Lebesgue-measurable”. In Chapter

3, we will introduce and define other abstract measures as well, including finitely

supported measures when discussing quadrature formulas and the representation of

scattered data.

In topology, one defines a continuous function as a map in which the pre-images of
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open sets are always open. Likewise, a measurable function is a map in which the pre-

images of open sets are measurable. We note that the space of measurable complex-

valued functions is adequately large for most practical applications of analysis; all

Riemann integrable functions are measurable, for instance (see [26]). The Lebesgue

measure on Tq, normalized to be a probability measure, will be denoted µ∗q when

referenced explicitly, and the Lebesgue integral of some integrable function f can

then be written ∫
Tq
f(x)dµ∗q(x) =

1

(2π)q

∫
Tq
f(x)dx ,

where the right-hand side takes the integral with respect to the usual Lebesgue mea-

sure on Rq. This is done to simplify the notation.

Now we are in a position to define a notion of size and distance for functions on

Tq - the Lp norms. Let A ⊂ Tq and f : A→ C be measurable. Let p ∈ [1,∞]. Then

the expression

‖f‖p,A :=


{∫

A

|f(x)|pdµ∗q(x)

}1/p

, if 1 ≤ p <∞ ,

ess sup
x∈A

|f(x)|, if p =∞.

(2.1.1)

defines for each p a seminorm on the space of measurable functions A→ C, which is

a norm that sends functions other than the constant zero map to zero. The functions

which this norm cannot distinguish from the zero map are those which are zero

almost everywhere. Precisely, f, g : A→ C are equal almost everywhere (a.e.) when

µ∗q({x|f(x) 6= g(x)}) = 0. To circumvent this difficulty, let f ∼ g when f = g a.e.;

then ∼ is an equivalence relation. Note that ess sup(f), the essential supremum, can

then be defined as the infimum over the suprema of all functions equal to f a.e..
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Precisely,

ess sup
x∈A

f(x) = inf
g∼f

{
sup
x∈A
{g(x)}

}
.

For the remainder of the discussion, we are not interested in functions that differ

on a set of measure zero, so we will join the majority of mathematicians in abusing

notation and use f to refer to the equivalence class of functions equal to f almost

everywhere. When f is equal a.e. to a continuous function, then that function will

represent its equivalence class.

For each p, (2.1.1) defines a norm on the space of all equivalence classes of mea-

surable functions A→ C. The subspace of all such functions whose Lp norm is finite

is a normed linear space, denoted Lp(A). Lp(Tq) will be abbreviated to Lp. The

p-distance between functions f, g ∈ Lp can now be expressed as ‖f − g‖p, and we

will use the phrase ‘convergence in the sense of Lp’ when a sequence of functions (fn)

converges to f , to mean ‖fn − f‖p → 0 as n→∞. The most commonly used norms

are p = 1, 2,∞, representing the absolute value, Euclidean, and supremum norms

respectively.

Such norms are also useful for sequence spaces, and so we will define them as done

in the literature. Let a = {ak}∞k=1, and p ∈ [1,∞]. Then the `p norm of a is

|a|p :=



{
∞∑
k=1

|ak|p
}1/p

, if 1 ≤ p <∞ ,

sup
k∈Z,k>0

{|ak|}, if p =∞.

(2.1.2)

The subspace of all sequences whose `p norm is finite is a normed linear space, denoted

`p. For a vector x in q dimensions, |x|p is understood to evaluate the norm of the

sequence which is equal to xk for k ≤ q and vanishes otherwise; clearly any such
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sequence which eventually vanishes lies in each `p.

Univariate trigonometric polynomials are the prototypical 2π periodic functions

and are defined as any map of the form x 7→
∑

k∈Z ake
ikx where each ak ∈ C and only

finitely many ak’s are non-zero. The degree of a trigonometric polynomial is defined

as max{|k| : ak 6= 0}. Notice that {eik◦}k∈Z forms an orthonormal basis for L2(T),

under the usual inner product 〈f, g〉 =
∫
T f g dµ∗1:∫

T
eikxeijxdµ∗1(x) = δj,k .

Let Hn := span {eik◦ : |k| ≤ n}. Hence Hn contains all univariate trigonometric

polynomials of degree at most n. It is a well-known fact that the trigonometric

polynomials are dense in Lp(T) for p ∈ [1,∞). In the supremum norm, they are dense

in the subset of L∞(T) consisting of (equivalence classes of) continuous functions.

These are consequences of the density of continuous functions in Lp for p ∈ [1,∞),

along with Fejér’s theorem as detailed in [20]. Let us denote

Xp(T) := {f ∈ Lp(T) : dist (Lp(T); f,Hn)→ 0 as n→∞} ,

the closure of
⋃
nHn in Lp(T). Then evidently Xp(T) = Lp(T) when p ∈ [1,∞),

and X∞(T) is the set of continuous 2π-periodic functions on T. This makes the

trigonometric polynomials powerful tools as approximation spaces - in fact, each of

these properties hold true when extended to the multivariate case.

Defining the degree of a multivariate trigonometric polynomial however, is not

as immediately obvious as in the univariate case. Perhaps we may take the total

degree, additive in each variable, or take the largest coordinate-wise degree. In fact

if we consider the degree as lying in a q-dimensional integer lattice, then each `p
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norm defines a valid way to measure it. The particular choice turns out not to be

critical to the discussion, and so we will use the spherical degree, and define the set

of all q-dimensional trigonometric polynomials with spherical degree not exceeding

n as Hq
n := span {eik·◦ : k ∈ Zq, |k|2 ≤ n}. Clearly Hn = H1

n, so the notations are

consistent. Then we similarly let Xp = Lp for p ∈ [1,∞) and denote X∞ as the

set of all continuous 2π-periodic functions on Tq. Hence, for p ∈ [1,∞], Xp is the

closure of the trigonometric polynomials in Lp. Herein our setting will be Xp spaces,

and due to our frequent reference to the trigonometric polynomials as approximation

spaces, we will use, as in [15], the following notation as shorthand for the degree of

approximation (c.f. (1.1.2)):

En,p(f) := dist (Lp; f,Hq
n) .

When x is positive but may not be an integer, Ex,p(f) will mean Ebxc,p(f).

A useful property of Lp spaces is their ordering, such that r > p =⇒ Lr ⊂ Lp, and

for f ∈ Lr, ‖f‖p ≤ ‖f‖r. Both of these may be shown using the Hölder inequality,

which we reproduce from [26] in the case of functions on Tq.

Proposition 2.1. Let p ∈ [1,∞). Define p′ such that 1
p

+ 1
p′

= 1 when p 6= 1 and

p′ =∞ otherwise. Then for f ∈ Lp, g ∈ Lp′, we have that fg ∈ L1 and

‖fg‖1 ≤ ‖f‖p‖g‖p′ . (2.1.3)

The proof is found in [26] .

The analogous inclusion for the `p spaces is r > p =⇒ `r ⊃ `p, and for a ∈

`p, |a|p ≥ |a|r; notice the reversal of the ordering. As we will require it later, we

additionally state the Schwarz inequality in the context of sequence spaces.
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Proposition 2.2. Let a,b ∈ `2. Then ab = {akbk}∞k=1 ∈ `1 and

|ab|1 ≤ |a|2|b|2 . (2.1.4)

In fact a direct analogue to the Hölder inequality holds for `p spaces, and this

immediately shows the result. Each of these points is shown in [26] .

The last ingredient we will require is an estimate on the norm of a certain integral

called a convolution. This is usually defined for f, g ∈ L1 as

(f ∗ g)(x) :=

∫
Tq
f(t)g(x− t)dµ∗q(t) =

∫
Tq
f(x− t)g(t)dµ∗q(t) .

Then f ∗ g ∈ L1 as well, and a more general result is given in this weaker form of the

Young inequality for functions on Tq, reproduced from [26] .

Proposition 2.3. Let p ∈ [1,∞]. Then if f ∈ Lp and g ∈ L1, we have that f ∗g ∈ Lp,

with

‖f ∗ g‖p ≤ ‖f‖p‖g‖1 . (2.1.5)

The integrable function g here is referred to as the kernel of the convolution, and

many of the techniques in this theory will involve convolutions against appropriate

kernels.

A note on constant conventions. In the remainder of the thesis, when c, c1, . . .

are used in formulas, they denote positive constants which may depend on any num-

ber of fixed parameters in the context in which they appear. However, they will not

obfuscate any critical information, and as such do not rely for example on the target

function or the dimension of the approximating space when performing an approx-

imation. Whenever this distinction may not be clear or the constant’s reliance on
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some parameter should be highlighted, it will be noted explicitly. The values of these

constants may be different at different occurrences, even within a single formula.

When we say an expression A is “on the order of” B, we mean there exist constants

c, c1 such that cB ≤ A ≤ c1B, and equivalently will denote this by A ∼ B. These

conventions are common in approximation theory.

2.2 Harmonic Analysis Fundamentals

The building block of harmonic analysis on Tq is the Fourier coefficient, traditionally

defined for a function f : Tq → C at each integer-valued q-vector k as

f̂(k) :=

∫
Tq
f(x)e−ik·xdµ∗q(x) .

Notice that

|f̂(k)| ≤
∫
Tq
|f(x)||e−ik·x|dµ∗q(x) ≤ ‖f‖1 ≤ ‖f‖p for p ∈ [1,∞] ,

and so membership in any Lp secures existence of the Fourier coefficients. Herein, we

will just use membership in L1 as a condition on a function to express that membership

in any Lp is sufficient.

A (multivariate) trigonometric series is formally an expression of the form

∑
k∈Zq

ake
ik·◦ ,

with complex coefficients ak. All trigonometric polynomials are trigonometric series,

and further for any f ∈ L1, the Fourier series is defined as usual as a trigonometric

series with ak = f̂(k). While there is no reason for this series to converge in general,
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we have for f ∈ L2 that

f(x) =
∑
k∈Zq
〈f, eik·◦〉eik·x =

∑
k∈Zq

f̂(k)eik·x ,

due to orthonormality, with equality representing convergence in the sense of L2.

Further the Parseval relationship can be deduced:

‖f‖22 =

∫
Tq
|f(x)|2dµ∗q(x) =

∫
Tq

∑
k,`∈Zq

f̂(k)f̂(`)ei(k−`)·xdµ∗q(x) =
∑
k∈Zq
|f̂(k)|2 . (2.2.6)

Now, returning to f ∈ L1, we consider the spherical partial Fourier sum of order n,

which will be denoted

sn(f,x) :=
∑

k∈Zq ,|k|2≤n

f̂(k)eik·x .

We have sn(f) ∈ Hq
n, and notice that the norm convergence sn(f)→ f is clear in L2

for f ∈ L2, with ‖f −sn(f)‖2 = En,2(f). Does this utility of the Fourier series extend

to representing Lp functions? For the following discussion we return to the univariate

setting and set q = 1, and then the following general results hold:

When q = 1, for p ∈ (1,∞) and f ∈ Lp(T), the Fourier series of f will converge

to f in the sense of Lp(T), such that

‖sn(f)− f‖p ∼ dist (Lp(T); f,Hn) and so ‖sn(f)− f‖p → 0 as n→∞ . (2.2.7)

The proof of this result is quite deep and beyond the scope of this thesis, but is

treated thoroughly in [29]. In the case that p = 1 or p =∞, the Fourier series is not

guaranteed to converge at all. For the supremum norm, observe that the univariate

partial Fourier sums may be written as a convolution against a familiar kernel.

sn(f, x) =
∑

k∈Z,|k|≤n

f̂(k)eikx =
∑

k∈Z,|k|≤n

∫
T
f(y)eik(x−y)dµ∗1(y) =

f ∗ ∑
k∈Z,|k|≤n

eik◦

 (x) .
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Writing the Dirichlet kernel as

Dn(x) :=
1

2

∑
|k|≤n−1

eikx =
sin((n− 1/2)x)

2 sin(x/2)
,

then yields that sn−1(f) = f∗2Dn. It can be shown that ‖Dn‖1 ∼ lnn, the significance

of which is that ‖Dn‖1 →∞ as n→∞. A consequence of this fact is that the operator

norm of sn is not uniformly bounded. According to the uniform boundedness principle

as in [20], the class of X∞(T) functions for which their Fourier series does not converge

in the supremum norm is dense in X∞(T) (In fact, it is a dense Gδ subset of X∞(T)).

Pathologies exist in the case of L1, such as the construction by Kolmogorov of

functions in L1 for which the Fourier series diverges almost everywhere (see [29]).

However, as we will show later in this chapter, the Fourier coefficients of an L1 (or

L1(T)) function uniquely determine that function. Hence, the classical approach

has been to develop summability methods which yield trigonometric polynomials

determined by the Fourier coefficients of a function, such that these polynomials

converge to the function.

A theme connecting these summability methods is the representation of approxi-

mants as a convolution against corresponding kernels. For instance, Fejér introduced

the kernel given by Fn(x) = 1
n

∑n−1
k=0 Dk(x). Convolution of a function f ∈ Xp against

this Fejér kernel produces the Fejér means of the Fourier series of f . As a linear op-

erator, these means have uniformly bounded norms (see [4, 20]).

Let us now return to the multivariate setting. The spherical partial sums intro-

duced earlier may be expressed in the form of a convolution:

sn(f,x) =
∑
|k|2≤n

f̂(k)eik·x =
∑
|k|2≤n

∫
Tq
f(y)e−ik·yeik·xdµ∗q(y) =

f ∗ ∑
|k|2≤n

eik·◦

 (x) .
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The sequence of kernels corresponding with the sequence of spherical partial sums

also does not satisfy uniform boundedness.

Further, the Fourier coefficients alone may not express the behavior of the func-

tion - the sequence of coefficients as such may not be of use, for instance, to detect

singularities. In this thesis, singularities will refer to points at which a function’s

(appropriately defined) smoothness changes abruptly. For instance, points at which

the gradient of a function Rq → C is discontinuous are singularities. An aspect of

wavelet analysis is developing an expansion for a function with respect to a wavelet

basis, the coefficients of which may be used to detect singularities or perform other

analysis dependent on local phenomena of the function. The ability to perform such

analysis comes from the good localization of the wavelet basis elements. Localization

of a function f : Tq → C refers to a bound of the form

|f(x)| ≤ g(|x|p) for |x|p > r ,

for some positive real r, p ∈ [1,∞] and a positive decreasing function g : [0,∞)→ R

which vanishes at ∞. The faster g decreases to 0, the better the localization. See

Figure 2.1 for an example of singularity detection, and see [3] for a discussion of

wavelets and wavelet transforms.

We narrow our focus to investigate the construction and properties of sequences

of linear operators which arise from convolutions against sufficiently localized kernels,

are determined by the Fourier coefficients of their argument, reproduce trigonometric

polynomials, and which are capable of classifying smoothness of Lp functions, ap-

propriately defined. Historically, the work of many great analysts throughout the
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Figure 2.1: On the left is a plot of the first thirty Fourier coefficients of f(x) =√
| cosx|. On the right is the Daubechies wavelet transform (ϕ3

D)4 ∗ f , whose peaks

detect the cusps at π/2 and 3π/2. Note the domain in this example is [0, 2π], and

the plot’s x-axis counts multiples of π. Plots found in [22].

19th and 20th centuries contributed to the introduction of sophisticated summability

methods, and elucidated which properties of the arising summability operators were

desirable. For instance, the shifted average operators due to de la Vallée-Poussin have

uniformly bounded operator norms independent of order, and reproduce trigonometric

polynomials [21]. Mhaskar and Prestin have studied many such summability kernels,

and analyzed their localization properties, which we are interested in. Some relevant

papers are [21][22][23].

The ideas of Mhaskar and his collaborators which we focus on, detailed in [15] ,

involve constructing linear operators which, in addition to the points mentioned, are

sufficiently localized to classify the local smoothness of Lp functions, appropriately
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defined. Further, they inform the construction of related band-pass operators which

form a frame expansion, which converges to f in Lp. These criteria form the core of

the wavelet-like analysis; other common names for this subject are Littlewood-Paley

theory (after two of the founding analysts in the area) and multiscale analysis. The

term ”wavelet-like” refers to the fact mentioned earlier, that wavelet coefficients may

be used to classify local smoothness of a function in conditions where the Fourier

coefficients alone cannot. Daubechies discusses this property of wavelets in Chapter 9

of [3], and we seek a characterization in the spirit of Jaffard’s result [3, Theorem 9.2.1].

Hence, as the operators discussed classify local smoothness as well, and are defined

in terms of Fourier coefficients, we call the expansion wavelet-like. This is detailed in

the next sections.

2.3 Low-Pass Filters and the Summability Operator

We wish to construct a sufficiently general class of localized kernels, and will define

more precisely what is meant by smoothness and by localization. To this effort, we

follow the example of using values of a compactly-supported function H : Rq → R in

our construction of a kernel

x 7→
∑
k∈Zq

H(k)eik·x ,

as written in [15] and pioneered in the work of Hardy. Recall that the support

of a real or complex-valued function f , denoted by supp(f), is the closure of the

set {x : f(x) 6= 0}, and we say f “is supported on” A to mean supp(f) ⊂ A.

Hence H being compactly supported makes the seemingly infinite sum above finite
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- a criterion equivalent to compact support is the existence of some b such that

|x|2 > b =⇒ H(x) = 0. Next we introduce the necessary definitions and notations

for differentiation in the multivariate setting.

For a positive integer S, we say a function H : Rq → C is S-times continuously

differentiable when for r ∈ Zq+, |r|1 ≤ S, DrH exists and is continuous. Then we

define the expression

|||H|||DS = max
r∈Zq+,|r|1=S

‖DrH‖1 ,

even when the expression is not finite.

We now focus our attention on a certain class of compactly supported, smooth

functions which will facilitate the development of kernels with sufficiently high local-

ization.

Definition 2.4. Let S be a positive integer. Then h : R → R is called an S-smooth

low-pass filter when the following are satisfied:

• h is S-times continuously differentiable.

• h is even and bounded.

• h is non-increasing on [0,∞).

• h(x) = 1 when |x| ≤ 1/2 and h(x) = 0 when |x| ≥ 1.

Example 2.3.1. For any non-negative integer S we may generate an S-smooth

low-pass filter hS by writing the expression

hS(x) := AS

∫ 1

x

(2t− 1)S(1− t)Sdt for x ∈
(

1

2
, 1

)
,

27



where AS is a normalizing constant,

AS = 2S+1 (2S + 1)!

(S!)2
.

To satisfy the conditions for being a low-pass filter, additionally hS(x) = 1 on
[
0, 1

2

]
,

hS(x) = 0 on [1,∞), and hS(−x) = hS(x).

Example 2.3.2. The function h∞ which satisfies the conditions for being a low-pass

filter and is defined on
(
1
2
, 1
)

by

h∞(x) = 2

[
1 + exp

(
(2x− 1)2

1− (2x− 1)2

)]−1
for x ∈

(
1

2
, 1

)
.
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Figure 2.2: This low-pass filter is S-smooth for every positive integer S.

We may construct a series of kernels with localization as nice as we would like by

considering, for each positive integer n, a choice of H given by x 7→ h(|x|2/n) for an

S-smooth low-pass filter h. Clearly each such function will be compactly supported,

and as we will see, the localization is controlled by S.

Definition 2.5. Let S be a positive integer, and h an S-smooth low-pass filter. Then
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we may define the low-pass summability kernel by

Φn(h, t) :=
∑
k∈Zq

h

(
|k|2
n

)
eik·t .

The sum expression
∑

k∈Zq is really
∑
|k|2≤n, and so the sum is finite. The critical

property of this kernel is the localization estimate it satisfies, as follows.

Theorem 2.6. Let S > q be a positive integer, and h an S-smooth low-pass filter.

Then

|Φn(h,x)| ≤ cnq/max
{

1, (n|x|1)S
}

for all x ∈ Tq , (2.3.8)

and

‖Φn(h)‖1 ≤ c , (2.3.9)

where the constant c will depend on h but not on n.

A consequence of the estimate (2.3.8) is that for any γ > 0, when S > q+γ and h is

an S-smooth low-pass filter, Φn(h,x) eventually vanishes faster than (n|x|1)−γ. This

is an important aspect of having good localization, as demonstrated in Figure 2.3.

Note that h0 as in Example 2.3.1 yields the classical de la Vallée-Poussin kernel

Φn(h0).

The proof of this estimate relies on the multivariate Poisson summation formula,

which itself relies on the properties of the Fourier transform. Hence we will introduce

these concepts and the accompanying notation here. Much of this exposition is taken

directly from the corresponding discussion in [15].

For F ∈ L1(Rq), the Fourier transform is defined by

F̂ (x) =
1

(2π)q

∫
Rq
F (y) exp(−iy · x)dy, x ∈ Rq ,
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Figure 2.3: Some plots of localized kernels in the univariate case. On the left, no-

tice how the summability kernel for a 1-smooth low-pass filter has oscillations which

vanish extremely quickly, unlike the Dirichlet kernel (in green). On the right, the

summability kernel for a 0-smooth low-pass filter is plotted in green against that of

an infinitely smooth filter in blue, and the graph is shown on [π/4, 3π/4].

and the inverse Fourier transform by

F̃ (x) =

∫
Rq
F (y) exp(iy · x)dy, x ∈ Rq .

As we denoted the Fourier coefficients of an L1 function f by f̂(m), there is an

abuse of notation here. F̂ (m) denotes the Fourier transform of the L1(Rq) function

F evaluated at m. This is however a very common abuse, and the meaning should

be clear from context.

Proposition 2.7. (a) If both F and F̂ are in L1(Rq), then the Fourier inversion

formula holds for every x ∈ Rq:

F (x) =
˜̂
F (x) =

̂̃
F (x) .
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(b) Let F ∈ L1(Rq). Then we have

‖F‖1,Rq =
∑
k∈Zq
‖F (◦+ 2πk)‖1 <∞.

Particularly, the function

f(x) :=
∑
k∈Zq

F (x + 2πk) (2.3.10)

is defined for almost all x ∈ Tq, f ∈ L1, and ‖f‖1 = ‖F‖1,Rq . Moreover, f̂(k) = F̂ (k).

If both the series defining f and the Fourier series of f converges uniformly on Tq,

then we have the following Poisson summation formula valid for x ∈ Tq:

∑
m∈Zq

F̂ (m) exp(im · x) =
∑
k∈Zq

F (x + 2πk) . (2.3.11)

(c) If S ≥ 1 is an integer, F is compactly supported, and is S times continuously

differentiable then for x ∈ Rq − 0,

|F̂ (x)| ≤ qS|||F |||DS
|x|S1

and |F̃ (x)| ≤ (2π)qqS|||F |||DS
|x|S1

. (2.3.12)

Proof. Part (a) is given in [28, Chapter 1, Corollary 1.21]; the proof involves details

of measure theory which will run this thesis off-topic and will not be reproduced.

For part (b), each term ‖F (◦+ 2πk)‖1 in the series is just
∫
Ak
|F (x)|dx where Ak =

Πq
j=1[−π + 2πkj, π + 2πkj]. The Ak’s partition Rq, and so

∑
k∈Zq‖F (◦ + 2πk)‖1 =

‖F‖1,Rq < ∞ by hypothesis. Hence f ∈ L1 with ‖f‖1 = ‖F‖1,Rq as desired. To

obtain the Poisson summation formula, use the Dominated Convergence Theorem

(for the Lebesgue measure) to obtain that f̂(m) = F̂ (m) for m ∈ Zq. Then of course

when both series converge uniformly the equality (2.3.11) holds. For part (c), let F

be compactly supported and S-times continuously differentiable. Observe that if we

31



integrate the expression for the Fourier transform by parts with respect to xj, we

obtain

(−ixj)F̂ (x) =
1

(2π)q

∫
Rq

(∂jF )(y) exp(−iy · x)dy .

A repeated application of this formula shows that for r ∈ Zq+, |r|1 ≤ S,

(−ix)rF̂ (x) =
1

(2π)q

∫
Rq

(DrF )(y) exp(−iy · x)dy .

The notation vr refers to the vector whose components are v
rj
j . Additionally, when

|r|1 = S, let
(
S
r

)
:= S!/r1!r2! . . . rq!. It follows that for every x ∈ Rq,

|x|S1 |F̂ (x)| =
∑

r∈Zq+, |r|1=S

(
S

r

)
|x|r|F̂ (x)| ≤

∑
r∈Zq+, |r|1=S

(
S

r

)
‖DrF‖1,Rq ≤ qS|||F |||S .

The second estimate in (c) follows from the fact that F̃ (x) = (2π)qF̂ (−x).

We will need to solve integrals of the form
∫
Rqf(|x|1)dx, and so we reproduce

Lemma 2.2.1 from [15].

Lemma 2.8. For any f : [0,∞)→ R for which the mapping t 7→ f(t)tq−1 is integrable

on [0,∞), we have

∫
Rq
f(|x|1)dx =

2q

(q − 1)!

∫ ∞
0

f(t)tq−1dt. (2.3.13)

Proof. We must make a change of variables - to keep the Jacobian determinant simple,

use

xj = ttj, j = 1, · · · , q − 1, xq = t(1− t1 − · · · − tq−1) .

Then, changing variables, we deduce that

∫
Rq
f(|x|1)dx = 2q

∫
[0,∞)q

f(|x|1)dx = 2q
∫
{t∈Rq−1

+ , |t|∞≤1, |t|1=1}

∫ ∞
0

f(t)tq−1dtdt.
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It is easily verified by induction that

∫
{t∈Rq−1

+ , |t|∞≤1, |t|1=1}
dt =

1

(q − 1)!
.

The result (2.3.13) follows.

As a consequence of this lemma, we have for every r > 0,

∫
|x|1≤r

dx =
2q

(q − 1)!

∫ r

0

tq−1dt =
2qrq

q!
, (2.3.14)

and when S > q,

∫
|x|1≥r

dx

|x|S1
=

2q

(q − 1)!

∫ ∞
r

tq−1−Sdt =
2qrq

q!

q

(S − q)rS
. (2.3.15)

Now we will prove Theorem 2.6.

Proof. Let Hn(x) = h
(
|x|2
n

)
. As Hn is continuous and compactly supported, Hn ∈

L1(Rq). Φn(h) ∈ Hq
n, and so its series representation is finite, and in particular

absolutely and uniformly convergent. Further, we have Hn(x) = H1(x/n). Notice

that since h is constant on a neighborhood of 0,

∇H1(x) =
x

|x|2
h′(|x|2) = 0 on a nbhd. of 0.

Hence, H1 (and so Hn) inherits being S > q times continuously differentiable from

the fact that h is S-smooth. So, we use (2.3.12) and Lemma 2.8 to deduce that

Ĥn ∈ L1(Rq). Hence, both the Fourier inversion formula and the Poisson summation

formula hold for all x ∈ Rq, and we have for x ∈ Rq,

Φn(h,x) =
∑
k∈Zq

H̃n(x + 2kπ) .
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Notice that

H̃n(x) =

∫
Rq
Hn(y)eix·ydy =

∫
Rq
H1(y/n)eix·ydy = nq

∫
Rq
H1(y)einx·ydy = nqH̃1(nx) ,

and so

Φn(h,x) = nq
∑
k∈Zq

H̃1 (n(x + 2kπ)) .

Enlisting the fact that H1 is S times continuously differentiable, we now use (2.3.12)

to obtain for x ∈ Tq \ {0},

|Φn(h,x)| ≤ (2π)qqSnq|||H1|||DS
∑
k∈Zq

n−S

|x + 2kπ|S1

= c(q, h)nq−S

 1

|x|S1
+

∑
k∈Zq , |k|∞≥1

1

|x + 2kπ|S1

 .

We will not worry about the exact value of the constant except to mention that it

is finite, and to recall its dependence on the dimension and choice of filter. Since

|x|∞ ≤ π, we obtain for k ∈ Zq, |k|∞ ≥ 1, that

|x + 2kπ|1 ≥ |x + 2kπ|∞ ≥ 2π|k|∞ − |x|∞ ≥ |x|∞(2|k|∞ − 1) ≥ |x|1
q

(2|k|∞ − 1) .

Therefore, for x ∈ Tq \ {0},

∑
k∈Zq
|k|∞≥1

|x + 2kπ|−S1 ≤ qS

|x|S1

∞∑
j=1

∑
|k|∞=j

(2|k|∞ − 1)−S

=
qS

|x|S1

∞∑
j=1

|{k ∈ Zq : |k|∞ = j}|(2j − 1)−S . (2.3.16)

For k ∈ Zq, j ≥ 1, |k|∞ = j if and only if for some ` ∈ {1, · · · , q}, there is a subset

U ⊆ {1, · · · , q} such that |U | = `, km = ±j for m ∈ U , and |km| ≤ j − 1 for

m ∈ {1, · · · , q} − U . We then see that

|{k ∈ Zq : |k|∞ = j}| =
q∑
`=1

(
q

`

)
2`(2j − 1)q−` =

q−1∑
`=0

(
q

`

)
2q−`(2j − 1)`.
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Hence, since S > q, the infinite series in (2.3.16) converges. Thus we have for x ∈

Tq \ {0},

|Φn(h,x)| ≤ c(q, h)nq (n|x|1)−S .

When x = 0,

|Φn(h,0)| ≤
∑
k∈Zq
|Hn(k)| =

∑
k∈Zq

∣∣∣∣h( |k|2n
)∣∣∣∣ ≤ cnq ,

the number of integer grid points in the q-sphere with radius n. Finally, we may

conclude that for x ∈ Tq, (2.3.8) holds.

In light of this, to bound ‖Φn(h)‖1, we split the integral along the boundary

|x|1 = 1
n
:

‖Φn(h)‖1 ≤
∫
|x|1≤1/n

|Φn(h,x)|dµ∗q(x) +

∫
|x|1≥1/n

|Φn(h,x)|dµ∗q(x)

≤ cnq
∫
|x|1≤1/n

dx + c0n
q−S
∫
|x|1≥1/n

dx

|x|S1
,

noting that we change from integration over Tq in the first line to integration over

Rq in the second. Recalling that S > q, and using (2.3.14) and (2.3.15), we conclude

that ∫
|x|1≤1/n

dx = c1(q)n
−q and

∫
|x|1≥1/n

dx

|x|S1
= c2(q, h)nS−q .

The exact constants are not vital here. However, this is enough to give that ‖Φn(h)‖1

is bounded by a constant, as desired.

Convolving against this kernel produces the linear operator which is central to

this chapter.
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Definition 2.9. Let S be a positive integer, and h an S-smooth low-pass filter. Let

p ∈ [1,∞], and f ∈ Xp. Then the low-pass summability operator is given by

σ∗n(h, f,x) := (f ∗ Φn(h))(x) =

∫
Tq

Φn(h,x− t)f(t)dµ∗q(t) .

Linearity follows from linearity of the integral. A quick calculation then gives, by

using the definition of Φn and of the Fourier coefficients,

σ∗n(h, f,x) =
∑
|k|2≤n

h

(
|k|2
n

)
eik·x

∫
Tq
f(t)e−ik·tdµ∗q(t) =

∑
|k|2≤n

h

(
|k|2
n

)
f̂(k)eik·x .

Hence the term low-pass filter refers to the fact that the action of h in this convolution

is to reproduce low frequencies while suppressing high frequencies – we incorporate

smoothness and being nonincreasing into the definition in order to streamline later

results, and because we do not seek full generality here.

An immediate consequence of this definition is that σ∗2n reproduces trigonometric

polynomials of degree n. If T ∈ Hq
n, we have, by orthogonality or by observation,

that the Fourier coefficients of T are simply its trigonometric polynomial coefficients;

that is, T (x) =
∑
|k|2≤nT̂ (k)eik·x, and |k|2 > n =⇒ T̂ (k) = 0. Hence,

σ∗2n(h, T,x) =
∑
|k|2≤2n

h

(
|k|2
2n

)
T̂ (k)eik·x

=
∑
|k|2≤n

h

(
|k|2
2n

)
T̂ (k)eik·x =

∑
|k|2≤n

T̂ (k)eik·x = T (x) .

Notice that, again, the choice of filter here played no part, so long as it satisfied the

definition – we merely need that h(x) = 1 for x ≤ 1/2. While specific constants in

formulas will in general rely on the choice of filter, the restrictions on the filter in the

theory are generally only on its S-smoothness.

The operator norm of the summability operators is uniformly bounded, as desired.
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Proposition 2.10. Let S > q be a positive integer, and h an S-smooth low-pass

filter. Let p ∈ [1,∞], and f ∈ Xp. Then

‖σ∗n(h, f)‖p ≤ c‖f‖p . (2.3.17)

Proof. Via the Young inequality (2.1.5) and the uniform boundedness of Φn (2.3.9),

‖σ∗n(h, f)‖p = ‖Φn(h) ∗ f‖p ≤ ‖Φn(h)‖1‖f‖p ≤ c‖f‖p .

These two observations, of uniform boundedness and polynomial reproduction,

allow us to fulfill the promise of the second section, that the Fourier coefficients of

an Lp function determine it uniquely. This is because the summability operators

converge to the Xp function they operate on in the sense of Lp.

Proposition 2.11. Let S > q be a positive integer, and h an S-smooth low-pass

filter. Let p ∈ [1,∞], and f ∈ Xp. Then

E2n,p(f) ≤ ‖σ∗2n(h, f)− f‖p ≤ cEn,p(f) , (2.3.18)

and in particular σ∗n(h, f)→ f as n→∞.

Proof. The first inequality is immediate from the fact that σ∗2n(h, f) ∈ Hq
2n. Now, let

T ∈ Hq
n. Then we have

‖σ∗2n(h, f)− f‖p = ‖σ∗2n(h, f)− T + T − f‖p ≤ ‖σ∗2n(h, f)− T‖p + ‖T − f‖p .

Next we employ the fact that σ2n reproduces T ∈ Hq
n, along with linearity and

(2.3.17), to deduce that

‖σ∗2n(h, f)− T‖p = ‖σ∗2n(h, f − T )‖p ≤ c‖f − T‖p .
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Thus, ‖σ∗2n(h, f)− f‖p ≤ (c+ 1)‖f − T‖p. But T was arbitrary, so for any ε > 0, we

may choose Tε with ‖f − Tε‖p < En,p(f) + ε. Hence ‖σ∗2n(h, f) − f‖p ≤ cEn,p(f) as

desired.

Lp convergence follows from the definition ofXp, specifically the density of trigono-

metric polynomials in Xp.

Let f̂1(k) = f̂2(k) for each k ∈ Zq. As the summability operators use only the

Fourier coefficients in their definition, given an integer S > q, for a fixed S-smooth

low-pass filter h it follows that σ∗n(h, f1) = σ∗n(h, f2) for each n. Suppose f1 ∈ Xp for

some p ∈ [1,∞]. Then σ∗n(h, f1) → f1 as n → ∞, with convergence in the sense of

Lp. Just the same, σ∗n(h, f2) → f1 as n → ∞, and σ∗n(h, f2) → f2 as n → ∞. Taken

together this means that f1 = f2 a.e., and so represent the same equivalence class.

The rest of the results we explore in this chapter will primarily be quoted from

[15] or specific instances of theorems therein, and underscore the success of wavelet-

like representation for periodic functions in Xp, expressed entirely in terms of Fourier

coefficients.

2.4 Multvariate Approximation Results

In the case of univariate functions, the well-known Favard estimate provides a re-

lationship between the smoothness of a function in Xp(T) in terms of number of

derivatives, and the degree of approximation achievable by trigonometric polynomi-

als. The Bernstein inequality may be used to estimate the norm of a trigonometric

polynomial’s derivatives, and together they provide the backbone for deriving the
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direct and converse theorems of approximation by trigonometric polynomials on T.

We state them here without proof, referencing Theorem 1.1.1 of [15].

Theorem 2.12. Let 1 ≤ p ≤ ∞, r, n ≥ 1 be integers. ‖ ◦ ‖p denotes the Lp(T) norm

in this theorem only.

(a) (Favard estimate) If f ∈ Xp(T) has r − 1 absolutely continuous derivatives, and

f (r) ∈ Lp(T), then

dist (Lp(T); f,Hn) ≤ c

(n+ 1)r
dist (Lp(T); f (r),Hn) ≤ c

(n+ 1)r
‖f (r)‖p . (2.4.19)

(b) (Bernstein inequality) If T ∈ Hn then

‖T (r)‖p ≤ nr‖T‖p. (2.4.20)

A multivariate analogue exists for each, using the appropriate notion of differ-

entiability. For the remainder of the chapter, fix an S-smooth low-pass filter h.

Conditions on S will be specified in each instance where h is required. Note that

from the construction in Example 2.3.1, for any positive integer S we may find an

S-smooth low-pass filter. Constants introduced may depend on specific choice of h.

First we mention a necessary property of the Fourier coefficients of a convolution.

Proposition 2.13. The Fourier coefficients of a convolution of two functions f, g ∈

L1 are given for k ∈ Zq as

(̂f ∗ g)(k) = f̂(k)ĝ(k) .

Proof. This is a consequence of Fubini’s theorem. Applying the appropriate defini-
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tions and a change of variables directly yields

(̂f ∗ g)(k) =

∫
Tq

(f ∗ g)(x)e−ik·xdµ∗q(x)

=

∫
Tq

∫
Tq
f(y)g(x− y)e−ik·xdµ∗q(y)dµ∗q(x)

=

∫
Tq
f(y)e−ik·y

∫
Tq
g(x− y)e−ik·(x−y)dµ∗q(y)dµ∗q(x)

=

∫
Tq
f(y)e−ik·ydµ∗q(y)

∫
Tq
g(x)e−ik·xdµ∗q(x) = f̂(k)ĝ(k) as desired.

We will denote the Laplacian operator by ∆ :=
∑q

j=1 ∂
2
j , and observe that for a

sufficiently smooth f ,

(̂−∆f)(k) = |k|22f̂(k) ,

for each k ∈ Zq. For positive even integer r, we will then define the differential

operator (−∆)r/2 formally by

̂(−∆)r/2f(k) := |k|r2f̂(k) (2.4.21)

for f ∈ L1 and k ∈ Zq. We will denote W p
r the space of all functions f ∈ Xp such

that (−∆)r/2f ∈ Xp. Note that all trigonometric polynomials of any degree lie in

each W p
r trivially, since any trigonometric polynomial is its own Fourier series.

With respect to these operators, the analogous Favard estimate and Bernstein

inequality each take a remarkably simple form, expressing clearly the dependence of

the degree of approximation by polynomials on the smoothness of the target function,

in terms of derivatives.

Theorem 2.14. .

(a) Let p ∈ [1,∞], f ∈ Xp, and r be a positive even integer. Then if additionally
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f ∈ W p
r ,

En,p(f) ≤ cn−r‖(−∆)r/2f‖p .

(b) Let T ∈ Hq
n and r be a positive even integer. Then for each p ∈ [1,∞],

‖(−∆)r/2T‖p ≤ cnr‖T‖p .

The proofs of both estimates can be achieved using the properties of the low-pass

summability kernels and operators introduced in the last section, due to their high

localization. [15, Chapter 2, Theorem 3.3] gives a general treatment, from which the

results follow.

The univariate case provides a sharp example of when the number of derivatives

alone is a strong enough smoothness criterion to classify the degree of approxima-

tion: L2(T). The proposition is taken directly from [15, Proposition 1.2.3]. For this

proposition only, we will let En(f) := dist (L2(T); f,Hn).

Proposition 2.15. Let r ≥ 1 be an integer, f ∈ L2(T). Then the following are

equivalent:

(a) f has r − 1 absolutely continuous derivatives and f (r) ∈ L2(T).

(b)
∑∞

k=1{krEk(f)}2/k <∞.

(c)
∑∞

k=0{2krE2k(f)}2 <∞.

Such a stark connection between number of derivatives and degree of approxima-

tion by trigonometric polynomials does not arise for any other Lp space - instead we

must use it as a motivating example to define a more useful smoothness class.
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Definition 2.16. Let γ > 0 and ρ ∈ (0,∞]. Let a be a complex-valued sequence.

Consider the seminorm

‖a‖ρ,γ :=


| {2nγ|an|}∞n=0 |ρ , if 0 < ρ <∞,

sup
n≥0

2nγ|an|, if ρ =∞.

Then:

The Besov sequence space is given by bρ,γ = {a : ‖a‖ρ,γ <∞}.

The Besov approximation space is given by Bp
ρ,γ = {f ∈ Xp : {E2n,p(f)}∞n=0 ∈

bρ,γ}, with norm ‖f‖p,ρ,γ = ‖f‖p + ‖{E2n,p(f)}∞n=0‖ρ,γ.

When we speak of a Besov space, we will be referring to the Besov approximation

space. For the univariate case, when necessary we will use Bp
ρ,γ(T) = {f ∈ Xp(T) :

{dist (Xp(T); f,Hn)}∞n=0 ∈ bρ,γ} As we saw in part (c) of Proposition 2.15, for f ∈

L2(T), the smoothness (in terms of the number r of derivatives) was classified (as

both a sufficient and necessary condition) by f ∈ B2
2,r(T).

At first glance, the connection between Besov spaces and general smoothness of

a function may not seem obvious, but in fact the development of tools for analyzing

smoothness such as the K-functional and modulus of continuity in approximation

theory leads to equivalence theorems connecting smoothness of a function with mem-

bership in an appropriate approximation space. For a modern treatment see Chapter 1

of [15] - we will state the equivalence theorem and terminology specifically as they

apply here, for Besov spaces and approximation in Xp by trigonometric polynomials.

Definition 2.17. Let p ∈ [1,∞], and f ∈ Xp. Then the K-functional of f between

42



Xp and W p
r is given by

K(Xp,W p
r ; f, δ) := inf

g∈W p
r

{‖f − g‖p + δ‖(−∆)r/2g‖p}.

Note that when there exists a g for which the K-functional expression achieves

its infimum, that g is the arg min and so solves the regularization problem implicitly

posed, with ‖f − g‖p the approximation term and ‖(−∆)r/2g‖p the loss functional,

modulated by the parameter δ. A rigorous take on how this loss functional relates

to the target function’s smoothness, as well as the properties of the regularization

problem’s solution (which recovers the K-functional) is found for the case of L2 in

[7].

Note that when g ∈ Hq
2n , the Bernstein inequality Theorem 2.14 (b) gives that

‖(−∆)r/2g‖p ≤ c2nr‖g‖p. This fact, along with the Favard inequality Theorem 2.14

(a), plays a critical role in understanding the equivalence theorem.

Theorem 2.18. Let p ∈ [1,∞], ρ ∈ (0,∞], γ > 0, and r > γ be an integer. Then

‖f‖p,ρ,γ ∼ ‖f‖p +
∥∥{K(Xp,W p

r ; f, 2−mr)}∞m=0

∥∥
ρ,γ
, (2.4.22)

where the constants involved in ∼ may depend upon p, ρ, γ, and r.

While we will not prove this theorem here, as it is done in [15, Chapter 2, Theo-

rem 4] in the full generality of the K-functional, we will mention that the complete

proof requires an inequality facilitating the manipulation of sequences in Besov se-

quence spaces, known as a discrete Hardy inequality, which we later introduce and

enlist in some proofs in Chapter 3.
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This theorem states essentially that the Besov spaces characterize the smooth-

ness of Xp functions in terms of K-functionals, and as we will see, the final piece

of the puzzle is to observe that an arbitrary target function f ∈ Xp lies in a Besov

space exactly when the sequence of approximations by σ∗n(h, f) lie in the correspond-

ing Besov sequence space; this completes the chain of equivalences from polynomial

representation to smoothness classification.

2.5 Classification of Smoothness and Local Smoothness

As we showed in Section 2.4, given f ∈ Xp, the operators σ∗n(h, f) converge to f

in the sense of Lp. This suggests that the σ∗n’s act as partial sums of some series

expansion for f - a correct assumption. Recall that h is some fixed low-pass filter,

S-smooth with S > q.

Definition 2.19. Let p ∈ [1,∞], and f ∈ Xp. Then the band-pass operator is

given for non-negative integers n by

τ ∗0 (h, f) = σ∗1(h, f) and for n ≥ 1, τ ∗n(h, f) = σ∗2n(h, f)− σ∗2n−1(h, f) .

These band-pass operators form the aforementioned series expansion of f ∈ Xp,

converging in the sense of Lp.

Theorem 2.20. Let p ∈ [1,∞], and f ∈ Xp. Then we have that

f =
∞∑
j=0

τ ∗j (h, f) ,

with convergence of the infinite series in the sense of Lp.
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Proof. Proving convergence is a simple affair, having the appropriate estimates on

σ∗n’s already. See that

n∑
j=0

τ ∗j (h, f) = σ∗1(h, f) +
n∑
j=1

(σ∗2j(h, f)− σ∗2j−1(h, f)) = σ∗2n(h, f) ,

so the partial sums give a telescoping series. Then we have by Proposition 2.11∥∥∥∥∥f −
n∑
j=0

τ ∗j (h, f)

∥∥∥∥∥
p

= ‖f − σ∗2n(h, f)‖p ≤ cE2n−1,p(f) .

As f ∈ Xp, E2n−1,p(f)→ 0 as n→∞, and we are done.

Now we are ready to state the classification of Xp function smoothness by trigono-

metric polynomial expansion. For the rest of the thesis we will use shorthand and

refer to a sequence indexed by n, a = {an}∞n=0, as {an}, omitting the dependence on

n whenever it is clear from context.

Theorem 2.21. Let p ∈ [1,∞] and f ∈ Xp. Let ρ ∈ (0,∞] and γ > 0. Let S > q,

and let h be an S-smooth low-pass filter. Then each of the following are equivalent:

(a) f ∈ Bp
ρ,γ, and so {E2n,p(f)} ∈ bρ,γ .

(b) {‖f − σ∗2n(h, f)‖p} ∈ bρ,γ .

(c) {‖τ ∗n(h, f)‖p} ∈ bρ,γ .

This result reproduces part of Theorem 2.3.4 of [15], and we will prove it in greater

generality as Theorem 3.14. However, the Besov space characterization of smoothness

leaves more to be desired - two functions in the same approximation space may still

have drastically different behavior. The following example comes from [15].
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Example 2.5.1. Consider the two functions defined on T by

f1(x) =
√
| cosx| and f2(x) =

∞∑
k=0

cos(4kx)

2k
.

We see that |f1(x) − f1(y)| ≤
√
| | cosx| − | cos y| | ≤

√
| cosx− cos y| ≤

√
|x− y|

for x, y ∈ T. The direct theorem of approximation theory (see [20]) then gives that

dist (L∞(T); f1,Hn) ≤ cn−1/2, so that f1 ∈ B∞∞,1/2(T).

Next, we consider for m the largest integer such that 4m ≤ n,

dist (L∞(T); f2,Hn) ≤ dist (L∞(T); f2,H4m)

≤
∞∑

k=m+1

∣∣∣∣cos(4kx)

2k

∣∣∣∣ ≤ ∞∑
k=m+1

2−k = 2−m ≤ cn−1/2 .

Likewise then, f2 ∈ B∞∞,1/2(T). Observing Figure 2.4 suggests a pitfall regarding this

notion of smoothness - a singularity anywhere in the domain reduces the smoothness

of the function on its entire domain, as defined with Besov spaces.

In the prior example, if one observed f1 on a sufficiently small neighborhood of

a point x0 away from ±π/2, then f1 is much smoother than suggested by B∞∞,1/2 (in

fact it is infinitely differentiable there) - this property clearly doesn’t extend to f2,

the Weierstrass nowhere-differentiable function, even though it lies in the same ap-

proximation space. Let us now differentiate between the global approximation spaces

we’ve been discussing, which characterize global smoothness, and local approximation

spaces, which will characterize local smoothness.

• When r > 0, we will call a set of the form {x : ‖x− x0‖1 ≤ r} an r-box about

x0.
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Figure 2.4: The graphs of
√
| cosx| and some partial sums (summing to the 2nd and

6th term) of the Weierstrass nowhere-differentiable function, both functions which lie

in the approximation space B∞∞,1/2(T). Evidently the local smoothness of these two

functions is dramatically different away from the singularities of
√
| cosx|.

• The space of functions ϕ : Tq → C where Drϕ is absolutely continuous for each

r ∈ Zq+ is denoted C∞.

• Given an r-box I, the space of C∞ functions supported on I is denoted C∞I .

Definition 2.22. Let p ∈ [1,∞], ρ ∈ (0,∞], γ > 0, and x0 ∈ Tq. We will say that

f ∈ Xp is in the local Besov approximation space Bp
ρ,γ(x0) when there exists an r-box

I about x0 such that ϕ ∈ C∞I =⇒ fϕ ∈ Bp
ρ,γ.

Any such r-box J about x0 for which we have ϕ ∈ C∞J =⇒ fϕ ∈ Bp
ρ,γ will be called a

(p, ρ, γ) Besov r-box for f about x0.

When we speak of local approximation, we are referring to the local Besov approx-

imation spaces. f ∈ Bp
ρ,γ(x0) is equivalent to the existence of a (p, ρ, γ) Besov r-box

for f about x0. To finish our analysis of the prior example, while for any x0 ∈ T,
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f2 ∈ B∞∞,1/2(x0) and this is the best which can be hoped for, the same holds for f1

only when x0 = ±π/2. For other choice of x0, f1 lies in B∞∞,γ(x0) for any γ > 0.

The final matter is to classify the local smoothness of a target function via the

local approximation properties of its corresponding trigonometric polynomial expan-

sion - with the following theorem in hand, we have achieved the desired wavelet-like

representation using the τ ∗n operators.

Theorem 2.23. Let p ∈ [1,∞] and f ∈ Xp. Let ρ ∈ (0,∞], γ > 0, and S > q + γ.

Let h be an S-smooth low-pass filter, and x0 ∈ Tq. Then we have the following:

(a) When I is a (p, ρ, γ) Besov r-box for f about x0, there exists a positive r0 < r and

r0-box J about x0 such that {‖f − σ∗2n(h, f)‖p,J} ∈ bρ,γ and {‖τ ∗n(h, f)‖p,J} ∈ bρ,γ .

(b) When for some r-box I about x0, either {‖f − σ∗2n(h, f)‖p,I} ∈ bρ,γ or

{‖τ ∗n(h, f)‖p,I} ∈ bρ,γ, then I is a (p, ρ, γ) Besov r-box for f about x0 .

This is a mild rewriting of the first two statements of Theorem 2.4.3 of [15], done

in our specific context, and once again rather than prove it here we will show a more

general result in Theorem 3.16. We recall that the condition on h to achieve this

characterization was S > q + γ, and that this means Φn(h,x) vanishes faster than

(n|x|1)−γ - this is the localization criteria for achieving the desired description of local

smoothness.
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CHAPTER 3

Wavelet-Like Representation by Periodic Translation Networks

Here we will introduce the novel contribution of this thesis, comprising joint work

with Professor Mhaskar. We begin by introducing periodic translation networks and

an abstract notation for encapsulating scattered data and representing quadrature

formulas. We proceed to develop an analogue of the theory of wavelet-like expansions

in trigonometric polynomials, in the setting of periodic translation networks, and

equipped to handle function approximation using scattered data.

Fix a positive integer q - as in Chapter 2, this is the dimension of our space.

Consider a periodic activation function φ : Tq → C. A periodic translation network

(PTN) with n neurons at the centers {xj}nj=1, with activation function φ, is defined

as a function of the form

x 7→
n∑
j=1

ajφ(x− xj) .

Hence a PTN is, as the name makes suggestive, a linear combination of translates

of a periodic function. PTNs have been part of the literature (as in [17]) and have

some useful qualities - for example, their network architecture allows hardware and

software implementation using parallel computing. As noted in Chapter 1, a variety

of minimal energy interpolation problems in the periodic setting give rise to PTNs.

The density of the class of PTNs for approximating functions in Xp was studied

by Mhaskar and Micchelli in [18]. In particular, they proved the following theorem
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(cf. [18, eqn. (2.23), Proposition 2.1]):

Theorem 3.1. Let 1 ≤ p ≤ ∞, φ ∈ Xp. The necessary and sufficient condition that

the class of all PTNs with activation function φ be dense in Xp is that φ̂(k) 6= 0 for

any k ∈ Zq.

Accordingly, we make the following definition.

Definition 3.2. A function φ ∈ L1 will be said to have full frequency if φ̂(k) 6= 0

for any k ∈ Zq. For any φ with full-frequency we define for each n > 0 the positive

quantity mn := min
|k|2≤n

|φ̂(k)|.

The starting point of our theory is a representation of trigonometric polynomials

as a convolution against the activation function. A great deal of early literature (for

instance, see [27]) on this subject expresses some target function (in our case, polyno-

mials) as an element of a reproducing kernel Hilbert space with φ as the reproducing

kernel. This gives rise to the notion of native spaces. In our context, we borrow from

this idea only to define a differential operator Dφ with respect to a function φ with

full frequency, by:

f̂(k) = φ̂(k) D̂φf(k) k ∈ Zq ,

From Proposition 2.13, it is then prudent to consider the corresponding integral op-

erator Iφ, a convolution with respect to the measure µ, against some function φ with

full frequency:

Iφg(µ; x) :=

∫
Tq
φ(x− y)g(y)dµ(y) .
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Both of these operators are certainly well-defined for trigonometric polynomials

as arguments, and map Hq
n into itself for each n. For the remainder of this chapter

only, when µ = µ∗q, we do not mention it and denote Iφg(x) := Iφg(µ∗q; x).

The punch line to the above is that these operators invert each other when eval-

uating a trigonometric polynomial with respect to the Lebesgue measure.

Proposition 3.3. Let n be a positive integer, and let φ have full frequency. For

T ∈ Hq
n, we have

T (x) = (φ ∗ DφT ) (x) = IφDφT (x) = DφIφT (x).

Proof. When T is expressed as its Fourier series, notice that T̂ (k) = 0 when |k|2 > n:

IφT (x) =

∫
Tq
φ(x− y)T (y)dµ∗q(y) =

∫
Tq
φ(x− y)

∑
k∈Zq ;|k|2≤n

T̂ (k)eik·ydµ∗q(y) .

Redefining y 7→ x− y and noting that the sum is finite,

IφT (x) =

∫
Tq
φ(y)

∑
k∈Zq ;|k|2≤n

T̂ (k)eik·(x−y)dµ∗q(y)

=
∑

k∈Zq ;|k|2≤n

T̂ (k)eik·x
∫
Tq
φ(y)e−ik·ydµ∗q(y)

=
∑

k∈Zq ;|k|2≤n

T̂ (k)φ̂(k)eik·x .

Notice that expanding IφT and equating Fourier coefficients (using uniqueness of the

expansion) gives

ÎφT (k) = T̂ (k)φ̂(k) ,

which using the definition of Dφ states that T = DφIφT ; that is, the differential

operator Dφ inverts convolution by φ with respect to µ∗q. Conversely, consider IφDφT .
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For the sake of being concise, we note that by Proposition 2.13, for each k ∈ Zq,

ÎφDφT (k) = φ̂(k)D̂φT (k) = T̂ (k) ,

invoking the definition of DφT . As T and IφDφT are polynomials, IφDφT = T and

we are done.

The significance of this proposition is that for any trigonometric polynomial T ,

convolving DφT against φ reproduces T . Hence having solved a problem of approx-

imation in the setting of trigonometric polynomials, these approximations can be

reproduced as desired. The convolution itself however opens a new door for us.

3.1 Discretizing Integrals

In order to produce a PTN from the polynomial-reproducing relation, we must dis-

cretize the integral - that is, we must be able to represent this integral against the

Lebesgue measure as a sum against finitely many centers. Because this type of dis-

cretization will appear again shortly in connection with function approximation from

scattered data, we will use a more abstract notation for convenience.

Suppose f : Rq → C, and for each n = 0, 1, 2, . . ., the value of f is known on

Nn inputs xkn, k = 1, 2, . . . , Nn. A discretization of the integral of f of order n is

an assignment of real-valued weights {wkn}Nnk=1 such that
∫
Tqfdµ∗q ≈

∑Nn
k=1wknf(xkn).

The term ‘order’ as used here doesn’t come intrinsically from the definition, but

instead inherits whatever meaning the index n has; eg. when discretizing a sequence

(Tn) of polynomials, where Tn ∈ Hq
n for each n. Given such a discretization associated

with a sequence, it will be useful for reasons we will discuss shortly, to define for each
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n a corresponding finitely supported measure

νn(x) =
Nn∑
k=1

wknδ(x− xkn) , (3.1.1)

where δ(x) is the Dirac delta distribution restricted to Tq. In this case the finite

support is clear, as νn is supported on {xkn}Nnk=1 . Then we may neatly represent the

discretization as an integral against the finitely supported measure, since

∫
Tq
fdνn =

Nn∑
k=1

wknf(xkn) .

To fully enlist the utility of the abstract measure notation, we require two more

concepts related to discretization, which we take from [6]. With regard to notation,

ν will always refer to a finitely supported measure which discretizes some integral

expression, and µ will be used when discussing general situations in which either

a finite measure, or the usual Lebesgue measure may apply. In fact, this theory

presumes even greater generality, but the applications we have studied enlist only

these two cases.

We recall that the total variation measure of any signed measure µ is defined by

|µ|(U) := sup
∞∑
i=1

|µ(Ui)|, U ⊂ Tq ,

where the supremum is taken over all countable partitions {Ui} into measurable sets

of U . In the case when µ = νn as in (3.1.1), one can easily deduce that |νn|(Tq) =∑Nn
k=1 |wkn|. The Hahn-Jordan Decomposition (as in [26]) states that for any signed

measure µ defined on a σ-algebra Σ, there exist positive measures µ+, µ− defined on

a partition of Σ such that µ+ − µ− = µ and µ+ + µ− = |µ|.
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In order to discuss approximation in the setting of more general measures, first

we must generalize Lp norms to account for various measures. For p ∈ [1,∞], µ a

(possibly signed) measure on Rq, A ⊂ Rq µ-measurable, and f : A→ C µ-measurable,

the Lp norm of f with respect to µ is given by

‖f‖µ;p,A :=


{∫

A

|f(x)|pd|µ|(x)

}1/p

, if 1 ≤ p <∞ ,

|µ| − ess sup
x∈A

|f(x)|, if p =∞.

(3.1.2)

This is a norm when we consider f to be the equivalence class of all functions equal

to f |µ|-almost everywhere, and we denote by Lp(µ;A) the linear space of functions

with finite Lp norm with respect to µ. Note that the definition of almost everywhere

involves the measure; hence we specify |µ| − ess sup to accentuate this reliance when

not using the Lebesgue measure. As usual, when A = Tq we write Lp(µ) := Lp(µ;Tq)

and ‖f‖µ;p := ‖f‖µ;p,Tq .

The concepts we would like to extend to abstract measures are discretization of

integrals and good approximation of trigonometric polynomials. Together a measure

which has these qualities allows our analysis of expansions in translates of functions

to have a succinct form which relies directly on the properties of multivariate trigono-

metric polynomial expansions already discussed in Chapter 2.

Definition 3.4. (a) A (possibly signed) measure µ is called a quadrature measure

of order n when ∫
Tq
Tdµ =

∫
Tq
Tdµ∗q ∀T ∈ Hq

n . (3.1.3)

(b) A (possibly signed) measure µ is called a Marcinkiewicz–Zygmund measure,

or M-Z measure, of order n when the M-Z inequality below is satisfied, with c(n, µ) a
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constant independent of T :

∫
Tq
|T |d|µ| = ‖T‖µ;1 ≤ c(n, µ)‖T‖1 ∀T ∈ Hq

n . (3.1.4)

When µ is a finitely supported quadrature measure, the summation expression

which gives the Lebesgue integral is called a quadrature formula in the literature, and

can be thought of as a discretization where the support of the measure may represent

the known information of f , or the desired centers for a network expansion. It can

easily be shown that the smallest c that works in (3.1.4) which may be chosen for a

measure µ of order n is a norm on the space of Radon measures, which we denote

by |||µ|||n, the M-Z norm. Radon measures are complete, regular Borel measures - to

avoid bringing in technicalities from measure theory, we refer the reader to the details

in [26]. Without using measure notation, this norm would have to be formulated

directly in terms of the weights wkn and centers xkn, and it is not at all clear what

specific properties of this discretization the M-Z inequality constant would depend on,

or even if it would be specific values or their behavior in aggregate. Considerations

like this are a significant motivation for our choice of notation.

A concrete example of an M-Z quadrature measure which satisfies both conditions

for any order n is of course the Lebesgue measure on Tq. A more interesting choice is

the measure generated by the quadrature formula for integrating a univariate trigono-

metric polynomial over equidistant nodes. We found this example in [15] and slightly

modified it.

Proposition 3.5. Let n be a positive integer. Consider the case q = 1, centers

xjn = 2πj
n+1
−π, and weights wjn = 1

n+1
. Then the measure νn(x) =

∑n
j=0wjnδ(x−xjn)

55



is an M-Z quadrature measure of order n.

Proof. Let T ∈ H1
n = Hn. We express T as

∑
|k|≤n ake

ik◦, and recall that from

orthonormality we have
∫
T e

i`xdµ∗1(x) = δ`,0. Hence
∫
T Tdµ∗1 = a0. The quadrature

formula may be written

∫
T
ei`xdνn(x) =

1

n+ 1

n∑
j=0

exp

(
2πi`j

n+ 1
− πi`

)
=

(−1)`

n+ 1

n∑
j=0

exp

(
2πi`j

n+ 1

)
.

Should n + 1 be a factor of `, each term in the summation is 1 and the formula

evaluates to (−1)`. Else, this is a geometric series and evaluates to

1− exp(2πi`)

1− exp

(
2πi`

n+ 1

) = 0 ,

since the denominator doesn’t vanish. So, because T ∈ Hn, the only term of T for

which the degree k satisfies n+ 1 | k is k = 0, and we conclude

∫
T
T (x)dνn(x) =

n∑
j=0

1

n+ 1
T (xjn) =

n∑
j=0

∑
|k|≤n

ak
n+ 1

exjn =
∑
|k|≤n

ak(−1)kδk,0 = a0 .

Hence νn is a quadrature measure of order n.

Now consider the error term expression∣∣∣∣∣ 1

n+ 1

n∑
j=0

|T (xjn)| − ‖T‖1

∣∣∣∣∣ =

∣∣∣∣∣ 1

n+ 1

n∑
j=0

|T (xjn)| −
∫
T
|T (t)|dµ∗1(t)

∣∣∣∣∣ .

For this proof only, let Ijn := [xjn, xj+1n]; T is partitioned into n + 1 such intervals.

Notice that µ∗1(Ijn) = 1
n+1

. So, the above expression can be written∣∣∣∣∣
n∑
j=0

∫
Ijn

(|T (xjn)| − |T (t)|) dµ∗1(t)

∣∣∣∣∣ ≤
n∑
j=0

∫
Ijn

∣∣∣∣|T (xjn)| − |T (t)|
∣∣∣∣dµ∗1(t)

≤
n∑
j=0

∫
Ijn

|T (xjn)− T (t)| dµ∗1(t) .
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Note that for t ∈ Ijn, |T (xjn) − T (t)| ≤
∣∣∫ xjn
t

T (u)du
∣∣ ≤ ∫

Ijn
|T ′(u)|du with du =

2πdµ∗1(u) here meaning the Lebesgue measure on R. Using the Bernstein inequality

(2.4.20), we then conclude

n∑
j=0

∫
Ijn

|T (xjn)− T (t)| dµ∗1(t) ≤
n∑
j=0

∫
Ijn

∫
Ijn

|T ′(u)| dudµ∗1(t)

=
2π

n+ 1

∫
T
|T ′(u)| dµ∗1(u)

≤ 2π
n

n+ 1

∫
T
|T (u)|dµ∗1(u) .

Hence

‖T‖νn;1 =
1

n+ 1

n∑
j=0

|T (xjn)| ≤

∣∣∣∣∣ 1

n+ 1

n∑
j=0

|T (xjn)| − ‖T‖1

∣∣∣∣∣+ ‖T‖1 ≤ (2π + 1)‖T‖1 ,

so νn is an M-Z measure of order n.

Remark 3.6. It is interesting to note that in [6], Filbir and Mhaskar show that a

positive quadrature measure is automatically an M-Z measure, and that given an M-Z

measure of order n and some positive constant k, this measure is also an M-Z measure

of order kn with equivalent M-Z norm.

Critical for applications, Mhaskar showed in [13] that given any sufficiently well-

distributed, finite set of data in Tq, an M-Z quadrature measure can be constructed

supported on the data. How well some finite set of data C is distributed on Tq is

measured by the density content δ(C) := max
x∈Tq

min
y∈C
‖x− y‖2.

As we will rely on this result whenever we deal with scattered data, the result is

reproduced here.

Theorem 3.7. Let C0 be a set of distinct points in Tq and n ≥ 1 be an integer such

that
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δC0 < π/(2 · 3q+3n). Then there exist numbers {wξ}ξ∈C0 such that

|wξ| ≤
c

nq
, ξ ∈ C0, (3.1.5)

and for every T ∈ Hq
n, ∫

Tq
T (t)dµ∗q(t) =

∑
ξ∈C0

wξT (ξ). (3.1.6)

In particular, ∑
ξ∈C0

|wξ||T (ξ)| ≤
∫
Tq
|T (t)|dµ∗q(t) . (3.1.7)

We may also choose wξ to be non-negative instead of requiring (3.1.5).

The estimate (3.1.7) is a simple consequence of [13, Theorem 3.3.2] and the re-

maining statements of the above theorem which are [13, Theorem 3.3.1]. Efficient

numerical techniques have been developed and utilized in [11] to construct such quad-

rature formulas from sufficiently dense sets of data.

Hence the only restriction we place on finite data for use in approximation as

described here, is that as the amount of data increases it grows dense on Tq. The

fundamental utility of M-Z quadrature measures here is that they retain good ap-

proximation properties for some polynomial-reproducing convolutions.

3.2 Approximation on Scattered Data

In order to distinguish convolution against polynomial kernels which we discuss here,

from the convolution against full-frequency functions φ called Iφ defined in Section 1,

we introduced a new notation for clarity.
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Definition 3.8. Let µ be a Borel measure on Tq. Let f, g ∈ L1(µ). Then the

convolution of f against g with respect to µ is defined by

(f ∗µ g)(x) =

∫
Tq
f(y)g(x− y)dµ(y) .

Now to include scattered data approximation into our discussion, we will need

to pause and develop discretized summability operators, with respect to (potentially

finitely supported) M-Z measures, and recover analogous localization results in order

for the same theorems applying to σ∗n to pass along trivially.

Definition 3.9. Let n be a positive integer, let µ be a Borel measure on Tq. Let

p ∈ [1,∞], and f ∈ Xp(µ). Let h be a low-pass filter. Then the summability operator

with respect to µ is given by

σn(µ;h, f)(x) := (f ∗µ Φn(h))(x) =
∑
|k|2≤n

h

(
|k|2
n

)
eik·x

∫
Tq
f(t)e−ik·tdµ(t) .

We note but do not pursue further, that the expression
∫
Tqf(t)e−ik·tdµ(t) may be

seen as a generalized Fourier coefficient with respect to µ. In the case µ = µ∗q, we

recover σn(µ∗q;h, f) = σ∗n(h, f). Further, we fix some S-smooth low-pass filter h, with

S > q, for the remainder of the chapter and will omit it from notation, as its choice

does not affect the analysis. At times we may demand S > q + γ for some γ > 0;

presume the selection of a corresponding S-smooth low-pass filter h, and again omit

it from notation. Such a choice is always possible (e.g. h∞ from Example 2.3.2), and

may affect only the particular constants in formulas.

Theorem 3.10. Let n be a positive integer, and let µ be an M-Z quadrature measure

of order 3/2 n. Let p ∈ [1,∞].
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(a) For T ∈ Hq
n/2, σn(µ;T ) = T .

(b) We have for f ∈ Xp(µ),

‖σn(µ; f)‖p ≤ c|||µ|||1−1/pn ‖f‖µ;p . (3.2.8)

Consequently, if f ∈ X∞, then ‖σn(µ; f)‖∞ ≤ c|||µ|||n‖f‖∞, and further

En,∞(f) ≤ ‖f − σn(µ; f)‖∞ ≤ c|||µ|||nEn/2,∞(f) . (3.2.9)

(c) If f ∈ L1(µ) is supported on a compact set K, and V is an open set with K ⊂ V ,

then

‖σn(µ; f)‖∞,Tq\V ≤ c‖f‖µ;1nq−S, (3.2.10)

where c may depend upon K and V in addition to S and h.

The statement and proof of Theorem 3.10 follows the corresponding statements

and proofs in [16]. First, we state a necessary generalization of the Young inequality

to convolutions with respect to an arbitrary Borel measure on Tq. The result may be

proved as a consequence of the statement [15, Proposition 3.1.2] and the translation

invariance of the Lebesgue measure; we do not show the proof here.

Lemma 3.11. Let µ be a (possibly signed) Borel measure on Tq. Let f be bounded

and µ-measurable, and g ∈ L1(µ). Then given p ∈ [1,∞], if f ∈ Lp(µ), we have that

f ∗µ g ∈ Lp and

‖f ∗µ g‖p ≤ ess sup
x∈Tq

‖g(x− ◦)‖1−1/pµ;1 ‖g‖1/p1 ‖f‖µ;p . (3.2.11)

In particular, when µ is an M-Z measure of order N , then for T ∈ Hq
N , the above

inequality may be stated

‖f ∗µ T‖p ≤ sup
x∈Tq
‖T (x− ◦)‖1−1/pµ;1 ‖T‖1/p1 ‖f‖µ;p ≤ |||µ|||

1−1/p
N ‖f‖µ;p‖T‖1 . (3.2.12)
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Note that we will often require the M-Z norm of an M-Z measure µ whose order has

the form 3/2 n or 3 · 2n−1. In this case, as mentioned in Remark 3.6, µ is also an M-Z

measure of order n and 2n respectively, so its M-Z norm may be given equivalently

by |||µ|||n and |||µ|||2n , respectively.

Now we may prove Theorem 3.10.

Proof. If T ∈ Hn/2, x ∈ Tq, then Φn(x− ◦)T (◦) ∈ Hq
3n/2. Because µ is a quadrature

measure of order 3n/2, using the quadrature formula (3.1.3) we may easily verify by

the definition of Φn, that

∫
Tq

Φn(x− t)T (t)dµ(t) =

∫
Tq

Φn(x− t)T (t)dµ∗q(t) = T (x) .

This proves part (a).

Because µ is an M-Z measure of order 3n/2 > n, we may employ the general

Young inequality in the form (3.2.12), along with Theorem 2.6, to show estimate

(3.2.8):

‖σn(µ; f)‖p = ‖f ∗µ Φn‖p ≤ |||µ|||1−1/pn ‖f‖µ;p‖Φn‖1 ≤ c|||µ|||1−1/pn ‖f‖µ;p .

For arbitrary T ∈ Hq
n/2, then part (a) and (3.2.8) imply that

En,p(f) ≤ ‖f−σn(µ; f)‖p = ‖f−T−σn(µ; f−T )‖p ≤ ‖f−T‖p+c|||µ|||1−1/pn ‖f−T‖µ;p .

When p = ∞, we know that the essential supremum of a continuous function is

actually the supremum; hence for f ∈ X∞, f is equal a.e. to a continuous function,

and

‖f‖∞ = ‖f‖µ;∞ = sup
x∈Tq
|f(x)| ,
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and so En,∞(f) ≤ ‖f − σn(µ; f)‖∞ ≤ c|||µ|||n‖f − T‖∞. As T was arbitrary in Hn/2,

using the same argument as in Proposition 2.11 we conclude that ‖f − σn(µ; f)‖∞ ≤

c|||µ|||nEn/2,∞(f). This proves (3.2.9).

Now let K be a compact subset of Tq, f ∈ L1(µ), and supp(f) ⊂ K. Then if V is

an open set with K ⊂ V , from Theorem 2.6 and (3.2.11) we have

‖σn(µ; f)‖∞,Tq\V = sup
x∈Tq\V

|(f ∗µ Φn)(x)|

≤ sup
x∈T q\V
t∈K

|Φn(x− t)| ‖f‖µ,1 ≤ c‖f‖µ;1nq−S ,

noting in the last step that because K and Tq \ V are compact,

min
x∈Tq\V
t∈K

|x− t|1 ≥ ε(K,V ) > 0 ,

which is incorporated in the constant c. This shows (3.2.10).

The approximation results for the rest of the chapter will each come in two forms,

with starred operators representing general Xp approximation, and the general oper-

ators additionally capable of modeling continuous functions on scattered data in X∞.

For example, measures µn for positive integers n as in the above theorem may encode

nested sets of scattered data sites Cn. Should these sets satisfy the density conditions

according to Theorem 3.7 to form, in each case, an M-Z quadrature measure of or-

der n, Theorem 3.10 (b) then shows that the summability operators of f taken with

respect to these measures will converge in the supremum norm to f .

Additionally, the results regarding expansion, smoothness classes, and local smooth-

ness classes similarly carry over to the case of operators on general M-Z quadrature

measures, giving a characterization in terms of Besov spaces and local Besov spaces.
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First, we will need analogous band-pass operators. We say a sequence of measures

µ = {µn} has nested support when

m < n =⇒ supp(µm) ⊂ supp(µn) .

When dealing with scattered data, measures with nested support represent accruing

data, such that increasing n may be interpreted as keeping the data from an earlier

experiment and potentially improving it with more data from a later experiment.

Definition 3.12. Let µ be a sequence of Borel measures on Tq with nested support.

Let p ∈ [1,∞], and f ∈ Xp(µ). Then the band-pass operator with respect to µ is

given for each non-negative integer n as

τ0(µ; f) = σ1(µ0; f) and for n ≥ 1, τn(µ; f) = σ2n(µn; f)− σ2n−1(µn−1; f) .

We will use µ∗
q to denote the constant sequence of Lebesgue measures. Then

τn(µ∗
q; f) = τ ∗n(f).

Proposition 3.13. Let f ∈ X∞, and let µ = {µn} be a sequence of M-Z quadrature

measures with nested support, each of order 3 ·2n−1. Let |||µn|||2n be uniformly bounded,

such that |||µn|||2n ≤ c for each n. Then we have

f =
∞∑
j=0

τj(µ; f) ,

with convergence in the sense of L∞.

Proof. This result is the discretized counterpart to Theorem 2.20. The partial sums

to the series above form a telescoping series:

n∑
j=0

τj(µ; f) = σ1(µ0; f) +
n∑
j=1

(σ2j(µj; f)− σ2j−1(µj−1; f)) = σ2n(µn; f) .
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Then by Theorem 3.10 (b) and the uniform boundedness of |||µn|||2n , we have∥∥∥∥∥f −
n∑
j=0

τj(µ; f)

∥∥∥∥∥
∞

= ‖f − σ2n(µn; f)‖∞ ≤ c|||µn|||2nE2n−1,∞(f) ≤ cE2n−1,∞(f) ,

where c does not depend on n. As f ∈ X∞, E2n−1,∞(f) → 0 as n → ∞, and we are

done.

Whenever we approximate and measure the error in such expansions in an Lp

norm, should p 6= ∞ and so f may not be equal a.e. to a continuous function,

attempting to approximate f using scattered data is a hopeless endeavor - any finite

set of data has measure zero and as such gives us effectively no information about

the class of functions we seek at all. The problem as such is ill-posed. Using X∞

however, addresses these pitfalls and we may use the full strength of the theory -

this is the contextual explanation for why the following proofs and results carefully

describe when general M-Z measures may be used in place of the Lebesgue measure.

Theorem 3.14. Let µ = {µn} be a sequence of M-Z quadrature measures with nested

support, each of order 3 ·2n−1. Let |||µn|||2n be uniformly bounded, such that |||µn|||2n ≤ c

for each n. Then, given γ > 0, ρ ∈ (0,∞], p ∈ [1,∞], and f ∈ Xp, the following

statements are equivalent:

(a) f ∈ Bp
ρ,γ, and so {E2n,p(f)} ∈ bρ,γ .

(b)
{
‖f − σ2n(µ∗q; f)‖p

}
∈ bρ,γ .

(c)
{
‖τn(µ∗

q; f)‖p
}
∈ bρ,γ .

Further, for p =∞ the same equivalences hold with µ in place of µ∗
q, and µn replacing

µ∗q.
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The equivalences as written are effectively the statement of Theorem 2.21 - the

novelty here is the last statement, for p = ∞ and scattered data approximation. In

order to complete the proof, we will require, as mentioned in Chapter 2, a discrete

Hardy inequality which we reproduce here, as given (along with a proof) in [15,

Chapter 1, Lemma 2.1]. We will not reproduce the proof.

Lemma 3.15. Let a and b be sequences of nonnegative numbers, ρ, γ, υ > 0. Suppose

the following conditions holds:

bk ≤ c0

(
∞∑
j=k

aυj

)1/υ

, k = 0, 1, · · · , (3.2.13)

Then

‖b‖ρ,γ ≤ cc0‖a‖ρ,γ. (3.2.14)

Now we may prove Theorem 3.14.

Proof. We will show (a) ⇐⇒ (b) ⇐⇒ (c).

In view of (2.3.18), we have

‖f − σ2n(µ∗q; f)‖p ≤ cE2n−1,p(f) ,

from which we conclude

‖{‖f − σ2n(µ∗q; f)‖p}‖ρ,γ ≤ c‖{E2n,p(f)}‖ρ,γ .

So, (a) =⇒ (b). Likewise by (2.3.18) E2n,p(f) ≤ ‖f − σ2n(µ∗q; f)‖p, so (b) =⇒ (a).

Notice that

‖τn(µ∗
q; f)‖p = ‖σ2n(µ∗q; f)− σ2n−1(µ∗q; f)‖p

≤ ‖f − σ2n(µ∗q; f)‖p + ‖f − σ2n−1(µ∗q; f)‖p ,
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from which (b) =⇒ (c). In the reverse direction, from Proposition 3.13 we have

‖f − σ2n(µ∗q; f)‖p =

∥∥∥∥∥
∞∑
j=0

τj(µ
∗
q; f)−

n∑
j=0

τj(µ
∗
q; f)

∥∥∥∥∥
p

≤
∞∑

j=n+1

‖τj(µ∗
q; f)‖p.

Then the Hardy inequality (3.2.13) with υ = 1 yields that (c) =⇒ (b).

When p = ∞, we may directly replace each instance of σ2n(µ∗q; f) and τn(µ∗
q; f)

in the proof and theorem with σ2n(µn; f) and τn(µ; f) respectively, and due to The-

orem 3.10 and the uniform boundedness of |||µn|||2n , with (3.2.9) in place of (2.3.18),

each statement will hold as desired.

The characterization of local Besov spaces proceeds similarly, and implicitly re-

quires the high localization in the form of estimate (3.2.10).

Theorem 3.16. Assume the conditions of Theorem 3.14, and additionally let S >

q + γ, and let x0 ∈ Tq. Then we have the following:

(a) When I is a (p, ρ, γ) Besov r-box for f about x0, there exists a positive r0 < r and

r0-box J about x0 such that
{
‖f − σ2n(µ∗q; f)‖p,J

}
∈ bρ,γ and

{
‖τn(µ∗

q; f)‖p,J
}
∈ bρ,γ .

(b) When for some r-box I about x0, either
{
‖f − σ2n(µ∗q; f)‖p,I

}
∈ bρ,γ or{

‖τn(µ∗
q; f)‖p,I

}
∈ bρ,γ, then I is a (p, ρ, γ) Besov r-box for f about x0 .

Further, for p = ∞ the same statements hold with µ in place of µ∗
q and the

elements µn in place of µ∗q.

Again, these statements mirror those found in Theorem 2.23, but we prove them

in a context for which the p = ∞ result may be easily obtained for use on scattered

data.

Proof. Let r > r1 > r0 > 0 and suppose I is a (p, ρ, γ) Besov r-box for f about x0.

66



Let I1, J be an r1-box and r0-box about x0, respectively. Let ϕ ∈ C∞I such that ϕ ≡ 1

on I1. Then

‖f − σ2n(µ∗q; f)‖p,J ≤ ‖f − fϕ‖p,J + ‖fϕ− σ2n(µ∗q; fϕ)‖p,J + ‖σ2n(µ∗q; fϕ− f)‖p,J .

The first term vanishes, as fϕ = f on J ⊂ I1. The second term is bounded by its

norm on the whole space, and so

‖fϕ− σ2n(µ∗q; fϕ)‖p,J ≤ ‖fϕ− σ2n(µ∗q; fϕ)‖p ≤ cE2n−1,p(fϕ) .

The third term satisfies the conditions of (3.2.10), and so

‖σ2n(µ∗q; fϕ− f)‖p,J ≤ c‖fϕ− f‖12n(q−S) .

Since we have 2nγ ·2n(q−S) = 2n(q+γ−S) and S > q+γ, then
∑
|2nρ(q+γ−S)| converges and

{2n(q−S)} ∈ bρ,γ. Since f ∈ Bp
ρ,γ(x0) and we know ϕ is supported on a (p, ρ, γ) Besov

r-box of f about x0, we conclude that {‖f − σ2n(µ∗q; f)‖p,J} ∈ bρ,γ. Further,

‖τn(µ∗
q; f)‖p,J ≤ ‖f − σ2n(µ∗q; f)‖p,J + ‖f − σ2n−1(µ∗q; f)‖p,J ,

and so {‖τn(µ∗
q; f)‖p,J} ∈ bρ,γ as well, yielding (a).

Now we will show (a) for the case of general measures. Let p = ∞. Then the

proof proceeds very similarly, as

‖f −σ2n(µn; f)‖∞,J ≤ ‖f −fϕ‖∞,J +‖fϕ−σ2n(µn; fϕ)‖∞,J +‖σ2n(µn; fϕ−f)‖∞,J .

The first term is zero, the second is bounded by cE2n−1,∞(fϕ) due to (3.2.9) and the

uniform boundedness of |||µn|||2n , and the third is bounded by

c‖fϕ− f‖µn;12n(q−S) ≤ c‖fϕ− f‖µn;∞2n(q−S) ≤ c‖fϕ− f‖∞2n(q−S) ,
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due to (3.2.10). Each term is the nth entry of a sequence in bρ,γ, and so

{‖f − σ2n(µn; f)‖∞,J} ∈ bρ,γ. Likewise,

‖τn(µ; f)‖∞,J ≤ ‖f − σ2n(µn; f)‖∞,J + ‖f − σ2n−1(µn−1; f)‖∞,J .

Now we will show (b). Suppose I is an r-box about x0 for which{
‖f − σ2n(µ∗q; f)‖p,I

}
∈ bρ,γ. Let ϕ ∈ C∞I . This means that there exists an R ∈ Hq

2n

with ‖ϕ−R‖∞ ≤ c2−nS, as guaranteed by the direct theorem of approximation theory

(see [4]). So, we may find

E2n+1,p(fϕ) ≤ ‖fϕ−Rσ2n(µ∗q; f)‖p

≤ ‖ϕ(f − σ2n(µ∗q; f))‖p + ‖(R− ϕ)σ2n(µ∗q; f)‖p

≤ c(ϕ)
(
‖f − σ2n(µ∗q; f)‖p,I + 2−nS‖f‖p

)
. (3.2.15)

The first term which appears in (3.2.15) is the nth element of a sequence lying in bρ,γ

by hypothesis, and again as S > γ, the second term is as well.

Hence I is a (p, ρ, γ) Besov r-box for f about x0 and so f ∈ Bp
ρ,γ(x0). If instead we

assume I is an r-box about x0 for which
{
‖τn(µ∗

q; f)‖p,I
}
∈ bρ,γ, the Hardy inequality

(3.2.13) gives
{
‖τn(µ∗

q; f)‖p,I
}
∈ bρ,γ=⇒

{
‖f − σ2n(µ∗q; f)‖p,I

}
∈ bρ,γ, completing the

proof of (b).

When we have p =∞ for general measures, choosing R as before gives

E2n+1,∞(fϕ) ≤ ‖fϕ−Rσ2n(µn; f)‖∞

≤ ‖ϕ(f − σ2n(µn; f))‖∞ + ‖(R− ϕ)σ2n(µn; f)‖∞

≤ c(ϕ)
(
‖f − σ2n(µn; f)‖∞,I + 2−nS‖f‖µn;∞

)
, (3.2.16)
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the last step coming from the uniform boundedess of |||µn|||2n and from (3.2.8). Hence

we reach the conclusion, {‖f − σ2n(µn; f)‖∞,I} ∈ bρ,γ, ϕ ∈ C∞I =⇒{E2n,∞(fϕ)} ∈

bρ,γ and so I is a (∞, ρ, γ) Besov r-box for f about x0. The result using τn(µ; f)

follows immediately by using the Hardy inequality (3.2.13) as before.

3.3 PTN Construction and Approximation Properties

Having performed the same classification in the general M-Z case as was done in the

Lebesgue case for multivariate trigonometric polynomials, we would like to extend the

same results regarding local smoothness to PTN representations. The cornerstone of

our analysis in the context of PTNs will be the opening theorem of the section. Here

ν represents the desired centers of the PTN Iφ(ν;DφT ).

Theorem 3.17. For positive integers n,N , let T ∈ Hq
n and ν be an M-Z quadrature

measure of order n+N . Let φ : Tq → C have full frequency. Then for any p ∈ [1,∞],

‖T − Iφ(ν;DφT )‖∞ ≤ c|||ν|||n+N
EN,∞(φ)

mn

n
q( 1

p
− 1

2)
+‖T‖p .

Proving this theorem requires some preparation. First, we need the Riesz-Thorin

interpolation theorem, so we reproduce a simplified version here.

Lemma 3.18. Let 1 ≤ p0, r0, p1, r1 ≤ ∞, and let F be a linear operator defined for

simple functions on Tq such that

‖F (f)‖rj ≤Mj‖f‖pj , j = 0, 1

for all simple functions f . Let 0 < θ < 1, and

1/p = θ/p0 + (1− θ)/p1, 1/r = θ/r0 + (1− θ)/r1 .
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Then F is defined on Lp and we have

‖F (f)‖r ≤M θ
0M

(1−θ)
1 ‖f‖p.

This is a direct consequence of the theorem as found in [29], for operators Tq → Tq

equipped with the Lebesgue measure.

Additionally, we need the so–called Nikolskii inequalities (cf. [24]), for which we

reproduce a similar proof to that found in ([15]).

Lemma 3.19. Let 1 ≤ p < r ≤ ∞, and let P ∈ Hq
n. Then for some constant c,

‖P‖r ≤ cn( 1
p
− 1
r )q‖P‖p . (3.3.17)

Proof. In the case r =∞, note that for all x ∈ Tq,

‖P‖2∞ ≤ |P (x)|2 =

∣∣∣∣∣∣
∑
|k|2≤n

P̂ (k)e−ik·x

∣∣∣∣∣∣
2

.

Then using the Schwarz inequality (2.1.4) we can achieve the estimate

‖P‖2∞ ≤

 ∑
|k|2≤n

∣∣∣P̂ (k)
∣∣∣2
 ∑

|k|2≤n

∣∣e−ik·x∣∣2
 ≤ cnq‖P‖22 ,

where nq is proportional to the cardinality of {k ∈ Zq : |k|2 ≤ n}; this is the volume

of the Euclidean q-sphere.

We may also express ‖P‖22 as the integral
∫
Tq |P (t)|2dµ∗q(t) and apply the Hölder

inequality (2.1.3) to achieve

‖P‖22 =

∫
Tq
|P (t)|2dµ∗q(t) ≤ ‖P‖∞‖P‖1 ≤ cnq/2‖P‖2‖P‖1 ,

which means ‖P‖2 ≤ cnq/2‖P‖1, and so ‖P‖∞ ≤ cnq‖P‖1.
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If f is a simple function, we use this estimate with 2n in place of n, and σ∗2n(f) in

place of P , for some S-smooth low-pass filter h with S > q. This gives (using (2.3.17)

from Ch. 2)

‖σ∗2n(f)‖∞ ≤ cnq‖σ∗2n(f)‖1 ≤ cnq‖f‖1 .

Since ‖σ∗2n(f)‖∞ ≤ c‖f‖∞ as well, an application of the Riesz-Thorin interpolation

theorem with θ = 1/p yields for f ∈ Lp, that

‖σ∗2n(f)‖∞ ≤ cnq/p‖f‖p .

Since ‖σ∗2n(f)‖p ≤ c‖f‖p, one further application of Riesz-Thorin with θ = 1 − p/r

yields for f ∈ Lp, that

‖σ∗2n(f)‖r ≤ cnq(1/p−1/r)‖f‖p .

Now, recall that P ∈ Hq
n =⇒ σ∗2n(P ) = P . This completes the proof of (3.3.17). As

a reminder, the constant c is arbitrary even up to different appearances in the same

equation.

We are now ready to prove Theorem 3.17.

Proof. Choose R ∈ Hq
N with ‖φ−R‖∞ ≤ 2EN,∞(φ). Then, in this proof emphasizing

reliance on µ∗q,

Iφ(µ∗q;DφT,x)− Iφ(ν;DφT,x) = Iφ−R(µ∗q;DφT,x)− Iφ−R(ν;DφT,x)

+IR(µ∗q;DφT,x)− IR(ν;DφT,x) ,

by linearity of the integral. As R(x − ◦)DφT (◦) ∈ Hq
n+N and ν is a quadrature

measure of order n + N , the last two terms are equal. As ν is an M-Z measure of
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order n+N > n, we use the general Young inequality in the form (3.2.12) to achieve

‖T − Iφ(ν;DφT )‖∞ ≤ ‖Iφ−R(µ∗q;DφT,x)‖∞ + ‖Iφ−R(ν;DφT,x)‖∞

≤ c|||ν|||n+NEN,∞(φ)‖DφT‖1 . (3.3.18)

Recalling the notation mn = min|k|2≤n |φ̂(k)|, the ordering of the Lp spaces and the

Parseval identity yield

‖DφT‖21 ≤ ‖DφT‖22 =
∑
`∈Z

|D̂φT (`)|2 =
∑
`∈Z

|T̂ (`)|2

|φ̂(`)|2
≤ 1

m2
n

∑
|`|≤n

|T̂ (`)|2 =
1

m2
n

‖T‖22 ,

(3.3.19)

noting that the sum (and hence mn) is finite since T ∈ Hn.

Now for p ≥ 2, ‖T‖2 ≤ ‖T‖p and we could show the result. For p < 2, we must

enlist the Nikolskii inequality, and so these cases collectively yield

‖T‖2 ≤ cn
q( 1

p
− 1

2)
+‖T‖p . (3.3.20)

Combining (3.3.20) with (3.3.18) and (3.3.19) shows the result

‖T − Iφ(ν;DφT )‖∞ ≤ c|||ν|||n+NEN,∞(φ)‖DφT‖1 ≤ c|||ν|||n+N
EN,∞(φ)

mn

n
q( 1

p
− 1

2)
+‖T‖p .

We will use Theorem 3.17 to prove approximation results for arbitrary functions

in Xp. Naturally, this approximation will be estimated by the degree of approxi-

mation of the target function by a suitable trigonometric polynomial, and that of

the trigonometric polynomial by PTNs. To ensure that this second approximation is

small enough not to destroy membership in the Besov spaces, we need to restrict the
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choice of φ. Observe that for some low-pass filter h,

EN,∞(φ) ≤ ‖φ− σ∗N(h, φ)‖∞ ≤
∑
|k|2>N

|φ̂(k)| .

Definition 3.20. Let β > 0. A function φ ∈ L1 will be said to have β-receding

frequency when it has full frequency and

lim sup
n→∞

 ∑
|k|2>βn

|φ̂(k)|
mn

1/n

< 1 .

Many standard examples exist of periodic functions for which the receding fre-

quency criterion is satisfied, and which are used in network expansions. In each of

the following examples, (2.3.10) is used together with results in [28] to deduce the

stated Fourier coefficients.

Example 3.3.1. Periodization of the Gaussian.

φ(x) =
∑
k∈Zq

exp(−|x− 2πk|22/2) , φ̂(k) = (2π)q/2 exp(−|k|22/2) .

Example 3.3.2. Periodization of the Hardy multiquadric.

φ(x) =
∑
k∈Zq

(α2 + |x− 2πk|22)−1 , φ̂(k) =
π(q+1)/2

Γ
(
q+1
2

)
α

exp(−α|k|2)

Example 3.3.3. Tensor product construction using the Poisson kernel.

φ(x) =
∑
k∈Zq

r−|k|1eik·x =

q∏
j=1

1− r2

1 + r2 − 2rxj
, 0 < r < 1 .
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If we wish to approximate f ∈ Xp with a PTN expansion, we should choose an

appropriate φ with receding frequency, and then discretize IφDφσ∗n(f). To allow for

the input of data other than the partial Fourier expanision, instead encode {µn} with

a sequence of known information of f such that each measure is an M-Z quadrature

measure, and use σn(µn; f).

Definition 3.21. Let µ,ν be sequences of Borel measures, both with nested support,

and each νn additionally finitely supported. Let φ : Tq → C have full frequency, and

h : R→ R be a low-pass filter (retained in the notation of this definition, for clarity).

Then for p ∈ [1,∞], f ∈ Xp, the PTN summability operator is defined for each

positive integer n by

Iφ(νn;Dφσn(µn;h, f))(x) =

∫
Tq
φ(x− y) Dφ [σn(µn;h, f)](y) dνn(y) .

Notice that as each νn has finite support, each such operator is a PTN as desired,

since it resides in the span of {φ(x− z)| z ∈ supp(νn)}.

We take a moment to emphasize that when the elements of the measure sequence

µ with respect to which σn(µn;h, f) operates on f are all taken to be the Lebesgue

measure, the operator produces a linear combination of Fourier coefficients for each n.

When the measures are finitely supported, the operator produces linear combination

of function values for each n. More generality is possible here too, within the most

general theory of M-Z measures and quadrature measures - we will not discuss the

subject, but it may be pursued in any of [6, 11, 19], to name only some relevant

papers studied in the preparation of this thesis.

As we will see, these PTN operators approximate f well so as long as trigonometric
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polynomials approximate φ sufficiently well - specifically we will require that φ has β-

receding frequency so that this degree of approximation is at least exponential, placing

the PTN operator in the same Besov space as σn(f). Then the desired approximation

follows from the results of Chapter 2 and Section 3.2. This proof follows the method

found in [19]. We recall again that |||µ|||n ∼ |||µ|||cn.

Proposition 3.22. Let β be a positive integer, and let φ : Tq → C have β-receding

frequency. Let µ̃ be a sequence of M-Z quadrature measures with nested support, each

of which has order 3/2 n, with uniformly bounded M-Z norm |||µ̃n|||n ≤ c, for all n,

independent of n. Let ν̃ be a sequence of finitely supported M-Z quadrature measures

with nested support, each of which has order (1 + β)n, with uniformly bounded M-Z

norm |||ν̃n|||n ≤ c, for all n, independent of n. Then if for some p ∈ [1,∞], f ∈ Xp, it

is the case for each positive integer n that

‖σn(µ∗q; f)− Iφ(ν̃n;Dφσn(µ∗q; f))‖p ≤ c
Eβn,∞(φ)

mn

n
q( 1

p
− 1

2)
+‖f‖p (3.3.21)

and

‖σn(µ̃n; f)− Iφ(ν̃n;Dφσn(µ̃n; f))‖∞ ≤ c
Eβn,∞(φ)

mn

‖f‖∞ . (3.3.22)

Proof. Note that σn(µ∗q; f) ∈ Hq
n and φ has β-receding frequency. So, the conditions

of Theorem 3.17 are met and we may choose N = βn. Hence, we obtain

‖Iφ(ν̃n;Dφσn(µ∗q; f))− σn(µ∗q; f)‖p ≤ ‖Iφ(ν̃n;Dφσn(µ∗q; f))− σn(µ∗q; f)‖∞

≤ c|||ν̃n|||n
Eβn,∞(φ)

mn

n
q( 1

p
− 1

2)
+‖f‖p

≤ c
Eβn,∞(φ)

mn

n
q( 1

p
− 1

2)
+‖f‖p ,
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enlisting (3.2.8) and the uniform boundedness of |||ν̃n|||n. When p = ∞, we have for

the general measure case,

‖Iφ(ν̃n;Dφσn(µ̃n; f))− σn(µ̃n; f)‖∞ ≤ c|||ν̃n|||n
Eβn,∞(φ)

mn

‖σn(µ̃n; f)‖∞

≤ c|||ν̃n|||n|||µ̃n|||n
Eβn,∞(φ)

mn

‖f‖∞

≤ c
Eβn,∞(φ)

mn

‖f‖∞ ,

using uniform boundedness of both measure sequences on the last step. Note that

p =∞ > 2 means the exponent of the nq term of Theorem 3.17 vanishes.

It is convenient here to express the property of β-receding frequency in the form

Eβn,∞(φ)

mn

≤ c02
−bn , (3.3.23)

for some positive constants c0, b. Notice that the same then holds for
Eβn,∞(φ)

mn
nc1q

with a different choice of c0 and b, for any c1, for sufficiently large n. Lastly, it is clear

that

‖f −Iφ(ν̃n;Dφσn(µ∗q; f))‖p ≤ ‖f − σn(µ∗q; f)‖p + ‖σn(µ∗q; f)−Iφ(ν̃n;Dφσn(µ∗q; f))‖p ,

and

‖f−Iφ(ν̃n;Dφσn(µ̃n; f))‖∞ ≤ ‖f−σn(µ̃n; f)‖∞+‖σn(µ̃n; f)−Iφ(ν̃n;Dφσn(µ̃n; f))‖∞ .

We pause to develop a set of conditions and related shorthand which will form the

setting for the remaining results of this chapter, as we construct, and elucidate the

properties of the wavelet-like PTN expansion. Note the change from the conditions

of Proposition 3.22 to use measure sequences whose elements are M-Z measures of

76



dyadic order - this change simplifies the proofs regarding Besov spaces considerably,

and in practice one may form from any sufficiently dense data, the nested supports

of a desired number of elements from such a sequence (see [14]).

Remark 3.23. Select a positive integer β, and a function φ : Tq → C having β-

receding frequency. Let µ be a sequence of M-Z quadrature measures with nested

support, each of which has order 3 ·2n−1, with uniformly bounded M-Z norm |||µn|||2n ≤

c, for all n, independent of n. Let ν be a sequence of finitely supported M-Z quadrature

measures with nested support, each of which has order (1 + β)2n, with uniformly

bounded M-Z norm |||νn|||2n ≤ c, for all n, independent of n.

When for some p ∈ [1,∞], f ∈ Xp, we denote for x ∈ Tq,

G∗n(f,x) := Iφ(νn;Dφσ2n(µ∗q; f))(x) .

When f ∈ X∞, we denote for x ∈ Tq,

Gn(f,x) := Iφ(νn;Dφσ2n(µn; f))(x) .

Summarizing the above results and statements, we enlist this notation and use

(3.3.23) to obtain a corollary of Proposition 3.22.

Corollary 3.24. Assume the conditions of Remark 3.23. Then if for some p ∈ [1,∞],

f ∈ Xp, we have

‖σ2n(µ∗q; f)−G∗n(f)‖p ≤ c2−b2
n‖f‖p , (3.3.24)

and

‖f −G∗n(f)‖p ≤ c
(
E2n−1,p(f) + 2−b2

n‖f‖p
)

. (3.3.25)
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Additionally, when p =∞ and f ∈ X∞, we have

‖σ2n(µn; f)−Gn(f)‖∞ ≤ c2−b2
n‖f‖∞ , (3.3.26)

and

‖f −Gn(f)‖∞ ≤ c
(
E2n−1,∞(f) + 2−b2

n‖f‖∞
)

. (3.3.27)

Note that the constants in each equation are distinct from, and unrelated to the con-

stants in any other equation.

3.4 Classification of Smoothness and Local Smoothness

In a manner analogous to that of Chapter 2 and Section 3.2, we conclude that the

Gn summability operators create a sufficiently localized partial expansion of f for

corresponding band-pass operators to behave as a wavelet-like expansion. We define

those band-pass operators now.

Definition 3.25. Assume the conditions of Remark 3.23. Then for p ∈ [1,∞],

f ∈ Xp, the PTN band-pass operator is defined for each non-negative integer n

by

T0(ν,µ;h, φ, f)(x) := Iφ(ν0;Dφσ1(µ0;h, f))(x) = G0(f), and for n ≥ 1 ,

Tn(ν,µ;h, φ, f)(x) := Iφ(νn;Dφσ2n(µn;h, f))(x)− Iφ(νn−1;Dφσ2n−1(µn−1;h, f))(x)

= Gn(f,x)−Gn−1(f,x) .

We will immediately use the shorthand

Tn(f,x) := Tn(ν,µ;h, φ, f)(x) ,
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whenever we assume the conditions of Remark 3.23 and the assignment of each omit-

ted notation is clear. Similarly, for when we omit the case of scattered data and

require µ = µ∗
q, we define

T ∗0 (f,x) := G∗0(f,x) , and for n ≥ 1, T ∗n (f,x) := G∗n(f,x)−G∗n−1(f,x) .

Proposition 3.26. Assume the conditions of Remark 3.23. Then if for some p ∈

[1,∞], f ∈ Xp, we have

f(x) =
∞∑
j=0

T ∗j (f,x) and when p =∞, we have f(x) =
∞∑
j=0

Tj(f,x) .

Convergence of the series is in the sense of Lp and of L∞, respectively.

Proof. The partial sums of PTN band-pass operators form a telescoping series, and

so by (3.3.25),∥∥∥∥∥f −
n∑
j=0

T ∗j (f)

∥∥∥∥∥
p

= ‖f −G∗n(f)‖p ≤ c
(
E2n−1,p(f) + 2−b2

n‖f‖p
)
→ 0 as n→∞ .

Likewise, when p =∞, we enlist (3.3.27) to achieve,∥∥∥∥∥f −
n∑
j=0

Tj(f)

∥∥∥∥∥
∞

= ‖f −Gn(f)‖∞ ≤ c
(
E2n−1,∞(f) + 2−b2

n‖f‖∞
)
→ 0 as n→∞ .

The form of Corollary 3.24 now enables us to very concisely state and prove the

Besov space and local Besov space characterizations for the PTN network operators,

completing the characterization of (local) smoothness. Note that for ρ, γ, b > 0,∑∞
n=0 2ρ(nγ−b2

n) is convergent by the Cauchy root test, and 2nγ−b2
n

is bounded. Hence
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{2−b2n} ∈ bρ,γ for any choice of ρ, γ. Summarily, under the conditions of Remark 3.23,

given γ > 0, ρ ∈ (0,∞], then for p ∈ [1,∞] and f ∈ Xp,

{‖f − σ2n(µ∗q; f)‖p} ∈ bρ,γ ⇐⇒ {‖f −G∗n(f)‖p} ∈ bρ,γ , (3.4.28)

and for f ∈ X∞,

{‖f − σ2n(µn; f)‖∞} ∈ bρ,γ ⇐⇒ {‖f −Gn(f)‖∞} ∈ bρ,γ . (3.4.29)

The following characterization theorems are now mainly corollaries of their trigono-

metric counterparts.

Theorem 3.27. Assume the conditions of Remark 3.23. Then for γ > 0, ρ ∈ (0,∞],

p ∈ [1,∞], and f ∈ Xp, the following statements are equivalent:

(a) f ∈ Bp
ρ,γ, and so {E2n,p(f)} ∈ bρ,γ .

(b) {‖f −G∗n(f)‖p} ∈ bρ,γ

(c) {‖T ∗n (f)‖p} ∈ bρ,γ

Additionally, for p = ∞ and f ∈ Xp, the same equivalences hold with Gn(f) in

place of G∗n(f) and Tn(f) in place of T ∗n (f).

Proof. The only equivalence which does not come immediately from Theorem 3.14,

(3.4.28), and (3.4.29) is (b) ⇐⇒ (c), and this may be shown as in the trigonometric

polynomial case. First notice that ‖T ∗n (f)‖p ≤ ‖f − G∗n(f)‖p + ‖f − G∗n−1(f)‖p to

achieve one direction. Then using Proposition 3.26, we see that

‖f −G∗n(f)‖p ≤

∥∥∥∥∥
∞∑
j=0

T ∗j (f)−
n∑
j=0

T ∗j (f)

∥∥∥∥∥
p

≤
∞∑

j=n+1

‖T ∗j (f)‖p .
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The Hardy inequality (3.2.13) with υ = 1 then yields the reverse direction. As

Proposition 3.26 accounts for the band-pass operators with respect to M-Z measures,

when p =∞ we achieve the same equivalence with Gn(f) and Tn(f) in place of G∗n(f)

and T ∗n (f), respectively.

In this way, the PTN operators can achieve the same characterization of a target

function’s smoothness, in terms of Besov spaces. What remains is to further charac-

terize local smoothness in terms of local Besov spaces, and we show that PTNs can

accomplish this as well.

Theorem 3.28. Assume the conditions of Remark 3.23, and additionally let S >

q + γ, and let x0 ∈ Tq. Let γ > 0, ρ ∈ (0,∞], p ∈ [1,∞], and f ∈ Xp. Then we have

the following:

(a) When I is a (p, ρ, γ) Besov r-box for f about x0, there exists a positive r0 < r and

an r0-box J about x0 such that {‖f −G∗n(f)‖p,J} ∈ bρ,γ and {‖T ∗n (f)‖p,J} ∈ bρ,γ .

(b) When for some r-box I about x0, either {‖f −G∗n(f)‖p,I} ∈ bρ,γ or {‖T ∗n (f)‖p,I} ∈

bρ,γ, then I is a (p, ρ, γ) Besov r-box for f about x0 .

Further, for p = ∞ the same statements hold with Gn(f) and Tn(f) in place of

G∗n(f) and T ∗n (f), respectively.

We rely on the prior result Theorem 3.16, to include the PTN results.

Proof. In order to utilize the exponential closeness of the PTN summability operators

to their corresponding trigonometric polynomial operators in characterizing the local

smoothness classes, we must bound their local norms. Let r > 0 and I be an r-box
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about x0. Then by (3.3.24),

∣∣∣∣‖f − σ2n(µ∗q; f)‖p,I − ‖f −G∗n(f)‖p,I
∣∣∣∣ ≤ ‖σ2n(µ∗q; f)−G∗n(f)‖p,I

≤ ‖σ2n(µ∗q; f)−G∗n(f)‖p ≤ c2−b2
n

,(3.4.30)

and by (3.3.26),

∣∣∣∣‖f − σ2n(µn; f)‖p,I − ‖f −Gn(f)‖p,I
∣∣∣∣ ≤ ‖σ2n(µn; f)−Gn(f)‖p,I

≤ ‖σ2n(µn; f)−Gn(f)‖p ≤ c2−b2
n

.(3.4.31)

Note that these sequences of differences lie in bρ,γ. Then by this fact and Theorem 3.16

(a), we conclude that (a) holds, and additionally the same holds when p = ∞ and

Gn(f) and Tn(f) are used in place of G∗n(f) and T ∗n (f), respectively.

We have that (b) follows immediately as well from (3.4.30), since

{‖T ∗n (f)‖p,I} ∈ bρ,γ=⇒{‖f −G∗n(f)‖p,I} ∈ bρ,γ=⇒
{
‖f − σ2n(µ∗q; f)‖p,I

}
∈ bρ,γ ,

and by Theorem 3.16 (b) we have that
{
‖f − σ2n(µ∗q; f)‖p,I

}
∈ bρ,γ=⇒ I is a (p, ρ, γ)

Besov r-box for f about x0 .

Further, when p =∞, analogously using (3.4.31),

{‖Tn(f)‖∞,I} ∈ bρ,γ=⇒{‖f −Gn(f)‖∞,I} ∈ bρ,γ=⇒{‖f − σ2n(µn; f)‖∞,I} ∈ bρ,γ ,

and again by Theorem 3.16 (b) we conclude that (b) holds for the general measure

case.
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