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ABSTRACT

Coloring Prime Distance Graphs

By

Grant Robinson

Let D be a fixed set of prime numbers. In this thesis we investigate the

chromatic number of graphs with vertex set of the integers and edges between any

pair of vertices whose distance is in D. Such a graph is called a prime distance graph,

and the set D is called the distance set. The chromatic number of prime distance

graphs is known when the distance set D has at most four primes. In this thesis we

begin to classify prime distance graphs with a distance set of five primes. The number

theoretic function κ(D) is used as a tool, and some general lemmas about κ(D) are

established.
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CHAPTER 1

Preliminaries

1.1 Distance graphs

In this thesis we will be considering simple graphs, that is, graphs without

loops or parallel edges. In this setting a graph can be defined as a pair of sets (V,E),

where V can be any set, either finite or infinite, and the set E must be contained in

{{v, w} : v, w ∈ V, v 6= w}. The set V is called the vertex set, and the set E is called

the edge set. If {v, w} ∈ E, we say that the vertices v and w are adjacent. This is

denoted by v ∼ w.

Let D be a set of positive real numbers, called a distance set, and let 〈X, d〉 be

a metric space. Then the distance graph on X generated by D, denoted by G(X, D),

is the graph with vertex set X and edge set {{x, y} ⊆X : d(x, y) ∈ D}. The axioms

of a metric space ensure that this is a simple graph. The most famous distance graph

studied is the unit distance graph on the Euclidean plane, G(R2, {1}) (see [17]). In

this thesis we will be primarily interested in integer distance graphs, that is, graphs

with the integers, denoted by Z, as the vertex and edges between vertices if the

absolute value of their difference is in some fixed set D.

The study of integer distance graphs was initiated by Eggleton, Erdős and

Skilton [12] in 1985. They investigated integer distance graphs as a simplification to

1 dimension of the 2 dimensional plane unit distance graph. Since then these graphs

have been extensively studied [11, 13, 16, 19, 22].
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1.2 Coloring

Some of the most interesting questions surrounding distance graphs concern

different vertex colorings of the graphs. The most fundamental type of vertex coloring

involves assigning each vertex a single color, requiring only that adjacent vertices

receive distinct colors. Given a graph G = (V,E) and a set C of colors, a proper

coloring of the vertices of G is a function c : V → C such that, for every pair of

vertices v, w ∈ V , if v ∼ w, then c(v) 6= c(w). A k-coloring of G is a proper coloring

of G such that the set {c(v) : v ∈ V } has k elements. The chromatic number of G

is the minimum k such that there exists a k-coloring of G. We denote the chromatic

number of G by χ(G). If the underlying space X is understood, we write χ(D) as an

abbreviation of χ(G(X, D)).

A useful, equivalent definition of the chromatic number of a graph involves

graph homomorphisms. A graph homomorphism from G1 = (V1, E1) to G2 = (V2, E2)

is a function φ : V1 → V2 such that, for every pair of vertices v, w ∈ V1, if v ∼ w in G1,

then φ(v) ∼ φ(w) in G2. If such a function exists, we say that G1 is homomorphic

to G2, denoted by G1 → G2. The chromatic number of a graph is connected to

homomorphisms from G to the complete graph on k vertices, that is, the graph where

each verex is adjacent to every other vertex, denoted Kk.

Proposition 1. For any graph G, χ(G) = min{k : G→ Kk}.

To see that Proposition 1 is true, note that any homomorphism to Kk can

be considered a coloring with the color set defined as the vertex set of Kk, and,

conversely, any k-coloring function can be considered a homomorphism to Kk with
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the vertex set of Kk defined as the set of colors used in the k-coloring.

A proper coloring requires adjacent vertices to receive distinct colors. One

might want to strengthen this requirement so that adjacent vertices receive colors that

are in some way “far apart.” One way to do this is to define the set of colors C := [0, 1),

equipping the interval with the circular distance function d(x, y) = min{|x − y|, 1 −

|x− y|}. For any r ∈ R, where R is the set of real numbers, an r-circular coloring of

a graph G is a function c : V → [0, 1) such that, for every pair of vertices v, w ∈ V , if

v ∼ w, then d(c(v), c(w)) ≥ 1/r. The circular chromatic number of a graph is defined

to be the infimum of r over all r-circular colorings of G. The circular chromatic

number of G is denoted by χc(G).

The circular chromatic number was introduced by Vince [18]. For a compre-

hensive survey see [22]. A useful equivalent definition uses graph homomorphisms

with the target graph being the circular clique. For a pair of integers n and k such

that n ≥ 2k, let Kn/k be the circular clique, defined as the graph with vertex set

{0, 1, . . . , n− 1} where i ∼ j if i ≡ j + x (mod n) for some x ∈ {k, k + 1, . . . , n− k}.

Proposition 2. For any graph G, χc(G) = inf{n/k : G→ Kn/k}.

From this characterization of the circular chromatic number the following

proposition is easy to prove [23].

Proposition 3. For any graph G, χ(G) = dχc(G)e.

The idea behind the proof is that if a/b > c/d, then Kc/d → Ka/b. Since Kn/1

is isomorphic to Kn, the proposition follows.

3



1.3 The kappa value

For a real number x, let ||x|| denote the minimum distance from x to an

integer, that is ||x|| = min{dxe − x, x − bxc}. For a fixed set D of positive integers

and any real t, denote by ||tD|| the smallest value ||td|| among all d ∈ D. The kappa

value of D, denoted by κ(D), is the supremum of ||tD|| among all real t. That is,

κ(D) := sup{||tD|| : t ∈ R}.

The kappa value was introduced (in an alternate form) by Wills [21]. The

kappa value is connected to many different questions in diverse fields of mathematics,

including diophantine approximations in number theory [5, 6, 7, 8], view obstruction

problems in geometry [9] and nowhere zero flows on matroids [3]. Most famously, the

kappa value is the subject of the lonely runner conjecture first posed by Wills [21]

and given the poetic name by Goddyn [3]:

Conjecture 4. Let D be a finite set of positive integers. Then κ(D) ≥ 1/(|D|+ 1).

The conjecture is trivial when |D| ∈ {1, 2} and has been verified when |D| = 3

by Betke and Wills [2] in 1972, |D| = 4 by Cusick and Pommerance [10] in 1984,

|D| = 5 by Bohman, Holzman and Kleitman [4] in 2001 and |D| = 6 by Barajas and

Serra [1] in 2007. The full solution has eluded proof.

Of interest to this thesis, the kappa value can also be used to bound the circular

chromatic number of integer distance graphs. To prove this, we use an equivalent

definition of the kappa value introduced by Haralambis [15] in order to study the

density of integer sequences with missing differences. For an integer x, the notation

|x|m is the circular distance modulo m, that is the minimum x (mod m) and m− (x
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(mod m)). Similar to the definition of κ(D),

|tD|m = min{|td|m : d ∈ D}.

With these notations, we are able to rationalize the kappa value, using integer values

for t and looking at the circular distance modulo m instead of modulo 1:

κ(D) = sup
gcd (t,m)=1

|tD|m
m

.

Since, for any finite set D, κ(D) is rational, the supremum can be replaced

by maximum, ensuring there exists a pair of integers m and t that achieve the kappa

value.

Proposition 5. For any finite set of positive integers D , χc(D) ≤ 1/κ(D).

Proof. Assume m and t are relatively prime integers such that κ(D) = |tD|m/m. Let

p = |tD|m. By definition, this implies that p ≤ td (mod m) ≤ m− p for each d ∈ D.

Claim: The function φ : Z → {0, 1, . . . ,m− 1} defined by φ(n) = tn (mod m) is a

homomorphism from G(Z, D) to the circular clique Km/p.

Let i ∼ j in G(Z, D). Without loss of generality, we can assume i − j = d

for some d ∈ D. Since ti − tj ≡ t(i − j) ≡ td (mod m), by the definition of Km/p,

φ(i) ∼ φ(j).

As χc(D) is the infimum of n/k over all homomorphisms from G(Z, D) to

Kn/k, the homomorphism from the claim implies χc(D) ≤ m/p = 1/κ(D).

This proposition together with Proposition 3 give the following corollary, which

is the main tool used throughout the rest of this thesis.

Corollary 6. For any finite set of positive integers D, χ(D) ≤ d1/κ(D)e.
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CHAPTER 2

Three Lemmas on κ(D)

In this chapter we will introduce three general lemmas. An alternative defini-

tion of κ introduced by Gupta in [14] involves looking at the sets of “good times” for

each element d ∈ D, that is, the times t ∈ [0, 1) such that ||td|| is greater than some de-

sired value. For α ∈ [0, 1/2] and an element d ∈ D, let Id(α) = {t ∈ [0, 1) : ||td|| ≥ α}.

Let ID(α) be the intersection over D of Id(α). If ID(α) is not empty, then κ(D) ≥ α.

Thus,

κ(D) = sup{α ∈ [0, 1/2] : ID(α) 6= ∅}.

Note that if κ(D) > α, then ID(α) is a union of intervals, and if κ(D) = α,

then ID(α) is a finite union of singletons.

1

1− α α

Figure 2.1: The “good times” region for α
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2.1 κ(D ∪ {x})

If ID(α) is not empty, one might be interested in how large x must be to

guarantee that the intersection of ID(α) and Ix(α) is not empty. Note that Ix(α) is

the union of x disjoint intervals with center (2n+ 1)/2x for n ∈ {0, 1, . . . , x− 1} and

width (1− 2α)/x, that is,

Ix(α) =
x−1⋃
n=0

[
n+ α

x
,
n+ 1− α

x

]
.

We call these x-intervals. The length of the space between any two consecutive x-

intervals is 2α/x. Now let [a, b] be a connected subset of ID(α). If the length of the

space between each pair of consecutive intervals of Ix(α) is less than the length of

that subset, b− a, then it must be that one of the intervals of Ix(α) hit the interval

[a, b]. This can be summarized in the following lemma:

Lemma 7. Let [a, b] ⊆ ID(α) with a < b. If x ≥ 2α/(b− a), then ID(α)∩ Ix(α) 6= ∅.

Lemma 7 is used implicitly throughout the literature on κ(D). To my knowl-

edge, the next lemma is new.

2.2 κ(D ∪ {x, x+ i})

Considering now two elements, we describe an upper bound for the length

of an interval of time in which the two sets Ix(α) and Ix+i(α) can be disjoint. If

this bound is smaller than the length of a target interval contained in ID(α), we can

similarly guarantee that the intersection of ID(α), Ix(α) and Ix+i(α) is not empty.

Lemma 8. Let 1/4 ≤ α ≤ 1/3 and [a, b] ⊆ ID(α) with a < b. If 4α−1
i

+ 2
x
≤ b − a,

then ID(α) ∩ Ix(α) ∩ Ix+i(α) 6= ∅.

7



Proof. We introduce some notation to make it easier to keep track of the different

intervals. As noted above,

Ix(α) =
x−1⋃
n=0

[
n+ α

x
,
n+ 1− α

x

]
.

Fixing α, let [n+α
x
, n+1−α

x
] be denoted by Inx . Let L(Inx ) be the left endpoint of Inx and

R(Inx ) be the right endpoint.

If i ≥ x, then every x-interval must intersect at least one (x+ i)-interval, since

the length of the gap between (x+ i)-intervals is less than the length of an x-interval.

To show this, consider 2α
x+i
≥ 1−2α

x
, which simplifies to i ≥ x 4α−1

1−2α
. When α = 1/3, the

inequality simplifies to i ≥ x, and one can check that the right-hand side decreases

as α decreases for 1/4 ≤ α ≤ 1/3.

In this case, R(Inx ) − L(In−1
x ) = 2−2α

x
is an upper bound on the length of an

interval during which Ix and Ix+i are disjoint. Note that 2−2α
x

< 4α−1
i

+ 2
x
.

Assume i < x and let Imx be any x-interval. If m = 0, then with the as-

sumptions on α and i, it can be shown that L(I0
x) ≤ R(I0

x+i), and therefore there is

some intersection between the two intervals. If m ≥ 1, then let Inx+i be the closest

(x+ i)-interval to Imx such that R(Inx+i) ≤ L(Imx ), and set L(Imx )−R(Inx+i) = ∆. Note

that L(Imx )−L(Im−1
x ) = 1/x. This implies that the difference between previous pairs

of x and (x + i)-intervals decreases until the left point of the x-interval is less than

8



the right point of the x+ i-interval. More precisely,

L(Im−rx )−R(In−rx+i ) =

(
L(Imx )− r

x

)
−
(
R(Inx+i)−

r

x+ i

)
= L(Imx )−R(Inx+i)−

r

x
+

r

x+ i

= ∆− ir

x(x+ i)
.

Fix j ≥ 0 so that ∆− ij
x(x+i)

≤ 0 but ∆− i(j−1)
x(x+i)

> 0. This implies that

R(In−jx+i )− L(Im−jx ) =
ij

x(x+ i)
−∆ ≤ i

x(x+ i)
.

With the assumptions that i ≤ x and α ≤ 1/3, it can be shown that

i

x(x+ i)
≤ 1− 2α

x
+

1− 2α

x+ i
. (2.1)

The right-hand side of the above inequality is the length of an x-interval added to

the length of an (x+ i)-interval. Therefore, since R(In−jx+i )− L(Im−jx ) ≤ 1−2α
x

+ 1−2α
x+i

,

there must be some intersection between Im−jx and In−jx+i .

Having found an intersection with an x-interval at or before Imx , we now move

forward, looking at the right endpoint of the x-intervals.

L(In+1+r
x+i )−R(Im+r

x ) =L(In+1
x+i )−R(Imx )− ir

x(x+ i)

=R(Inx+i) +
2α

x+ i
−R(Imx )− ir

x(x+ i)

=L(Imx )−∆ +
2α

x+ i
−R(Imx )− ir

x(x+ i)

=
2α

x+ i
−
(

1− 2α

x
+

ir

x(x+ i)
+ ∆

)
.

9



Fix k ≥ 0 so that k is the smallest such that 2α
x+i
≤ 1−2α

x
+ ik

x(x+i)
+ ∆, that

is, the smallest such that L(In+1+k
x+i ) ≤ R(Im+k

x ). We now show that there must be

intersection between Im+k
x and In+1+k

x+i . If k = 0, then R(In+1
x+i ) > L(Imx ) by our choice

of n as the smallest such that R(Inx+i) ≤ L(Imx ). This, together with the fact that

L(In+1
x+i ) ≤ R(Imx ) by our choice of k, implies there must be intersection. If k ≥ 1,

then R(Im+k−1
x ) < L(In+k

x+i ). The only way that there is no intersection between Im+k
x

and In+1+k
x+i is if the following inequality holds:

1− 2α

x
+

1− 2α

x+ i
< R(Im+k

x )− L(In+1+k
x+i )

= R(Im+k−1
x )− L(In+k

x+i ) +
i

x(x+ i)

<
i

x(x+ i)
.

By Eq. (2.1), this contradicts our assumption that i ≤ x.

In summary, given that j = dx(x+i)∆
i
e and k = d4αx+2αi−x−i−x(x+i)∆

i
e, we know

that both Im−jx and Im+k
x intersect Ix+i. The length between these gaps is bounded

by the following:

R(Im+k
x )− L(Im−jx ) =

k + j

x
+

1− 2α

x

≤
4αx+2αi−x−i

i
+ 3− 2α

x

=
4α− 1

i
+

2

x
.

Note that if m + k ≥ x, then R(Im+k
x ) is undefined. In this case the bound

1−L(Im−jx ) is smaller than the bound above. Similar arguments apply if m− j < 0.

10



Note that 2
x

is always positive, so, for a fixed small i, if 4α−1
i

> b− a, then the

hypothesis of Lemma 8 is not satisfied for any x.

2.3 Rationalizing the good times

The final result of this chapter rationalizes the set of good times by expanding

the unit circle to a circle of circumference q. This lemma will be useful because, fixing

a rational point and an α, the lemma gives a finite list of residue classes of x modulo

q such that the point will be in Ix(α).

Lemma 9. Fix an integer x and an α ∈ (0, 1/2), and let p/q be a point in (0, 1).

Then p/q ∈ Ix(α) if and only if qα ≤ xp (mod q) ≤ q(1− α).

Proof. To say that p/q ∈ Ix(α) is equivalent to saying that there exists an n ∈

{0, 1, . . . , x − 1} such that (n + α)/x ≤ p/q ≤ (n + 1 − α)/x. Rearranging this

inequality gives qα ≤ px− qn ≤ q(1− α).

11



CHAPTER 3

Prime Distance Graphs

3.1 Introduction

Let P denote the set of prime numbers. In [12] prime distance graphs were

considered, that is integer distance graphs with distance set D ⊆ P . The first step in

the theory of prime distance graphs is to determine the chromatic number of G(Z,P ).

In the following (in particular see Theorem 12) we will encounter many sub-

graphs of G(Z,P ) that are not 3-colorable. The function c : Z → Z4 defined by

c(n) = n (mod 4) is a 4-coloring of G(Z,P ), since if c(n) = c(m), then n ≡ m

(mod 4), which implies |n − m| is a multiple of 4, and therefore not prime. This

shows that χ(P ) = 4.

Thus, since D ⊆ D′ implies χ(D) ≤ χ(D′), given that D is a proper subset

of P , χ(D) ∈ {1, 2, 3, 4}. The task is to classify a set of primes D according to its

chromatic number. We say D is class i if χ(D) = i. Clearly the only set that is class

1 is the empty set, and every singleton is class 2. If |D| ≥ 2, then D is class 2 if and

only if 2 6∈ D. Also, if 2 ∈ D but 3 6∈ D, then D is class 3. A less trivial result (see

Theorem 12) is that {2, 3, p} is class 4 if p = 5 and class 3 otherwise. In view of these

results, the remaining problem is to classify prime sets D ⊃ {2, 3} with |D| ≥ 4 into

either class 3 or class 4. For a more detailed discussion of these basics of the theory,

see [13].

It was shown [13] that if D = {2, 3, p, p+2} where p and p+2 are twin primes,

then D is class 4. Voigt and Walther [19] classified all prime sets with cardinality 4:

12



Theorem 10. Let D = {2, 3, p, q} be a set of primes with p ≥ 7 and q > p+ 2. Then

D is class 4 if and only if

(p, q) ∈ {(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37)}.

Since Voigt’s paper in 1994, little progress has been made on the subject. In

the following chapters we begin to look at prime distance sets with 5 elements that

do not contain twin primes or any of the eight minimal class 4 sets of cardinality 4

obtained in Theorem 10. Note that a minimal class 4 set is a set of primes that is

class 4 such that no proper subset is class 4.

One interesting question is whether the set of minimal 5 element class 4 sets

is finite. In [13] it was shown that

Theorem 11. The set {2, 3} ∪ {p, p + 8, 2p + 13} is class 4 whenever p, p + 8 and

2p+ 13 are all primes.

There is no reason to think that there are only finitely many such sets. In-

stead we ask a more limited question. Is the set of minimal class 4 sets of the form

{2, 3, 7, p, q} finite? The results in Chapter 4 almost completely answers this question.

In order to show that a distance set is class 3, we will make extensive use of

the kappa value of the distance set. Recall Corollary 6:

χ(D) ≤
⌈ 1

κ(D)

⌉
.

Thus, if κ(D) ≥ 1/3, then χ(D) ≤ 3. In particular, since we assume {2, 3} ⊂ D, if

κ(D) ≥ 1/3, then D is class 3.

13
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Figure 3.1: The intersection of I2(1/3) and I3(1/3)

3.2 Known results with new methods

In this section we will recover some of the known results about class 3 sets of

three and four primes in order to show how the lemmas in the previous chapter can

be applied. Throughout the rest of the chapter, we fix α = 1/3, so the notation ID

will be an abbreviation of ID(α). First we examine sets of three primes.

Theorem 12. The set D = {2, 3, p} is class 4 if p = 5 and class 3 otherwise.

Proof. To show that {2, 3, 5} is class 4, we follow the proof from [13]. Consider the

two subgraphs of G(Z, {2, 3, 5}) induced by the vertices {0, 2, 3, 5} and {1, 3, 4, 6}.

If they are 3-colorable, then the first forces 2 to be colored the same as 3, and the

second graph forces 3 to be colored the same as 4. But this is impossible as 2 is

adjacent to 4.

To show that all other three element prime sets are class 3, we will use

Lemma 7. First note that, by straightforward calculations, I{2,3} = [3/18, 4/18] ∪

[14/18, 15/18] (see Fig. 3.1), so the length of a longest interval is 1/18. By Lemma 7,

if p ≥ 12, then {2, 3, p} is class 3. The only prime sets left to check are {2, 3, 7} and

{2, 3, 11}, which both have kappa value greater than 1/3.

We now prove a weaker statement than Theorem 10, leaving out the proof

14



that the sets listed are indeed class 4.

Theorem 13. Let D = {2, 3, p, q} be a set of primes with p ≥ 7 and q > p+ 2. Then

D is class 3 if

(p, q) 6∈ {(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37)}.

Proof. We apply Lemma 8 to I{2,3} to find bounds for which the set {2, 3, p, p+ i} is

class 3. As we have seen, the the length of a longest connected interval in that set

I{2,3} is 1/18. The first step is to find the smallest gap i between primes that allows

us to use Lemma 8, that is, for what i does the equation 1/3i < 1/18 hold. We see

that if i ≤ 6, then the inequality in the hypothesis of Lemma 8 will never hold. Since

both p and p+ i must be prime, i must be even. Applying Lemma 8 with i = 8 gives

that if p ≥ 144 and i ≥ 8, then the set {2, 3, p, p+ i} is class 3.

There are 9 pairs of primes p and p+ 8 with p < 144:

{11, 19}, {23, 31}, {29, 37}, {53, 61}, {59, 67}, {71, 79}, {89, 97}, {101, 107}, {131, 139}.

Of these, the only ones with κ({2, 3, p, p+ 8}) < 1/3 are {11, 19}, {23, 31}, {29, 37}.

Similarly, we can apply Lemma 8 with increasing even gaps i. At each stage

we get a bound on how large p must be to guarantee that κ({2, 3, p, p+ i}) < 1/3. By

manually checking all prime pairs (p, p+ i) less than that bound, we can completely

determine which sets {2, 3, p, p + i} have kappa value less than 1/3. When i = 30

the bound on p can be calculated to be 45. After applying Lemma 8 for all i ∈

{10, 12, . . . , 30}, we can conclude that if p ≥ 45 and i ≥ 8, then κ({2, 3, p, p + i}) <

1/3. The fact that Lemma 8 is used up to i = 30 is an arbitrary choice, but at some

15



Table 3.1: Applying Lemma 7 to {2, 3, p} for primes 5 < p < 45

p [a, b] ⊂ I{2,3,p} Bound on q Primes q with κ({2, 3, p, q}) < 1/3

7 [4/21, 2/9] 21 5
11 [7/33, 2/9] 66 5,13,19,23,37,41
13 [7/39, 8/39] 26 5,11
17 [10/51, 11/51] 34 5,19,29
19 [10/57, 11/57] 38 5,11,17
23 [13/69, 14/69] 46 5,11,31,41
29 [16/87, 17/87] 58 5,17,31,37
31 [19/93, 20/93] 62 5,23,29
37 [22/111, 23/111] 74 5,11,29
41 [25/123, 26/123] 82 5,11,23,43
43 [25/129, 26/129] 86 5,41

point Lemma 7 is needed to establish that the kappa value is less than 1/3 for D sets

containing a smaller primes. By applying Lemma 7 to {2, 3, p} for primes 5 < p < 45,

we can show that that if i ≥ 8 , then the set {2, 3, p, p+ i} is class 3 unless {p, p+ i}

is a pair of primes in the statement of the theorem. See Table 3.1.

To complete the proof we must show that, for i = 4 or i = 6, the sets {2, 3, p, p+

i} are class 3. To do this we use Lemma 9. We want to show that there exists a

rational point in the interval [3/18, 4/18] that is in I{p,p+4}, given that p is equivalent

to some number modulo the denominator of the point. We start by checking the

points {n/90 : 15 ≤ n ≤ 20}. The choice of denominator 90 is arbitrary, but it is

convenient if the end points of the target interval have denominators which divide

the denominator of the points checked. Note that since both p and p+ 4 are primes,

we know p ≡ 1 (mod 6).

From Table 3.2, we see that if p ≡ 1 (mod 90), then p + 4 is not prime, if

p ≡ 85 (mod 90), then p is not prime, and if p 6≡ 37, 49 (mod 90), then there exists

16



Table 3.2: Rational points in I{2,3} ∩ I{p,p+4} (Round 1)

p (mod 90) gcd(p, 90) gcd(p+ 4, 90) Point in I{p,p+4}

1 5
7 2/9
13 1/5
19 17/90
25 5 2/9
31 5 19/90
37
43 8/45
49
55 5 19/90
61 5 2/9
67 17/90
73 1/5
79 2/9
85 5

Table 3.3: Rational points in I{2,3} ∩ I{p,p+4} (Round 2)

p (mod 180) gcd(p, 180) gcd(p+ 4, 180) Point in I{p,p+4}

37 37/180
49 13/60
127 13/60
139 37/180

a rational point in [3/18, 4/18] contained in I{p,p+4}. Now we increase the number of

points we are checking by a factor of 2 to see if, when p ≡ 37, 49 (mod 90), there

exists a point in {n/180 : 30 ≤ n ≤ 40} contained in I{p,p+4}.

From Tables 3.2 and 3.3 we see that indeed all prime sets {2, 3, p, p + 4} are

class 3. In a similar way we show that {2, 3, p, p + 6} is class 3 for all prime pairs p

and p + 6. To start, we again check the points {n/90 : 15 ≤ n ≤ 20}, but this time

we must check both p ≡ 1, 5 (mod 6). Tables 3.4 to 3.6 show that all sets of the form

17



Table 3.4: Rational points in I{2,3} ∩ I{p,p+6} (Round 1)

p (mod 90) gcd(p, 90) gcd(p+ 6, 90) Point in I{p,p+6}

1
5 5
7 1/5
11
13 17/90
17 1/5
19 5 8/45
23 17/90
25 5 8/45
29 5 17/90
31 8/45
35 5 19/90
37 8/45
41
43
47 8/45
49 5 19/90
53 8/45
55 5 17/90
59 5 8/45
61 17/90
65 5 8/45
67 1/5
71 17/90
73
77 1/5
79 5
83
85 5
89 5
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Table 3.5: Rational points in I{2,3} ∩ I{p,p+6} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 6, 630) Point in I{p,p+6}

1 7
11 67/315
41 113/630
43 7 6/35
73 107/630
83 109/630
91 7 107/630
101 109/630
131 6/35
133 7 53/315
163 53/315
173 107/630
181 53/315
191 107/630
221 107/630
223 53/315
253 7 53/315
263 109/630
271 53/315
281 7 109/630
311
313
343 7 109/630
353 53/315
361 109/630
371 7 53/315
401 53/315
403 107/630
433 107/630
443 53/315
451 107/630
461 53/315
491 7 53/315
493 6/35
523 109/630
533 7 107/630
541 109/630
551 107/630
581 7 6/35
583 113/630
613 67/315
623 7
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Table 3.6: Rational points in I{2,3} ∩ I{p,p+6} (Round 3)

p (mod 1260) gcd(p, 1260) gcd(p+ 6, 1260) Point in I{p,p+6}

311 71/420
313 211/1260
941 211/1260
943 71/420

{2, 3, p, p+ 6} are class 3.
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CHAPTER 4

Class 3 Prime Sets of the Form {2, 3, 7, p, q}

In this chapter we attempt to emulate the proof of Theorem 13 in order to show

that there are only finitely many minimal class 4 prime sets of the form {2, 3, 7, p, q}.

4.1 Applying Lemma 8

We first apply Lemma 8, with α = 1/3, to obtain bounds for which {2, 3, 7, p, q}

is class 3. The interval [4/21, 2/9] ⊂ I{2,3,7}, and the length of this interval is 2/63.

The first step is to determine the smallest gap i such that 1/3i < 2/63, in order to

ensure that the inequality in the hypothesis of Lemma 8 can be satisfied. If i ≤ 10,

then 1/3i > 2/63, so, since p must be prime, the gaps considered are the even integers

i ≥ 12.

Fixing i = 12 , we solve the following inequality from Lemma 8 for p: 1
3i

+ 2
p
≤

2
63
. Thus if p ≥ 504 and q ≥ p + 12, then, by Lemma 8, {2, 3, 7, p, q} will be class 3.
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Figure 4.1: The intersection of I7(1/3) and I{2,3}(1/3)
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There are 47 pairs of primes (p, p+ 12) such that p < 504:

(5, 17) (7, 19) (11, 23) (17, 29) (19, 31) (29, 41) (31, 43)

(41, 53) (47, 59) (59, 71) (61, 73) (67, 79) (71, 83) (89, 101)

(97, 109) (101, 113) (127, 139) (137, 149) (139, 151) (151, 163) (167, 179)

(179, 191) (181, 193) (199, 211) (211, 223) (227, 239) (229, 241) (239, 251)

(251, 263) (257, 269) (269, 281) (271, 283) (281, 293) (337, 349) (347, 359)

(367, 379) (389, 401) (397, 409) (409, 421) (419, 431) (421, 433) (431, 443)

(449, 461) (467, 479) (479, 491) (487, 499) (491, 503).

Of these, there are only 15 such that the set D = {2, 3, 7, p, p + 12} has

κ(D) < 1/3:

(5, 17) (11, 23) (17, 29) (19, 31) (29, 41) (31, 43) (41, 53) (47, 59)

(61, 73) (67, 79) (71, 83) (89, 101) (97, 109) (139, 151) (181, 193).

This shows that the set {2, 3, 7, p, p+ 12} is class 3 for all pairs of primes p and p+ 12

except (possibly) for the 15 pairs listed above.

Noting that, as the gap i increases, the bound for p decreases, we repeatedly

apply Lemma 8, with increasing even gaps i, collecting at each iteration the finite list

of prime pairs (p, p + i) such that κ({2, 3, 7, p, p + i}) < 1/3. For each i, the bound

on p is found by solving the inequality

1

3i
+

2

p
≤ 2

63
.
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There are 17 pairs of primes (p, p+ 14) such that p < 252:

(3, 17) (5, 19) (17, 31) (23, 37) (29, 43) (47, 61) (53, 67)

(59, 73) (83, 97) (89, 103) (113, 127) (137, 151) (149, 163) (167, 181)

(179, 193) (197, 211) (227, 241).

Of these, only the set {2, 3, 7, 5, 19} has kappa value less than 1/3.

There are 13 pairs of primes (p, p+ 16) such that p < 184:

(3, 19) (7, 23) (13, 29) (31, 47) (37, 53) (43, 59) (67, 83)

(73, 89) (97, 113) (151, 167) (157, 173) (163, 179) (181, 197).

All of these have kappa value greater than 1/3.

There are 19 pairs of primes (p, p+ 18) such that p < 152:

(5, 23) (11, 29) (13, 31) (19, 37) (23, 41) (29, 47) (41, 59)

(43, 61) (53, 71) (61, 79) (71, 89) (79, 97) (83, 101) (89, 107)

(109, 127) (113, 131) (131, 149) (139, 157) (149, 167).

Of these, there are 3 such that the set D = {2, 3, 7, p, p+ 18} has κ(D) < 1/3:

(5, 23) (19, 37) (23, 41).

There are 12 pairs of primes (p, p+ 20) such that p < 133:

(3, 23) (11, 31) (17, 37) (23, 43) (41, 61) (47, 67) (53, 73)

(59, 79) (83, 103) (89, 109) (107, 127) (131, 151).

All of these have kappa value greater than 1/3.
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There are 8 pairs of primes (p, p+ 22) such that p < 121:

(7, 29) (19, 41) (31, 53) (37, 59) (61, 83) (67, 89) (79, 101)

(109, 131).

Of these, there are 2 such that the set D = {2, 3, 7, p, p+ 22} has κ(D) < 1/3:

(19, 41) (37, 59).

There are 17 pairs of primes (p, p+ 24) such that p < 112:

(5, 29) (7, 31) (13, 37) (17, 41) (19, 43) (23, 47) (29, 53)

(37, 61) (43, 67) (47, 71) (59, 83) (73, 97) (79, 103) (83, 107)

(89, 113) (103, 127) (107, 131).

Of these, there are 2 such that the set D = {2, 3, 7, p, p+ 24} has κ(D) < 1/3:

(5, 29) (19, 43).

There are 10 pairs of primes (p, p+ 26) such that p < 106:

(3, 29) (5, 31) (11, 37) (17, 43) (41, 67) (47, 73) (53, 79)

(71, 97) (83, 109) (101, 127).

Of these, there are 2 such that the set D = {2, 3, 7, p, p+ 26} has κ(D) < 1/3:

(5, 31) (11, 37).

There are 8 pairs of primes (p, p+ 28) such that p < 101:

(3, 31) (13, 41) (19, 47) (31, 59) (43, 71) (61, 89) (73, 101)

(79, 107).

24



Of these, only the set {2, 3, 7, 19, 47} has kappa value less than 1/3.

There are 17 pairs of primes (p, p+ 30) such that p < 97:

(7, 37) (11, 41) (13, 43) (17, 47) (23, 53) (29, 59) (31, 61)

(37, 67) (41, 71) (43, 73) (53, 83) (59, 89) (67, 97) (71, 101)

(73, 103) (79, 109) (83, 113).

Of these, only the set {2, 3, 7, 11, 41} has kappa value less than 1/3.

There are 6 pairs of primes (p, p+ 32) such that p < 94:

(5, 37) (11, 43) (29, 61) (41, 73) (47, 79) (71, 103).

Of these, only the set {2, 3, 7, 5, 37} has kappa value less than 1/3.

There are 8 pairs of primes (p, p+ 34) such that p < 92:

(3, 37) (7, 41) (13, 47) (19, 53) (37, 71) (67, 101) (73, 107)

(79, 113).

Of these, only the set {2, 3, 7, 19, 53} has kappa value less than 1/3.

There are 14 pairs of primes (p, p+ 36) such that p < 89:

(5, 41) (7, 43) (11, 47) (17, 53) (23, 59) (31, 67) (37, 73)

(43, 79) (47, 83) (53, 89) (61, 97) (67, 103) (71, 107) (73, 109).

Of these, only the set {2, 3, 7, 5, 41} has kappa value less than 1/3.

There are 7 pairs of primes (p, p+ 38) such that p < 88:

(3, 41) (5, 43) (23, 61) (29, 67) (41, 79) (59, 97) (71, 109).
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Of these, only the set {2, 3, 7, 5, 43} has kappa value less than 1/3.

There are 9 pairs of primes (p, p+ 40) such that p < 86:

(3, 43) (7, 47) (13, 53) (19, 59) (31, 71) (43, 83) (61, 101)

(67, 107) (73, 113).

All of these have kappa value greater than 1/3.

There are 13 pairs of primes (p, p+ 42) such that p < 84:

(5, 47) (11, 53) (17, 59) (19, 61) (29, 71) (31, 73) (37, 79)

(41, 83) (47, 89) (59, 101) (61, 103) (67, 109) (71, 113).

Of these, only the set {2, 3, 7, 5, 47} has kappa value less than 1/3.

There are 6 pairs of primes (p, p+ 44) such that p < 83:

(3, 47) (17, 61) (23, 67) (29, 73) (53, 97) (59, 103).

Of these, only the set {2, 3, 7, 29, 73} has kappa value less than 1/3.

There are 6 pairs of primes (p, p+ 46) such that p < 82:

(7, 53) (13, 59) (37, 83) (43, 89) (61, 107) (67, 113).

All of these have kappa value greater than 1/3.

There are 11 pairs of primes (p, p+ 48) such that p < 81:

(5, 53) (11, 59) (13, 61) (19, 67) (23, 71) (31, 79) (41, 89)

(53, 101) (59, 107) (61, 109) (79, 127).
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Of these, there are 2 such that the set D = {2, 3, 7, p, p+ 48} has κ(D) < 1/3:

(5, 53) (19, 67).

There are 8 pairs of primes (p, p+ 50) such that p < 80:

(3, 53) (11, 61) (17, 67) (23, 73) (29, 79) (47, 97) (53, 103)

(59, 109).

All of these have kappa value greater than 1/3.

There are 5 pairs of primes (p, p+ 52) such that p < 79:

(7, 59) (19, 71) (31, 83) (37, 89) (61, 113).

All of these have kappa value greater than 1/3.

The following theorem summarizes this section. Note that the primes pairs

(p, p+ i) such that κ({2, 3, 7, p, p+ i}) < 1/3 but p < 79 are not listed in this theorem.

They will be covered in the next section.

Theorem 14. If i ≥ 12 and p ≥ 79 and D = {2, 3, 7, p, p + i} does not contain a

proper subset that is class 4, then D is class 3 for any pair of primes (p, p + i) not

listed below:

(89, 101) (97, 109) (139, 151) (181, 193).

4.2 Applying Lemma 7

The next step in the process is to remove the bound that p must be greater

than 79. This is accomplished applying Lemma 7 to each set {2, 3, 7, p} for primes
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p < 79. The fact that we switch from using Lemma 8 to Lemma 7 at i = 52 and

p < 79 is arbitrary. Computational, the hardest part of using Lemma 7 is finding the

length of the longest interval in {2, 3, 7, p}, which is why Lemma 8 was used as long

as it was. Now, for each prime 11 ≤ p < 79, a bound on q such that {2, 3, 7, p, q} is

class 3 is established. To finish each case we check the finite list of small primes q.

For some of the smallest primes p, the prime sets D = {2, 3, 7, p, q} are class

3 for all primes q such that D does not contain a proper subset known to be class 4.

Theorem 15. The set {2, 3, 7, 11, p} is class 3 for all primes p 6∈ {5, 13, 19, 23, 37, 41}.

Proof. Apply Lemma 7 to the set D = {2, 3, 7, 11}. Since ID(1/3) = [7/33, 2/9] ∪

[7/9, 26/33], a longest connected subset has length 1/99. First we solve the inequality

p ≥
2
3
1
99

for p. Thus, if p ≥ 66, then by Lemma 7 {2, 3, 7, 11, p} is class 3. Calculating the

kappa values for the sets {2, 3, 7, 11, p} for all primes 5 ≤ p < 66 shows that only

those sets listed in the statement have kappa value less than 1/3.

Theorem 16. The set {2, 3, 7, 13, p} is class 3 for all p 6∈ {5, 11}.

Proof. Similar to Theorem 15, we start by applying Lemma 7. As I{2,3,7,13} ⊃

[4/21, 8/39], we can calculate that if p ≥ 46, then {2, 3, 7, 13, p} is class 3. Again,

calculations show that only {2, 3, 7, 13, 5} and {2, 3, 7, 13, 11} have kappa value less

than 1/3.

Theorem 17. The set {2, 3, 7, 17, p} is class 3 for all p 6∈ {5, 19, 29}.

Proof. Noting that [10/51, 11/51] ⊂ I{2,3,7,17}, by Lemma 7 we calculate that if p ≥ 34,
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Table 4.1: Applying Lemma 7 to {2, 3, 7, p} for primes 23 ≤ p < 79

p [a, b] ⊂ I{2,3,7,p} Bound on q Primes q with κ({2, 3, 7, p, q}) < 1/3

23 [4/21, 14/69] 54 5,11,31,41
29 [4/21, 17/87] 136 5,17,31,37,41,73,109
31 [19/93, 20/93] 62 5,19,23,29,43
37 [22/111, 23/111] 74 5,11,19,29,59
41 [25/123, 26/123] 82 5,11,19,23,29,43,53
43 [25/129, 26/129] 86 5,19,31,41
47 [28/141, 29/141] 94 5,19,59
53 [34/159, 35/159] 106 5,19,41
59 [37/177, 38/177] 118 5,37,47,61
61 [37/183, 38/183] 122 5,59,73
67 [43/201, 44/201] 134 5,19,79
71 [46/213, 47/213] 142 5,73,83
73 [46/219, 47/219] 146 5,19,29,61,71

then {2, 3, 7, 17, p} is class 3. Calculations show that only those sets listed in the

statement have kappa value less than 1/3.

We now consider the first prime for which we uncover prime setsD = {2, 3, 7, p, q}

for which κ(D) < 1/3 and no subset of D is class 4.

Theorem 18. The set {2, 3, 7, 19, p} is class 3 for all primes

p 6∈ {5, 11, 17, 31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193}.

Proof. If p ≥ 266, then {2, 3, 7, 19, p} is class 3 by Lemma 7 since [4/21, 11/57] ⊆

I{2,3,7,19}. Computer calculations confirm that κ({2, 3, 7, 19, p}) ≥ 1/3 if p < 266 and

p is not an element of the set in the statement.

For the rest of the primes less than 79, see Table 4.1 for a summary of the

bounds on q and the sets for each p that have kappa value less than 1/3. The following

theorem summarizes this section.

Theorem 19. If p ≤ 79, q > p and D = {2, 3, 7, p, q} does not contain any proper
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subset that is class 4, then D is class 3 for any pair of primes (p, q) not listed below:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83).

4.3 Applying Lemma 9

Thus far we have shown that, as long as i ≥ 12, there are only finitely many

prime sets with κ({2, 3, 7, p, p+ i}) < 1/3. If i = 2, then p and p+ 2 are twins primes

and the set is class 4. The last step in the process is to show that, for i ∈ {4, 6, 8, 10},

all prime sets of the form {2, 3, 7, p, p+ i} that do not contain one of the known class

4 sets are class 3.

Consider the case when p and p + 4 are both primes. Note that this implies

that p ≡ 1 (mod 6). We want to apply Lemma 9 to check if any rational points in

the interval [4/21, 2/9] ⊂ I{2,3,7} are in both Ip and Ip+4. A natural place to start

is by taking the least common multiple of 6, 21 and 9, which is 126. The target

interval [4/21, 2/9] = [24/126, 28/126], so we will apply Lemma 9 for the points

{n/126 : 24 ≤ n ≤ 28}. After removing the residue classes modulo 126 for which

p 6≡ 1 (mod 6), we are left with the Table 4.2.

From Table 4.2 we see that, for each of the rows that is not highlighted,

I{2,3,7,p,p+4} will contain the point in the rightmost column, implying that {2, 3, 7, p, p+

4} is class 3. To investigate further, we increase the number of rational points to check
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Table 4.2: Rational points in I{2,3,7} ∩ I{p,p+4} (Round 1)

p (mod 126) gcd(p, 126) gcd(p+ 4, 126) Point in I{p,p+4}

1
7 7 3/14
13 25/126
19 4/21
25 2/9
31 7 3/14
37 13/63
43 2/9
49 7 3/14
55
61 4/21
67
73 7 3/14
79 2/9
85 13/63
91 7 3/14
97 2/9
103 4/21
109 25/126
115 7 3/14
121

by a factor of 5. We must also expand our list of residues to check, so we get Table 4.3.

From Table 4.3 we see that if p ≡ 1 (mod 630), then p + 4 is not prime,

if p ≡ 625 (mod 630), then p is not prime, and if p 6≡ 307, 319 (mod 630), then

I{2,3,7,p,p+4} is not empty. Iterating again, this time just increasing by a factor of 2

gives Table 4.4, which has no highlighted rows. This means, no matter the residue

class of a prime p modulo 1260, there exists some point in I{2,3,7,p,p+i}. Thus, this

is the final table needed to finish the case when i = 4. Tables 4.2 to 4.4 show that

{2, 3, 7, p, p+ 4} is class 3 for every pair of primes p and p+ 4.

Next, let i = 6. We begin in the same way as for i = 4, by checking the
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Table 4.3: Rational points in I{2,3,7} ∩ I{p,p+4} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 4, 630) Point in I{p,p+4}

1 5
55 5 61/315
67 64/315
121 5 41/210
127 61/315
181 5 62/315
193 1/5
247 62/315
253 121/630
307
319
373 121/630
379 62/315
433 1/5
445 5 62/315
499 61/315
505 5 41/210
559 64/315
571 5 61/315
625 5

Table 4.4: Rational points in I{2,3,7} ∩ I{p,p+4} (Round 3)

p (mod 1260) gcd(p, 1260) gcd(p+ 4, 1260) Point in I{p,p+4}

307 253/1260
319 251/1260
937 251/1260
949 253/1260
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Table 4.5: Rational points in I{2,3,7} ∩ I{p,p+6} (Round 1)

p (mod 126) gcd(p, 126) gcd(p+ 6, 126) Point in I{p,p+6}

1 7
5
7 7 4/21
11 3/14
13 4/21
17 25/126
19
23 4/21
25 3/14
29 7 4/21
31 13/63
35 7
37 25/126
41
43 7
47
49 7 4/21
53 3/14
55 4/21
59
61
65 4/21
67 3/14
71 7 4/21
73
77 7
79
83 25/126
85 7
89 13/63
91 7 4/21
95 3/14
97 4/21
101
103 25/126
107 4/21
109 3/14
113 7 4/21
115
119 7
121
125
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Table 4.6: Rational points in I{2,3,7} ∩ I{p,p+6} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 6, 630) Point in I{p,p+6}

...
...

293 22/105
299 5 121/630
311
313
325 5 121/630
331 22/105

...
...

Table 4.7: Rational points in I{2,3,7} ∩ I{p,p+6} (Round 3)

p (mod 1260) gcd(p, 1260) gcd(p+ 6, 1260) Point in I{p,p+6}

311 241/1260
313 27/140
941 27/140
943 241/1260
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points {n/126 : 24 ≤ n ≤ 28}, noting that p can be either 1 or 5 (mod 6). This gives

Table 4.5. We iterate the process, increasing the number of points checked by a factor

of 5. This gives Table A.1, which is too long to fit on a single page, so it is moved to

an appendix. The only highlighted rows are shown in Table 4.6. Finally, we iterate

again, increasing by a factor of 2. Table 4.7 shows that this finishes the case when

i = 6.

The case when i = 8 is much more difficult, and this is not surprising, as we

have already have seen that

{2, 3, 5, 13} {2, 3, 11, 19} {2, 3, 23, 31} {2, 3, 29, 37}

are all class 4 sets. Using similar methods to those above, we were able to show that,

if {2, 3, 7, p, p + 8} is class 4, then p ≡ 2311139, 2311163 (mod 4622310). Note that

4622310 = 2 · 32 · 5 · 7 · 11 · 23 · 29. See Appendix B.

Finally, consider the case when i = 10. We can again assume that p ≡ 1

(mod 6), so we start with Table 4.8, checking points {n/126 : 24 ≤ n ≤ 28}. From

here increase the number of rational points checked by a factor of 5 to get Table 4.9.

And finally, increase by a factor of 11 to get Table 4.10. Notice that by checking

points such that 11 divides the denominator allows us to remove the possibility that

p ≡ 1 (mod 6930), since this would imply that p+ 10 is not prime.
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Table 4.8: Rational points in I{2,3,7} ∩ I{p,p+10} (Round 1)

p (mod 126) gcd(p, 126) gcd(p+ 10, 126) Point in I{p,p+10}

1
7 7 25/126
13 4/21
19 4/21
25 7 3/14
31 13/63
37
43 25/126
49 7 3/14
55 4/21
61 4/21
67 7 3/14
73 25/126
79
85 13/63
91 7 3/14
97 4/21
103 4/21
109 7 25/126
115
121
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Table 4.9: Rational points in I{2,3,7} ∩ I{p,p+10} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 10, 630) Point in I{p,p+10}

1
37 1/5
79 41/210
115 5 5 41/210
121 61/315
127 61/315
163 61/315
205 5 5
241 62/315
247 121/630
253 121/630
289 121/630
331 121/630
367 121/630
373 121/630
379 62/315
415 5 5
457 61/315
493 61/315
499 61/315
505 5 5 41/210
541 41/210
583 1/5
619
625 5 5
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Table 4.10: Rational points in I{2,3,7} ∩ I{p,p+10} (Round 3)

p (mod 6930) gcd(p, 6930) gcd(p+ 10, 6930) Point in I{p,p+10}

1 11
619 221/1155
631 21/110
1249 21/110
1261 661/3465
1879 661/3465
1891 1321/6930
2509 11 661/3465
2521 1321/6930
3139 221/1155
3151 1321/6930
3769 1321/6930
3781 221/1155
4399 1321/6930
4411 11 661/3465
5029 1321/6930
5041 661/3465
5659 661/3465
5671 21/110
6289 21/110
6301 221/1155
6919 11
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The following is a summary of this chapter.

Theorem 20. A prime set of the form D = {2, 3, 7, p, q} is class 3 if none of the

following is true:

(1) D contains a proper subset that is class 4.

(2) The pair (p, q) is one of the following 31 pairs:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83) (89, 101)

(97, 109) (139, 151) (181, 193).

(3) p ≡ 122491199, 122491223 (mod 244982430) and q = p+ 8.

39



CHAPTER 5

Class 4 Prime Sets of the Form {2, 3, 7, 19, p}

The kappa value can be used to prove that a set is class 3, but in order

to establish that a set is class 4 we need other tools. In the following section we

investigate 3-colorings of the distance graph generated by {2, 3, 7, 19} and show that

these colorings cannot be extended to {2, 3, 7, 19, p} for certain p.

5.1 Background

In this section, our notation will follow that of Eggleton in [11]. Given a set

D of positive integers, a D-consistent 3-coloring is a function c : Z → {0, 1, 2} such

that for every i, j ∈ Z,

|i− j| ∈ D =⇒ c(i) 6= c(j).

In the following we will consider a coloring c as a two-way infinite sequence, c :=

{c(i)}i∈Z .

The structure of a coloring sequence c can be described by breaking it apart

into the three constituent color classes. The k-color-class is defined as the set {i ∈

Z : c(i) = k}. Since each block of five consecutive integers in the distance graph

generated by {2, 3} contains the 5-cycle {i+ 1, i+ 3, i+ 5, i+ 2, i+ 4}, the difference

between any two consecutive elements in a color class is at most 5, otherwise the five

cycle must be properly colored with just two colors, which is impossible. In light

of this we can consider each color class as a strictly increasing sequence of integers

k := {ki}i∈Z where c(ki) = k for every i and ki < ki+1. The structure of a color

class is primarily captured by the gaps or differences between consecutive elements
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in the ordered color class sequence. The gap sequence of a k-color-class k is defined

as ∆k(c) = {di}i∈Z where di = ki+1 − ki.

For either a color sequence or a gap sequence, we call any finite set of consec-

utive terms a block of the sequence. For any gap sequence d, let σ(d) be the set of all

partial sums obtained by summing the terms in all blocks of d. Given a coloring c, let

σ(c) := σ(∆0(c))∪σ(∆1(c))∪σ(∆2(c)). The following proposition from [11] connects

the representation of 3-colorings as gap sequence triples to the D-consistency of the

coloring.

Proposition 21. For any coloring c and any fixed a ∈ Z+, there exists an i ∈ Z

such that c(i) = c(i+ a) if and only if a ∈ σ(c).

Often the colorings considered are periodic. This is denoted by enclosing

the repeated block in parenthesis. As an example of these definitions, consider the

periodic coloring function c defined by

c(i) =


0 if i ≡ 0, 1, 5, 6, 10, 11, 16 (mod 21)

1 if i ≡ 2, 7, 8, 12, 13, 17, 18 (mod 21)

2 if i ≡ 3, 4, 9, 14, 15, 19, 20 (mod 21).

The corresponding coloring sequence is c = (001220011200112201122), and

the three color classes are:

0 = {. . . 0, 1, 5, 6, 10, 11, 16, . . . }

1 = {. . . 2, 7, 8, 12, 13, 17, 18, . . . }

2 = {. . . 3, 4, 9, 14, 15, 19, 20, . . . }.

The three gap sequences are:
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∆0(c) = (1, 4, 1, 4, 1, 5, 5)

∆1(c) = (5, 1, 4, 1, 4, 1, 5)

∆2(c) = (1, 5, 5, 1, 4, 1, 4).

Since each of these gap sequences is a cyclic permutation of the others, the

partial sums are the same for each:

σ(∆0(c)) = σ(c) = {x : x ≡ 0,±1,±4,±5,±6,±9,±10 (mod 21)}

Thus, since the intersection of {2, 3, 7, 19} and σ(c) is empty, by Proposition 21, c is

a {2, 3, 7, 19}-consistent 3-coloring.

5.2 Characterizing gap sequences

In this section we will investigate what blocks are possible for the gap sequences

of a {2,3,7,19}-consistent coloring. Blocks of length l will be called l-blocks. In order

to show that certain blocks are not possible, we will need to investigate how all

three color classes interact. A gap sequence d almost completely determines a color

sequence, as made precise by the following proposition from [11]:

Proposition 22. If d is a {2, 3}-consistent gap sequence, then d = ∆0(c) where, up

to a permutation of the labels, c is given by the following rule that assigns terms of

the gap sequence to blocks of a color sequence:
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θ(di) =



0 if di = 1

0112 if di−1 > 1 and di = 4 and di+1 = 1

01z2 if di−1 = 1 and di = 4 and di+1 = 1

0122 if di−1 = 1 and di = 4 and di+1 > 1

01122 if di = 5

where z ∈ {1, 2} can be arbitrarily chosen for each 141 block in d.

The only possible gaps between consecutive elements of a color class are 1,4

and 5. The fact that 2 or 3 cannot be gaps follows clearly from the definition, and

the fact that no gap can be greater than 5 follows from existence of a 5-cycle in any

block of five consecutive integers.

There are 9 possible 2-blocks of 1,4, and 5: 11, 14, 15, 41, 44, 45, 51, 54, 55.

Of these, 11, 44, 45, 54 cannot be 2-blocks of a {2, 3, 7, 19}-consistent gap sequence.

The fact that 11 is impossible follows clearly from the fact that it contains a partial

sum of 2.

Proposition 23. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 2-block

44.

Proof. Let d be a {2, 3, 7, 19}-consistent gap sequence containing a 44 block. By

Proposition 22, the corresponding color sequence must have the form c = . . . 012201120 . . . .

Without loss of generality, let c0 = 0, c1 = 1, c3 = 2, etc. We can now make the
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following chain of inferences:

(c7 = 2) ∧ (c8 = 0) =⇒ c10 = 1

(c0 = 0) ∧ (c1 = 1) =⇒ c−2 = 2

(c−2 = 2) ∧ (c10 = 1) =⇒ c17 = 0

(c7 = 2) ∧ (c17 = 0) =⇒ c14 = 1

(c8 = 0) ∧ (c14 = 1) =⇒ c11 = 2

(c6 = 1) ∧ (c7 = 2) =⇒ c9 = 0

(c7 = 2) ∧ (c8 = 0) =⇒ c10 = 1

(c9 = 0) ∧ (c10 = 1) =⇒ c12 = 2

(c10 = 1) ∧ (c11 = 2) =⇒ c13 = 0

(c12 = 2) ∧ (c13 = 0) =⇒ c15 = 1

(c13 = 0) ∧ (c14 = 1) =⇒ c16 = 2

(c15 = 1) ∧ (c16 = 2) =⇒ c18 = 0.

The fact that c2 = 2, c14 = 1 and c18 = 0 implies that c21 cannot be properly

colored, contradicting that d is a {2, 3, 7, 19}-consistent gap sequence.

Proposition 24. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 2-block

45.

Proof. Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block 45.

By Proposition 22, we can assume the associated coloring sequence c contains the
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following block: c0 . . . c9 = 0122011220. Then

(c4 = 0) ∧ (c8 = 2) =⇒ c11 = 1

(c5 = 1) ∧ (c9 = 0) =⇒ c12 = 2

(c0 = 0) ∧ (c12 = 2) =⇒ c19 = 1

(c9 = 0) ∧ (c19 = 1) =⇒ c16 = 2

(c11 = 1) ∧ (c12 = 2) =⇒ c14 = 0

(c11 = 1) ∧ (c16 = 2) =⇒ c13 = 0

(c12 = 2) ∧ (c13 = 0) =⇒ c15 = 1

(c14 = 0) ∧ (c15 = 1) =⇒ c17 = 2

(c15 = 1) ∧ (c16 = 2) =⇒ c18 = 0

The fact that c1 = 1, c17 = 2 and c18 = 0 implies that c20 cannot be properly

colored.

Proposition 25. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 2-block

54.

Proof. Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block 54.

By Proposition 22, we can assume the associated coloring sequence c contains the
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following block: c0 . . . c9 = 0112201120. Then

(c7 = 1) ∧ (c8 = 2) =⇒ c10 = 0

(c8 = 2) ∧ (c9 = 0) =⇒ c11 = 1

(c10 = 0) ∧ (c11 = 1) =⇒ c13 = 2

(c9 = 0) ∧ (c13 = 2) =⇒ c16 = 1

(c1 = 1) ∧ (c13 = 2) =⇒ c20 = 0

The fact that c4 = 2, c16 = 1 and c20 = 0 implies that c23 cannot be properly

colored.

From the five allowable 2-blocks, 9 3-blocks can be built: 141, 151, 155, 414,

415, 514, 515, 551, 555. Of these, both 515 and 151 are not possible blocks of a

{2, 3, 7, 19}-consistent gap sequence. 151 produces a partial sum of 7, and is therefore

not possible.

Proposition 26. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 3-block

515.

Proof. Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 3-block 515.

By Proposition 22, we can assume the associated coloring sequence c contains the

following block: c0 . . . c11 = 011220011220. Then the fact that c1 = 1 and c8 = 1

contradicts the fact that c is a proper coloring.

Finally three larger blocks are not allowed: 5555, 14141414 and 51415. The

block 14141414 contains a partial sum of 19, and therefore cannot be in a {2, 3, 7, 19}-

consistent gap sequence.

Proposition 27. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the block

46



5555.

Proof. Assume d is a {2, 3, 7, 19}-consistent gap sequence containing 5555. By Propo-

sition 22, the associated color sequence contains the following block:

c0 . . . c19 = 01122011220112201122.

The fact that c1 = 1 and c13 = 2 implies c20 = 0, but this together with the fact that

c4 = 2 and c16 = 1 means that c23 cannot be properly colored.

Proposition 28. Any {2, 3, 7, 19}-consistent gap sequence cannot contain the block

51415.

Proof. Assume d is a {2, 3, 7, 19}-consistent gap sequence containing the block 51415.

By Proposition 22, the associated color sequence must contain the following block:

c0 . . . c15 = 01122001x2001122

where c8 = x is not determined by the θ-rule. But the fact that c1 = 1, c6 = 0 and

c15 = 2 implies that c8 cannot be properly colored.

With the above classification of allowable blocks, we can characterize the pos-

sible {2, 3, 7, 19}-consistent 3 colorings. The fact that 151, 45, 54 and 5555 are all

impossible implies that any time a 5 occurs it must be part of a 1551 or a 15551

block. The fact that 11, 44 and 14141414 are all impossible implies that a 5 must

occur in all gap sequences. The fact that 515 and 51415 are impossible implies that

every gap sequence has the following form:

d =
∑
i∈Z

AiBi
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where Ai ∈ {1414, 141414} and Bi ∈ {155, 1555}, and the summation is representing

concatenation of blocks.

Thus any {2, 3, 7, 19}-consistent gap sequence is built from the following four

blocks:

C1 = 1414155, C2 = 14141555, C3 = 141414155, C4 = 1414141555.

5.3 Characterizing color sequences

The monochromatic gap sequences are not sufficient to classify all sets {2, 3, 7, 19, p},

as 43 6∈ σ(d) when d := (C1C2). We must consider the full color sequences. As we

are concerned with {2, 3, 7, 19}-consistent colorings we can strengthen Proposition 22

in the following way:

Lemma 29. If d is a {2, 3, 7, 19}-consistent gap sequence, then d = ∆0(c) where, up

to a permutation of the labels, c is given by the following rule:

η(di) =



0 if di = 1

0112 if di−6 · · · di = 5551414 or di · · · di+2 = 415

01z2 if di−6 · · · di+6 = 1551414141551

0122 if di−2 · · · di = 514 or di · · · di+6 = 4141555

01122 if di = 5

where z ∈ {1, 2} can be chosen arbitrarily for each 1551414141551 block in d.

Proof. By Proposition 22, we need only prove the cases where di = 4.

Case 1: Suppose di−6 · · · di = 5551414. Then

θ(di−6 · · · di) = 011220112201122001z12001z22.

The integer 19 spaces before z2 is colored with a 2, so η(di) = 0112.
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Case 2: Suppose didi+1di+2 = 415. Then

θ(didi+1di+2) = 01z2001122.

The integer 7 spaces after z is colored with a 2, so η(di) = 0112.

Case 3: Suppose di−2di−1di = 514. Then

θ(di−2di−1d1) = 01122001z2.

The integer 7 spaces before z is colored with a 1, so η(di) = 0122.

Case 4: Suppose di · · · di+6 = 4141555. Then

θ(di · · · di+6) = 01z12001z220011220112201122.

The integer 19 spaces after z1 is colored with a 1, so η(di) = 0122.

Case 5: If di does not fall under cases 2 or 3, then it must be in a block of the form:

di−5 · · · di+5 = 55141414155.

If either di−6 or di+6 is 5, then it falls under either case 1 or 4. Note that it cannot be

both, since then the indeterminate color z in θ(di) cannot be properly colored. Thus

the only block not cover by the previous cases is the following:

di−6 · · · di+6 = 1551414141551,

where the indeterminate color z in θ(di) can still be either 1 or 2.

Our four gap sequence blocks can now be expanded to color sequence blocks.

The strengthened η completely determines the color sequences from C1, C2 and C4.

The block C3 can expand into two different color sequence blocks, depending on the

choice for z.
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A1 := η(C1) = 001220011200112201122

A2 := η(C2) = 00122001120011220112201122

A3 := η(C3) = 00122001120011200112201122 (with z = 1)

A′3 := η(C3) = 00122001220011200112201122 (with z = 2)

A4 := η(C4) = 0012200122001120011220112201122.

It is more convenient to work with gap sequence triples rather than undifferen-

tiated color sequences, so we unravel the above color sequences into the gap sequences

for each color class. Note that, in order to get the last number for the gap sequences,

the fact that each of the color sequences above start with the block 0012 is used.

∆0(A1) = 1414155 ∆1(A1) = 5141415 ∆2(A1) = 1551414

∆0(A2) = 14141555 ∆1(A2) = 514141415 ∆2(A2) = 155141414

∆0(A3) = 141414155 ∆1(A3) = 514141415 ∆2(A3) = 15551414

∆0(A′3) = 141414155 ∆1(A′3) = 55141415 ∆2(A′3) = 141551414

∆0(A4) = 1414141555 ∆1(A4) = 5514141415 ∆2(A4) = 14155141414.

Thus any color sequence c must have the form:

c =
∑
i∈Z

Xi,
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where Xi ∈ {A1, A2, A3, A
′
3, A4}. But we need to put some restrictions on which

blocks can follow one another. From ∆2, it is clear that A4 cannot be followed by

either A′3 or A4, since this would create a 14141414 block. Similarly A2 cannot be

followed by either A′3 or A4. Otherwise the blocks can be freely concatenated.

5.4 Guaranteed partial sums

Recall that computer calculations show that if

p ∈ X := {31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193},

then κ({2, 3, 7, 19, p}) < 1/3. In this section we will show that no {2, 3, 7, 19}-

consistent coloring can be extended to a {2, 3, 7, 19, p}-consistent coloring for any

p ∈ X. This suffices to classify {2, 3, 7, 19, p} as class 4.

Theorem 30. If p ∈ {31, 37, 41}, then {2, 3, 7, 19, p} is class 4.

Proof. Let p ∈ {31, 37, 41}, and assume that c is a {2, 3, 7, 19, p}-consistent 3-coloring.

We know that d := ∆0(c) must contain at least one of the blocks C1, C2, C3 or C4.

Let |Ci| denote the sum of all the terms in Ci. Then |C1| = 21, |C2| = |C3| = 26, and

|C4| = 31. By the structure of {2, 3, 7, 19}-consistent gap sequences, we know that,

regardless of what block precedes or follows Ci, the sequence must have the form

d = · · · 55Ci14141 · · ·

Thus we know σ(d) will contain the set {|Ci|+ n : n ∈ {1, 5, 6, 10, 11, 15, 16, 20, 21}}.
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Since

31 = |C1|+ 10 = |C2|+ 5 = |C3|+ 5 = |C4|,

37 = |C1|+ 16 = |C2|+ 11 = |C3|+ 11 = |C4|+ 6,

41 = |C1|+ 20 = |C2|+ 15 = |C3|+ 15 = |C4|+ 10,

we know that {21, 37, 41} ⊂ σ(d), and by Proposition 21 this contradicts the claim

that c is a {2, 3, 7, 19, p}-consistent 3-coloring.

Theorem 31. {2, 3, 7, 19, 43} is class 4.

Proof. Assume that c is a {2, 3, 7, 19, 43}-consistent 3-coloring.

Case 1: Let c contain A1. Since |∆k(A1)| = 21 for each k, we must show that we

can always add 22 to the end of a block. Each ∆2 has an initial sum of 22, noting

that ∆2(A1), which has length 21, is always followed by another 1.

Case 2: Let c contain A2, A3 or A′3. Each of these blocks have length of 26. Thus

we must show that we can add 17. Again, each ∆2 has an initial sum of 17.

Case 3: Let c contain A4. Since |A4| = 31, we must show that we can add 12.

Since the block after A4 cannot be A′3 or A4, ∆1(c) must have the form:

· · · 15∆1(A4)51 · · ·

Adding both sides gives 12, as required.

For the rest of the primes, the arguments only get more involved. We leave

the verification that the partial sums of each color sequence of the prescribed form

contains each p ∈ X to a computer (see Appendix C). To do so we construct an infinite

tree colorings shown in Fig. 5.1. The tree is mutually recursively defined with the
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01122—colorings’

colorings

01122—colorings’

Figure 5.1: The tree colorings

001220011200112

201122

00112201122—colorings

colorings

01122—colorings’

Figure 5.2: The tree colorings’

tree colorings’ shown in Fig. 5.2. Any path of the tree colorings, concatenating

the color sequence blocks at each vertex, will produce a color sequence of the form∑
Ai. Any path producing either a block A2 or A4 must be followed by a path

producing either A1, A2 or A3. This is is represented by the pruned tree colorings’.

Conversely, any one way infinite coloring sequence will be contained in a path of

colorings. Thus it suffices to show that each path in colorings contains a partial

sum of p for each p ∈ X.

This done by the pair of functions pathsToLists and check. The function

pathsToLists tree n creates a list of lists of length n, representing all the paths

of length n in tree. Then the function check p is a Boolean function that, when
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applied to a list, returns True if the list contains a pair of equal elements with indices

differing by p. This is equivalent to checking whether the coloring block represented

by the list contains a partial sum of p. In this way, running the Haskell code in

Appendix C verifies the following theorem.

Theorem 32. If p ∈ X, then {2, 3, 7, 19, p} is class 4.
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CHAPTER 6

Conclusion

6.1 Comparison of methods

In order to show that prime sets of the form {2, 3, p} where p > 5 are class

3, Eggleton, Erdős and Skilton [12] constructed 3-colorings for those sets. Voigt and

Walther [19] also constructed 3-colorings to prove Theorem 10. Thus, in the literature

on prime distance graphs, the kappa value has not been used before.

The kappa value has been used previously in order to determine the chromatic

number of integer distance graphs where the distance set is not necessarily all primes.

The chromatic number of G(Z, D) has been determined when D is a set of 3 integers

by Zhu [23] and when D is a set of 4 integers by Liu and Sutedja [16] with the help of

the kappa value. In these papers ideas similar to those contained in Lemmas 7 to 9

are used.

In order to establish that prime sets are class 4 the predominate method has

been to find subgraphs which are not 3-colorable. This is the method used by Eggle-

ton, Erdős and Skilton [12, 13] to establish that {2, 3} ∪ {p, p + 2} is class 4. The

work cited by Voigt which proves that the eight other primes sets of cardinality 4 are

class 4 is a chapter in a German book by Walther [20] which I could not locate. The

block method used in Chapter 5 is in many ways similar to the method used by Voigt

[19] to construct 3-coloring, though I used it negatively to show the impossibility of

certain 3-colorings.
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6.2 Summary of the main results and future work

The main results of this thesis are Theorems 20 and 32. Together these theo-

rems almost completely classify the prime sets {2, 3, 7, p, q}. Theorem 32 completely

determines the class of the sets {2, 3, 7, 19, p}, but there are 14 other sets from The-

orem 20 that are still undetermined. Proving that each of those is in fact class 4

and showing that condition 3 in Theorem 20 is unnecessary would then complete

the classification of {2, 3, 7, p, q}. We conjecture that the minimal class 4 prime sets

{2, 3, 7, p, q} are exactly the 31 sets formed by combining {2, 3, 7} with one of the

pairs listed in Theorem 20. We also propose a stronger conjecture.

Conjecture 33. A prime set D is class 4 if and only if κ(D) < 1/3.

This is a strong conjecture, and the only evidence supporting it is that there

are no known counter examples. It seems very hard to prove.

The methods established in Chapter 4 conceivably could be used to classify

prime sets of the form {2, 3, n, p, q} for primes n > 7. This would be interesting in

itself, but would not move much closer to a classification of all mimimal class 4 sets

with cardinality 5, as there is no bound on n. Indeed Theorem 11 shows that any

such bound is unlikely, and the fact that κ({2, 3, 179, 191, 199}) = 22/67 < 1/3 shows

that there would be much work.

The block method developed in Chapter 5 is very tied to the fact that both 7

and 19 are in D. Thus it seems unlikely that those results could be extended to more

general prime sets without much further work. In light of this it would be interesting

to investigate the distance graphs generated by the known minimal class 4 sets in
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search of chromatic critical subgraphs, that is subgraphs that are not 3-colorable but

the removal of any vertex allows them to be. If it is found that there are only a few

such chromatic critical subgraphs over all the known class 4 sets, then determining

other prime sets which will generate these subgraphs could be fruitful.
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APPENDIX A

Tables for {2, 3, 7, p, p+ 6}

Table A.1: Rational points in I{2,3,7} ∩ I{p,p+6} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 6, 630) Point in I{p,p+6}

5 5
19 5
41 43/210
47 1/5
59 5 61/315
61 64/315
73 62/315
79 5 41/210
101 121/630
115 5 41/210
121 61/315
125 5 41/210
131 61/315
145 5 22/105
167 61/315
173 61/315
185 5 62/315
187 1/5
199 5 64/315
205 5 121/630
227 1/5
241 62/315
247 121/630
251 62/315
257 121/630
271 61/315
293 22/105
299 5 121/630
311
313
325 5 121/630
331 22/105
353 61/315
367 121/630
373 62/315
377 121/630
383 62/315
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Table A.1: continued

p (mod 630) gcd(p, 630) gcd(p+ 6, 630) Point in I{p,p+6}

397 1/5
419 5 121/630
425 5 64/315
437 1/5
439 5 62/315
451 61/315
457 61/315
479 5 22/105
493 61/315
499 5 41/210
503 61/315
509 5 41/210
523 121/630
545 5 41/210
551 62/315
563 64/315
565 5 61/315
577 1/5
583 43/210
605 5
619 5
625 5
629 5
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APPENDIX B

Tables for {2, 3, 7, p, p+ 8}

Table B.1: Rational points in I{2,3,7} ∩ I{p,p+8} (Round 1)

p (mod 126) gcd(p, 126) gcd(p+ 8, 126) Point in I{p,p+8}

5
11
17 3/14
23
29
35 7
41 7
47
53
59 3/14
65
71
77 7
83 7
89
95
101 3/14
107
113
119 7
125 7
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Table B.2: Rational points in I{2,3,7} ∩ I{p,p+8} (Round 2)

p (mod 630) gcd(p, 630) gcd(p+ 8, 630) Point in I{p,p+8}

5 5
11
23
29
47 5
53 23/105
65 5
71 139/630
89 139/630
95 5 137/630
107 5 139/630
113
131 19/90
137 5
149 23/105
155 5
173 137/630
179 68/315
191
197 5
215 5
221 19/90
233
239
257 5 67/315
263 23/105
275 5
281 68/315
299
305 5
317 5
323
341 68/315
347 5
359 23/105
365 5 67/315
383
389
401 19/90
407 5
425 5
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Table B.2: continued

p (mod 630) gcd(p, 630) gcd(p+ 8, 630) Point in I{p,p+8}

431
443 68/315
449 137/630
467 5
473 23/105
485 5
491 19/90
509
515 5 139/630
527 5 137/630
533 139/630
551 139/630
557 5
569 23/105
575 5
593
599
611
617 5
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Table B.3: Rational points in I{2,3,7} ∩ I{p,p+8} (Round 3)

p (mod 6930) gcd(p, 6930) gcd(p+ 8, 6930) Point in I{p,p+8}

11 11
23
29
113 11 1451/6930
191 295/1386
233 211/990
239 1469/6930
299 295/1386
323 491/2310
383 211/990
389 149/693
431 43/198
509 11 493/2310
593 148/693
599 211/990
611 724/3465
641 11 248/1155
653 247/1155
659 493/2310
743 1489/6930
821 23/110
863 101/462
869 11 12/55
929 163/770
953 1481/6930
1013 724/3465
1019 1487/6930
1061 1487/6930
1139 217/990
1223 146/693
1229 1481/6930
1241 145/693
1271 746/3465
1283 739/3465
1289 247/1155
1373 731/3465
1451 107/495
1493 493/2310
1499 11 1487/6930
1559 1483/6930
1583 293/1386
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Table B.3: continued

p (mod 6930) gcd(p, 6930) gcd(p+ 8, 6930) Point in I{p,p+8}

1643 493/2310
1649 247/1155
1691 739/3465
1769 299/1386
1853 487/2310
1859 11 146/693
1871 106/495
1901 743/3465
1913 106/495
1919 1483/6930
2003 1483/6930
2081 106/495
2123 11 81/385
2129 251/1155
2189 11 1471/6930
2213 211/990
2273 1499/6930
2279 746/3465
2321 11 1459/6930
2399 739/3465
2483 1481/6930
2489 11 81/385
2501 1487/6930
2531 1483/6930
2543 1457/6930
2549 1459/6930
2633 491/2310
2711 499/2310
2753 11 12/55
2759 487/2310
2819 11 493/2310
2843 1469/6930
2903 1453/6930
2909 145/693
2951 11 1481/6930
3029 734/3465
3113 11 106/495
3119 1459/6930
3131 23/110
3161 149/693
3173 148/693
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Table B.3: continued

p (mod 6930) gcd(p, 6930) gcd(p+ 8, 6930) Point in I{p,p+8}

3179 11 731/3465
3263 248/1155
3341 736/3465
3383 733/3465
3389 149/693
3449
3473
3533 149/693
3539 733/3465
3581 736/3465
3659 248/1155
3743 11 731/3465
3749 148/693
3761 149/693
3791 23/110
3803 1459/6930
3809 11 106/495
3893 734/3465
3971 11 1481/6930
4013 145/693
4019 1453/6930
4079 1469/6930
4103 11 493/2310
4163 487/2310
4169 11 12/55
4211 499/2310
4289 491/2310
4373 1459/6930
4379 1457/6930
4391 1483/6930
4421 1487/6930
4433 11 81/385
4439 1481/6930
4523 739/3465
4601 11 1459/6930
4643 746/3465
4649 1499/6930
4709 211/990
4733 11 1471/6930
4793 251/1155
4799 11 81/385
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Table B.3: continued

p (mod 6930) gcd(p, 6930) gcd(p+ 8, 6930) Point in I{p,p+8}

4841 106/495
4919 1483/6930
5003 1483/6930
5009 106/495
5021 743/3465
5051 106/495
5063 11 146/693
5069 487/2310
5153 299/1386
5231 739/3465
5273 247/1155
5279 493/2310
5339 293/1386
5363 1483/6930
5423 11 1487/6930
5429 493/2310
5471 107/495
5549 731/3465
5633 247/1155
5639 739/3465
5651 746/3465
5681 145/693
5693 1481/6930
5699 146/693
5783 217/990
5861 1487/6930
5903 1487/6930
5909 724/3465
5969 1481/6930
5993 163/770
6053 11 12/55
6059 101/462
6101 23/110
6179 1489/6930
6263 493/2310
6269 247/1155
6281 11 248/1155
6311 724/3465
6323 211/990
6329 148/693
6413 11 493/2310
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Table B.3: continued

p (mod 6930) gcd(p, 6930) gcd(p+ 8, 6930) Point in I{p,p+8}

6491 43/198
6533 149/693
6539 211/990
6599 491/2310
6623 295/1386
6683 1469/6930
6689 211/990
6731 295/1386
6809 11 1451/6930
6893
6899
6911 11
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Table B.4: Rational points in I{2,3,7} ∩ I{p,p+8} (Round 4)

p (mod 159390) gcd(p, 159390) gcd(p+ 8, 159390) Point in I{p,p+8}

23 23
29

3449 33443/159390
3473 23 11147/53130
6893 3329/15939
6899 16619/79695
6953 33461/159390
6959 6659/31878
10379 33427/159390
10403 33457/159390
13823 23 3347/15939
13829 4781/22770
13883 33463/159390
13889 5548/26565
17309 33433/159390
17333 3041/14490
20753 16642/79695
20759 2374/11385
20813 33479/159390
20819 2377/11385
24239 1013/4830
24263 6691/31878
27683 33289/159390
27689 16733/79695
27743 1108/5313
27749 797/3795
31169 33437/159390
31193 11149/53130
34613 2378/11385
34619 6695/31878
34673 33239/159390
34679 33293/159390
38099 33463/159390
38123 4781/22770
41543 5549/26565
41549 16729/79695
41603 16736/79695
41609 3699/17710
45029 743/3542
45053 33449/159390
48473 11093/53130
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Table B.4: continued

p (mod 159390) gcd(p, 159390) gcd(p+ 8, 159390) Point in I{p,p+8}

48479 1511/7245
48533 3719/17710
48539 33283/159390
51959 4777/22770
51983 6689/31878
55403 317/1518
55409 11159/53130
55463 16738/79695
55469 33277/159390
58889 33461/159390
58913 11141/53130
62333 1849/8855
62339 1583/7590
62393 169/805
62399 23 3328/15939
65819 11153/53130
65843 955/4554
69263 16733/79695
69269 3347/15939
69323 3693/17710
69329 33287/159390
72749 23 531/2530
72773 33431/159390
76193 1513/7245
76199 23 372/1771
76253 33241/159390
76259 6697/31878
79679
79703
83123 6697/31878
83129 33241/159390
83183 23 372/1771
83189 1513/7245
86609 33431/159390
86633 23 531/2530
90053 33287/159390
90059 3693/17710
90113 3347/15939
90119 16733/79695
93539 955/4554
93563 11153/53130
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Table B.4: continued

p (mod 159390) gcd(p, 159390) gcd(p+ 8, 159390) Point in I{p,p+8}

96983 23 3328/15939
96989 169/805
97043 1583/7590
97049 1849/8855
100469 11141/53130
100493 33461/159390
103913 33277/159390
103919 16738/79695
103973 11159/53130
103979 317/1518
107399 6689/31878
107423 4777/22770
110843 33283/159390
110849 3719/17710
110903 1511/7245
110909 11093/53130
114329 33449/159390
114353 743/3542
117773 3699/17710
117779 16736/79695
117833 16729/79695
117839 5549/26565
121259 4781/22770
121283 33463/159390
124703 33293/159390
124709 33239/159390
124763 6695/31878
124769 2378/11385
128189 11149/53130
128213 33437/159390
131633 797/3795
131639 1108/5313
131693 16733/79695
131699 33289/159390
135119 6691/31878
135143 1013/4830
138563 2377/11385
138569 33479/159390
138623 2374/11385
138629 16642/79695
142049 3041/14490
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Table B.4: continued

p (mod 159390) gcd(p, 159390) gcd(p+ 8, 159390) Point in I{p,p+8}

142073 33433/159390
145493 5548/26565
145499 33463/159390
145553 4781/22770
145559 23 3347/15939
148979 33457/159390
149003 33427/159390
152423 6659/31878
152429 33461/159390
152483 16619/79695
152489 3329/15939
155909 23 11147/53130
155933 33443/159390
159353
159359 23
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Table B.5: Rational points in I{2,3,7} ∩ I{p,p+8} (Round 5)

p (mod 4622310) gcd(p, 4622310) gcd(p+ 8, 4622310) Point in I{p,p+8}

29 29
79679 967963/4622310
79703 322673/1540770
159353 68824/330165
159419 45883/220110
239069 14029/66990
239093 138283/660330
318743 17519/84042
318809 14599/70035
398459 967997/4622310
398483 193597/924462
478133 481774/2311155
478199 107059/513590
557849 967987/4622310
557873 29 3073/14674
637523 192707/924462
637589 481772/2311155
717239 193595/924462
717263 322669/1540770
796913 963533/4622310
796979 160591/770385
876629 967999/4622310
876653 322661/1540770
956303 7647/36685
956369 160588/770385
1036019 322657/1540770
1036043 88001/420210
1115693 41893/200970
1115759 10706/51359
1195409 29 967993/4622310
1195433 29333/140070
1275083 96353/462231
1275149 96352/462231
1354799 968003/4622310
1354823 967979/4622310
1434473 87593/420210
1434539 963527/4622310
1514189 968017/4622310
1514213 64531/308154
1593863 137647/660330
1593929 963521/4622310
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Table B.5: continued

p (mod 4622310) gcd(p, 4622310) gcd(p+ 8, 4622310) Point in I{p,p+8}

1673579 138287/660330
1673603 967973/4622310
1753253 29 481763/2311155
1753319 481762/2311155
1832969 193603/924462
1832993 12571/60030
1912643 481769/2311155
1912709 963541/4622310
1992359 967969/4622310
1992383 107557/513590
2072033 321179/1540770
2072099 481771/2311155
2151749 193601/924462
2151773 107553/513590
2231423 481766/2311155
2231489 963547/4622310
2311139
2311163
2390813 963547/4622310
2390879 481766/2311155
2470529 107553/513590
2470553 193601/924462
2550203 481771/2311155
2550269 321179/1540770
2629919 107557/513590
2629943 967969/4622310
2709593 963541/4622310
2709659 481769/2311155
2789309 12571/60030
2789333 193603/924462
2868983 481762/2311155
2869049 29 481763/2311155
2948699 967973/4622310
2948723 138287/660330
3028373 963521/4622310
3028439 137647/660330
3108089 64531/308154
3108113 968017/4622310
3187763 963527/4622310
3187829 87593/420210
3267479 967979/4622310
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Table B.5: continued

p (mod 4622310) gcd(p, 4622310) gcd(p+ 8, 4622310) Point in I{p,p+8}

3267503 968003/4622310
3347153 96352/462231
3347219 96353/462231
3426869 29333/140070
3426893 29 967993/4622310
3506543 10706/51359
3506609 41893/200970
3586259 88001/420210
3586283 322657/1540770
3665933 160588/770385
3665999 7647/36685
3745649 322661/1540770
3745673 967999/4622310
3825323 160591/770385
3825389 963533/4622310
3905039 322669/1540770
3905063 193595/924462
3984713 481772/2311155
3984779 192707/924462
4064429 29 3073/14674
4064453 967987/4622310
4144103 107059/513590
4144169 481774/2311155
4223819 193597/924462
4223843 967997/4622310
4303493 14599/70035
4303559 17519/84042
4383209 138283/660330
4383233 14029/66990
4462883 45883/220110
4462949 68824/330165
4542599 322673/1540770
4542623 967963/4622310
4622273 29
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APPENDIX C

Haskell Code

data Tree a = Nil | Node a (Tree a) (Tree a)

deriving (Show)

data Color = Zero | One | Two

deriving (Eq, Show)

colorings :: Tree Color

colorings = Node Zero (Node Zero (Node One (Node Two

(Node Two (Node Zero (Node Zero (Node One

branch_a123 branch_a3 ’4

) Nil) Nil) Nil) Nil) Nil) Nil) Nil

colorings ’ = Node Zero (Node Zero (Node One (Node Two

(Node Two (Node Zero (Node Zero (Node One

branch_a123 Nil

) Nil) Nil) Nil) Nil) Nil) Nil) Nil

branch_a2 = Node Zero (Node One (Node One

(Node Two (Node Two

colorings ’ Nil
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) Nil) Nil) Nil) Nil

branch_a1 = Node Two (Node Zero (Node One

(Node One (Node Two (Node Two

colorings branch_a2

) Nil) Nil) Nil) Nil) Nil

branch_a3 = Node Zero (Node Zero (Node One

(Node One (Node Two (Node Two

(Node Zero (Node One (Node One

(Node Two (Node Two

colorings Nil

) Nil) Nil) Nil) Nil) Nil)

Nil) Nil) Nil) Nil) Nil

branch_a123 = Node One (Node Two (Node Zero (Node Zero

(Node One (Node One (Node Two

branch_a1 branch_a3

) Nil) Nil) Nil) Nil) Nil) Nil

branch_a3 ’4 = Node Two (Node Two (Node Zero (Node Zero

(Node One (Node One (Node Two (Node Zero

79



(Node Zero (Node One (Node One (Node Two

(Node Two (Node Zero (Node One (Node One

(Node Two (Node Two

colorings branch_a4

) Nil) Nil) Nil) Nil) Nil) Nil)

Nil) Nil) Nil) Nil) Nil) Nil)

Nil) Nil) Nil) Nil) Nil

branch_a4 = branch_a2

-- a list of all paths of length n from a tree

pathsToLists :: Tree a -> Int -> [[a]]

pathsToLists Nil _ = []

pathsToLists (Node x _ _) 1 = [[x]]

pathsToLists (Node x l r) n =

(map (x :) (pathsToLists l (n -1))) ++

(map (x :) (pathsToLists r (n -1)))

-- checks if any two elements distance n apart are equal

check :: Eq a => Int -> [a] -> Bool

check n [] = False

check n (x : xs) = if n < length (x : xs)
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&& x == (x:xs) !! n

then True

else check n xs

primes = [31,37,41,43,47,53,67,73,79,83,

89 ,109 ,131 ,151 ,157 ,167 ,193]

-- a list Bools for each prime ,

-- True if every path in colorings contains

-- the prime as a partial sum.

final = map (\p -> all (check p) $

pathsToLists colorings (p+9)) primes
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