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ABSTRACT

Reducibility of Symmetric Polynomials

By

Eduardo Y. Reynoso

This thesis investigates the reducibility of trivariate homogeneous symmetric

polynomials. For polynomials of degrees 2, 3, 4 and 5 we have complete results.

Specifically, we classify all the possible factorizations of such polynomials and give

conditions on the coefficients of these polynomials that determine which factorizations

occur.

The polynomials of this thesis have indeterminates x, y, and z. The symmetric

group S{x,y,z} acts on these polynomials by permuting the indeterminates. Symmetric

polynomials are left unchanged by this group action. If a polynomial is reducible, then

the group acts on the factorization, permuting the factors. The unique factorization

property of polynomials allows us to establish which factorizations are possible. Once

all possible factorizations are known, we then specify the conditions on the coefficients

of the polynomials under which each of these possible factorizations occurs.
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CHAPTER 1

Introduction

In this thesis, we investigate the reducibility of symmetric polynomials in regards to

what conditions particular types of polynomials must have in order to be reducible.

Throughout this thesis, reducible is interchangeable with factorable. In this thesis

all polynomials will be trivariate polynomials, more specifically, polynomials in the

polynomial ring C[x, y, z]. Also, all polynomials in this thesis are nonzero unless

otherwise stated.

The factorization of multivariate polynomials has been studied for centuries.

But most recent research has been focussed on the algorithmic aspects of factoriza-

tions with applications to computer algebra systems [2, 4]. Apparently, no other work

has been published on the subject of this thesis.

Since we are discussing symmetric polynomials, some notions of group theory

and abstract algebra are necessary. This thesis consists of an introductory chapter

regarding background information. The factorizations of polynomials of degrees 2, 3,

4 and 5 are in the following chapters respectively.

The concept of a degree of a polynomial in three variables is more complicated

than that of a polynomial with one variable. We start by defining the degree of one

term of a polynomial in C[x, y, z] to be the sum of the powers of each distinct variable

in that term.

For example, the terms of the polynomial x2y + zx + x3z2 + 37 have degrees
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3, 2, 5, and 0 respectively starting with the first term on the left.

Definition 1.1. A polynomial is homogeneous if every term in the polynomial has

the same degree.

For example, the polynomial x2y2 + x2z2 + y2z2 is homogeneous as each term

has degree 4. In contrast, the polynomial x2y + zx + x3z2 + 37xy + x2 + z3 is not

homogeneous as at least two terms in the polynomial have different degrees.

Even so, x2y + zx + x3z2 + 37 + xy + x2 + z3 can be written as a sum of 4

homogenous polynomials: (x3z2)+(x2y+z3)+(zx+xy+x2)+(37). These summands

in parentheses are called the homogeneous components of this polynomial.

Definition 1.2. For each k = 0, 1, 2, 3, . . . , the degree k homogeneous compo-

nent of a polynomial f is the sum of all degree k terms of f . Clearly, f is precisely

the sum of its nonzero homogeneous components.

Lemma 1.3. Let g, h ∈ C[x, y, z]. If g 6= 0, h 6= 0 and h is not homogeneous, then

gh is not homogeneous.

Proof. Let gI and hI be the homogeneous components of g and h of degree I. Let

g = gI + gI+1 + · · · + gJ be the sum of the homogeneous components of g, where

gI 6= 0, gJ 6= 0, and I ≤ J . Let h = hK +hK+1 + . . .+hL be the sum of homogeneous

components of h with hK 6= 0, hL 6= 0, and K < L. Then gh = gIhK + · · · + gJhL,

where I + K < J + L. (Since h is not homogeneous, K < L.) Since C[x, y, z] is a

domain; gIhK 6= 0 and gJhL 6= 0. So, gh is not homogeneous.

Theorem 1.4. Let f, g, h ∈ C[x, y, z] be nonzero polynomials such that f = gh. Then

f is homogeneous if and only if g and h are homogeneous.

Proof. Clearly, if g is homogeneous of degree M and h is homogeneous of degree N ,
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then f is homogeneous of degree M + N . Conversely, if f is homogeneous then by

the contrapositive of the previous lemma, g and h are homogeneous.

By an easy induction argument, if f = g1 · · · gn is a homogeneous polynomial,

then gi is homogeneous for all i ∈ {1, . . . , n}.

Let S{x,y,z} be the group of permutations on the set {x, y, z}. We will use cycle

notation for elements of this group, hence

S{x,y,z} = {1, (x y), (x z), (y z), (z y x), (x z y)}.

Let σ = (x y) and τ = (x z) be elements of the group S{x,y,z}. Then σ ◦ τ = (x y) ◦

(x z) = (x z y). Elements of S{x,y,z} act on polynomials from C[x, y, z] by permuting

the variables {x, y, z}. More specifically, for all σ ∈ S{x,y,z} and f ∈ C[x, y, z], we

define

σ · f(x, y, z) = f(σ−1(x), σ−1(y), σ−1(z)).

For example, suppose σ = (z y x), and g = xy2 + z3 + zx2 ∈ C[x, y, z]. Then

σ · g is the polynomial created from g by replacing x by y, y by z, and z by x, that

is σ · g = yz2 + x3 + xy2. Similarly, (x y) · g = yx2 + z3 + zy2.

As an easy consequence of the definition, we have

σ · (τ · f) = (σ ◦ τ) · f

for all σ, τ ∈ S{x,y,z} and f ∈ C[x, y, z]. Another important property of this group

action is that each element of the group acts as a ring homomorphism. Specifically,

σ · (f + g) = σ · f + σ · g

σ · (fg) = (σ · f)(σ · g)
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σ · (λg) = λ(σ · g)

for all f, g ∈ C[x, y, z], σ ∈ S{x,y,z} and λ ∈ C. It is also important to note that, if f

is homogeneous then σ · f is homogeneous. Also, if f is reducible (irreducible) then

so is σ · f .

A symmetric polynomial in C[x, y, z] is a polynomial that remains the same

after undergoing any permutation of variables in S{x,y,z}. Specifically, a polynomial

f ∈ C[x, y, z] is symmetric if τ · f = f for all τ ∈ S{x,y,z}.

Lemma 1.5. Suppose that f ∈ C[x, y, z]. Then f is symmetric if and only if (x y)·f =

f and (z y x) · f = f .

Proof. If f is symmetric then, by definition, τ · f = f for all τ ∈ S{x,y,z}, so clearly

(x y) · f = f and (z y x) · f = f .

Now, we want to show if (x y) · f = f and (z y x) · f = f then f is symmetric.

From the given we can infer that, (y z) · f = (z y x) ◦ (x y) · f = (z y x) · f = f ,

(x z)·f = (x y)◦(z y x)·f = (z y x)·f = f , as well as (x y z)·f = (z y x)◦(z y x)·f =

(z y x) · f = f . Clearly the identity permutation acting on f is f . Thus every

permutation in S{x,y,z} sends f to f and f is symmetric.

Lemma 1.6. Let f = gh, where f, g, h ∈ C[x, y, z]. If two of these polynomials are

symmetric, then all are.

Proof. Suppose g and h are symmetric. Then as a result, τ · g = g and τ · h = h for

all τ ∈ S{x,y,z}. Now, τ · f = τ · (gh) = (τ · g)(τ · h) = gh = f for all τ ∈ S{x,y,z}.

Therefore, f is symmetric.

Without loss of generality, suppose g and f are symmetric, so τ · g = g and
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τ · f = f for all τ ∈ S{x,y,z}. Now f = τ · f = τ · (gh) = (τ · g)(τ · h) = g(τ · h) for all

τ ∈ S{x,y,z} and on the other hand f = gh. This means g(τ ·h) = gh for all τ ∈ S{x,y,z}.

By left cancellation, τ · h = h for all τ ∈ S{x,y,z}. Hence h is symmetric.

Definition 1.7. A polynomial g ∈ C[x, y, z] is almost symmetric if, for all σ ∈

S{x,y,z}, σ · g = λσg for some λσ ∈ C×.

Lemma 1.8. If g is almost symmetric, as in Definition 1.7, then φ : S{x,y,z} → C×,

defined by φ(σ) = λσ, for σ ∈ S{x,y,z}, is a group homomorphism.

Proof. We want to show that φ(σ◦τ) = φ(σ)φ(τ) for all σ, τ ∈ S{x,y,z} or equivalently,

since σ · g = λσg for all σ ∈ S{x,y,z}, λσ◦τ = λσλτ . We know that (σ ◦ τ)g = σ · (τ · g).

Well, (σ ◦ τ) · g = λσ◦τg and (σ ◦ τ)g = σ · (τ · g) = σ · (λτg) = λτσ · g = λτλσg for all

σ, τ ∈ S{x,y,z}. The previous sentence implies that λσ◦τg = λτλσg for all σ, τ ∈ S{x,y,z}

and by right cancelation of g, λσ◦τ = λτλσ or λσ◦τ = λσλτ as λτ , λσ ∈ C× for all

σ, τ ∈ S{x,y,z}. Therefore φ is a group homomorphism.

Theorem 1.9. If g ∈ C[x, y, z] is almost symmetric then:

(1) g is symmetric OR

(2) g = (x− y)(x− z)(y − z)h where h ∈ C[x, y, z] is symmetric

Proof. By Lemma 1.8, φ : S{x,y,z} → C×, defined by φ(σ) = λσ is a group homomor-

phism.

Case I: If kerφ = S{x,y,z}, then φ(σ) = 1 for all σ ∈ S{x,y,z}, then g is symmetric.

Case II: If kerφ = {1}, then S{x,y,z} ∼= φ(S{x,y,z}) ≤ C×, but S{x,y,z} is not abelian, so

this case cannot happen.

Case III: Suppose kerφ = {1, (z y x), (x y z)}. This implies that φ(S{x,y,z}) ∼= Z2.
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As a result, φ(S{x,y,z}) = {1,−1}. Then, λσ = 1 if σ is even and −1 otherwise. A

polynomial with this property is called antisymmetric.

Temporarily view g as a polynomial in z with coefficients from C[x, y], or in

other words, g ∈ C[x, y][z]. The equation (z x)·g = −g implies g(z, y, x) = −g(x, y, z).

Setting z = x gives g(x, y, x) = −g(x, y, x) which implies that g(x, y, x) = 0. This

means that x is a root of g(x, y, z) ∈ C[x, y][z].

Since x is a root of g(x, y, z) ∈ C[x, y][z], z−x is a factor of g(x, y, z). Similarly,

x− y, and y− z are factors of g ∈ C[x, y, z]. As x− y, z− x and, y− z are relatively

prime, g = (x− y)(x− z)(y − z)h for some h ∈ C[x, y, z].

Now, notice that −g = −(x− y)(x− z)(y − z)h and at the same time; −g =

(x y) ·g = −(x−y)(x− z)(y− z)(x y) ·h. So, −(x−y)(x− z)(y− z)h = −(x−y)(x−

z)(y − z)(x y) · h and by left cancellation, h = (x y) · h. Similarly, g = (z y x) · g =

(x− y)(x− z)(y − z)(z y x) · h and g = (x− y)(x− z)(y − z)h imply h = (z y x) · h.

Hence, h is symmetric by Lemma 1.5.

Corollary 1.10. If g has degree less than 3 and is almost symmetric, then it is

symmetric.

Proof. An immediate consequence of Theorem 1.9.

Since C is a unique factorization domain, so is the polynomial ring C[x, y, z].

For the proof, see [3, Theorem 6.14]. In this context, unique factorization means

that any nonzero polynomial in C[x, y, z] can be written as a product of irreducible

polynomials, unique up to multiplication by nonzero complex numbers.

We use the notation C×f to represent the set of all nonzero scalar multiples

of the polynomial f .
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Lemma 1.11. Suppose f = g1g2 · · · gn is almost symmetric and each gi ∈ C[x, y, z] is

irreducible for i = 1, 2, . . . , n. Let T = {C×g1,C×g2, . . . ,C×gn}, then there is a group

homomorphism φ : S{x,y,z} → ST defined by σ · (C×gi) = C×(σ · gi) for i = 1, 2, ..., n.

Proof. First we must check that C×(σ · gi) is in T . Since f is almost symmetric,

σ · f = λf for some λ ∈ C and,

λf = σ · f = σ · (g1g2 . . . gk) = (σ · g1)(σ · g2) · · · (σ · gn)

is a factorization of f into irreducibles. By unique factorization, σ · gi is a nonzero

scalar multiple of gj for some j and so C×(σ · gi) = C×gj ∈ T . Thus, C×(σ · gi) ∈ T

and φ is well-defined.

Next, we confirm that φ is a group homomorphism. Now, (σ ◦ τ) · (C×gi) =

C×((σ ◦ τ) · gi) = C×σ · (τ · gi) = (σ) · (C×(τ · gi)) = ((σ)((τ)) ◦ C×gi) for all i ≤ n.

So, φ(σ ◦ τ) = φ(σ) ◦ φ(τ) for all σ, τ ∈ S{x,y,z} and φ is a group homomorphism.

Theorem 1.12. Suppose f = g1g2 · · · gn is almost symmetric and each gi is irreducible

for i = 1, 2, . . . , n. Write f = G1G2 · · ·GN , where Gk is the product of all degree k

irreducible factors of f in the above factorization, (or Gk = 1 if no such factors exist).

Then Gk is almost symmetric for all k ∈ {1, . . . , N}.

Proof. Let σ ∈ S{x,y,z} be arbitrary. Since f is almost symmetric, then σ · f = λf for

some λ ∈ C. Then λg1 · · · gn = λf = σ · f = σ · (g1 · · · gn) = (σ · g1) · · · (σ · gn). For

each i, σ · gi is an irreducible polynomial, so by unique factorization, σ · gi is a scalar

multiple of gj for some j ∈ {1, · · · , n}. Moreover, if gi has degree k, then so does gj.

Hence, σ acts by permuting the factors of Gk, and so, σ ·Gk is a scalar multiple

of Gk. Since this holds for all σ ∈ S{x,y,z}, Gk is almost symmetric.
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Corollary 1.13. Suppose f factors as described in Theorem 1.12. If f is symmetric,

then Gk is symmetric for all k ∈ {1, . . . , N}.

Proof. By Theorem 1.12, Gk is almost symmetric for each k ∈ {1, . . . , N}. Then by

Theorem 1.9, either Gk is symmetric or has (x − y)(x − z)(y − z) as a factor. For

k ≥ 2, Gk has no degree one factors, and so Gk is symmetric. Since f = G1G2 · · ·GN ,

and f and G2 · · ·GN are symmetric, then, by Lemma 1.6, G1 is also symmetric.

Let’s see how this applies to the simplest case, the degree one polynomials.

Lemma 1.14. Suppose g ∈ C[x, y, z] has deg g = 1.

1. If (z y x) · g = λg for some λ ∈ C, then λ3 = 1 and g = a(x+ λ2y + λz) for some

a ∈ C.

2. If g is almost symmetric, then g is symmetric and g = a(x+y+z) for some a ∈ C.

Proof. (1). Suppose (z y x) · g = λg. Since (z y x)3 = 1 ∈ S{x,y,z}, we have

g = 1 · g = (z y x)3 · g = λ3g. By cancelation, λ3 = 1. Let g = ax + by + cz for

some a, b, c ∈ C. Suppose (z y x) · g = λg. Then, ay + bz + cx = λ(ax+ by + cz) and

matching coefficients, c = λa, a = λb and b = λc. Since b = λc = λ(λa) = λ2a, we

get that g = a(x+ λ2y + λz).

(2). Since g is almost symmetric and has degree 1, by Corollary 1.10, g is

symmetric. In particular, (z y x) · g = g. By (1), with λ = 1, we get g = a(x+ y+ z)

for some a ∈ C.
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CHAPTER 2

Factorization of Degree Two Symmetric Polynomials

In this chapter we will explore the factorization of symmetric, trivariate, homoge-

neous, degree 2 polynomials. In particular, we get the first instance of a symmetric

polynomial that factors into a product of two polynomials that are not symmetric.

Lemma 2.1. Let f be a homogeneous polynomial of degree 2. Suppose (z y x)·f = λf

for some λ ∈ C. Then λ3 = 1 and f = a(x2 + λ2y2 + λz2) + b(xy + λ2yz + λxz) for

some a, b ∈ C.

Proof. Let f = a1x
2 + a2y

2 + a3z
2 + a4xy+ a5yz+ a6xz where a1, a2, a3, a4, a5, a6 ∈ C

and suppose (z x y)·f = λf . Now, (z y x) ·f = a1y
2+a2z

2+a3x
2+a4yz+a5zx+a6yx

and λf = λ(a1x
2 + a2y

2 + a3z
2 + a4xy + a5yz + a6xz). As (z y x) · f = λf , equating

coefficients yields a1 = λa2, a2 = λa3, a3 = λa1, a4 = λa5, a5 = λa6, a6 = λa4. These

equations imply that, a3 = λa1, a2 = λ2a1, a6 = λa4, and a5 = λ2a4. Therefore,

f = a1(x
2 + λ2y2 + λz2) + a4(xy + λ2yz + λxz) and by letting a1 = a and a4 = b we

get that, f = a(x2 + λ2y2 + λz2) + b(xy + λ2yz + λxz).

Consider (z y x) · f = λf . Now, (z y x)3 · f = λ3f implies that f = λ3f and

hence λ3 = 1.

Lemma 2.2. If f is a symmetric homogeneous degree 2 polynomial, then

f = a(x2 + y2 + z2) + b(xy + yz + xz) (2.1)

for some a, b ∈ C.

Proof. Since f is symmetric then (z y x) · f = f and by Lemma 2.1 with λ = 1,
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f = a(x2 + y2 + z2) + b(xy + yz + xz) for some a, b ∈ C.

Theorem 2.3. Suppose f is a symmetric homogeneous degree 2 polynomial with the

form f = a(x2 + y2 + z2) + b(xy + yz + xz) as in Lemma 2.2.

(1) If b = 2a, then f = a(x+ y + z)2

(2) If b = −a then, f = a(x+ ωy + ω2z)(x+ ω2y + ωz), where ω = e2πi/3

Proof. (1) Suppose b = 2a. Then, f = a(x2 + y2 + z2) + 2a(xy + yz + xz) and this

polynomial factors as a(x+ y + z)2.

(2) Suppose b = −a. Then f = −a(xy + xz + yz) + a(x2 + y2 + z2) and an easy

calculation shows that f = a(x+ ωy + ω2z)(x+ ω2y + ωz) where ω = e2πi/3.

Example 2.4. The special case a = 1, b = −1 gives the factorization

f = (x2 + y2 + z2)− (xy + yz + xz) = (x+ ωy + ω2z)(x+ ω2y + ωz)

where ω = e2πi/3. Notice that f is a symmetric polynomial whose factors are not

symmetric.

Theorem 2.5. Suppose f is a symmetric homogeneous degree 2 polynomial with the

form f = a(x2 + y2 + z2) + b(xy + yz + xz) as in Lemma 2.2. Then, f is reducible if

and only if b = 2a or b = −a, if and only if

f = a(x+ λy + λ2z)(x+ λ2y + λz), (2.2)

where λ ∈ C× and λ3 = 1.

Proof. From Theorem 2.3, it is easy to see that the condition, b = 2a or b = −a, is

equivalent to f having the form of equation (2.2). Just as obvious, if either of these

10



conditions is true, then f is reducible.

Suppose f is reducible. Then f = hk where deg h = deg k = 1 and h and k

are homogeneous by Theorem 1.4. Let T = {C×h,C×k}, and let φ : S{x,y,z} → ST be

the group homomorphism as in Lemma 1.11. We then have two cases to consider:

(1) Suppose kerφ = S{x,y,z}. Then, for all σ ∈ S{x,y,z}, σ · h = λσh and σ · k = µσk

for some λσ, µσ ∈ C×, that is, h and k are almost symmetric. By Lemma 1.14,

h = α(x + y + z) and k = β(x + y + z) for some α, β ∈ C×. Therefore,

f = a(x+ y+ z)2 where a = αβ by matching coefficients. So, f is a special case

of (2.2) where λ = 1.

(2) Suppose kerφ 6= S{x,y,z}. This means that the image of φ is not the trivial

subgroup of ST which implies that the cardinality of T is 2. Or in other words,

that h and k are linearly independent. The only subgroup of S{x,y,z} that has

index 2 is {1, (z y x), (x y z)}, so this subgroup is the kernel of φ. Because

(z y x) ∈ kerφ, then (z y x) ·h = λ1h and (z y x) · k = λ2k for some λ1, λ2 ∈ C.

Since deg h = deg k = 1, by Lemma 1.14, h = α(x + λ21y + λ1z) and k =

β(x+ λ22y + λ2z) for some α, β, λ1, λ2 ∈ C× with λ31 = λ32 = 1.

Because hk = f = (z y x) · f = (z y x) · (hk) = ((z y x) · h)((z y x) · k) =

λ1hλ2k = λ1λ2hk, we get λ1λ2 = 1. Canceling λ1 from λ1λ2 = λ31 we get

λ2 = λ21; and so k = β(x+ λ1y + λ21z).

If we set λ1 = λ, we can write f = a(x+ λy + λ2z)(x+ λ2y + λz), with λ3 = 1

and, by matching coefficients, αβ = a.

11



CHAPTER 3

Factorization of Degree Three Symmetric Polynomials

In this chapter we will determine the factorization of degree three, trivariate, homo-

geneous, symmetric polynomials.

Lemma 3.1. A polynomial f is homogeneous, symmetric and has degree 3 if and

only if it has the form:

f = a(x3 + y3 + z3) + b(xy2 + xz2 + yx2 + yz2 + zx2 + zy2) + cxyz,

where a, b, c ∈ C.

Proof. If f is a homogeneous degree 3 polynomial, it can be written as

f = c1x
3 + c2y

3 + c3z
3 + c4xy

2 + c5xz
2 + c6yx

2 + c7yz
2 + c8zx

2

+c9zy
2 + c10xyz

for some c1, c2, . . . , c10 ∈ C. If, in addition, f is symmetric, then (x y)·f = (z y x)·f =

f , that is,

f = (x y) · f = c1y
3 + c2x

3 + c3z
3 + c4yx

2 + c5yz
2 + c6xy

2 + c7xz
2 + c8zy

2

+c9zx
2 + c10xyz.

f = (x y z) · f = c1y
3 + c2z

3 + c3x
3 + c4yz

2 + c5yx
2 + c6zy

2 + c7zx
2 + c8xy

2

+c9xz
2 + c10xyz.

Matching coefficients we obtain c1 = c2 = c3 and c4 = c5 = c6 = c7 = c8 = c9.
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Consequently, f = c1(x
3+y3+z3)+c4(xy

2+xz2+yx2+yz2+zx2+zy2)+c10xyz,

and by letting c1 = a, c4 = b and c10 = c, f has the claimed form. Conversely, if

f = a(x3 + y3 + z3) + b(xy2 + xz2 + yx2 + yz2 + zx2 + zy2) + cxyz, where a, b, c ∈ C,

then f is a degree 3 symmetric homogeneous polynomial.

Theorem 3.2. Let f be a trivariate, homogeneous, symmetric, degree 3 polynomial.

Suppose f = ghk with deg g = deg h = deg k = 1. Then at least one of the following

occurs:

(1) f = a(x+ y + z)(x+ λy + λ2z)(x+ λ2y + λz) for some a, λ ∈ C with λ3 = 1.

(2) f = C(A(x+ y) +Bz)(A(x+ z) +By)(A(y + z) +Bx) for some A,B,C ∈ C.

Proof. By the unique factorization theorem of polynomials we get a group homomor-

phism φ : S{x,y,z} → ST where T = {C×g,C×h,C×k} as in Lemma 1.11. The proof

now splits into three cases depending on the kernel of φ.

(1) Suppose that kerφ = S{x,y,z}. This means that every element in S{x,y,z} gets sent

to the identity element of ST . This means that σ · g = λσg for all σ ∈ S{x,y,z}

and, by Lemma 1.14, g is a scalar multiple of x+ y + z. Similarly, h and k are

also scalar multiples of x+ y+ z. This implies that f = a(x+ y+ z)3, for some

a ∈ C, a special case of factorization (1) with λ = 1, and also a special case of

factorization (2) with A = B = 1 and C = a.

(2) Suppose that kerφ = {1, (z y x), (x y z)}. This implies that | imφ| = 2, and

imφ = {1T , µ} where µ ∈ ST and |µ| = 2. Without loss of generality, imφ =

{1, (C×g,C×h)}. Since C×k is fixed by S{x,y,z}, this implies that k is a scalar
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multiple of x+ y+ z by Lemma 1.14. Since f is symmetric and k is symmetric,

then, by Lemma 1.6, gh is a symmetric polynomial. By construction, gh is

reducible. Since gh is a symmetric homogeneous degree 2 polynomial, then by

Theorem 2.5, gh is a scalar multiple of (x + λy + λ2z)(x + λ2y + λz) for some

λ ∈ C with λ3 = 1. Therefore, f = a(x + y + z)(x + λy + λ2z)(x + λ2y + λz),

for some a ∈ C and λ3 = 1, as in factorization (1).

(3) Suppose that kerφ = {1}. As kerφ = {1}, we have φ(S{x,y,z}) ∼= S3. Let

σ = (z y x). Since σ has order 3, it acts as an element of order 3 in ST .

Without loss of generality, σ · g = λ1h, σ · h = λ2k and σ · k = λ3g for some

λ1, λ2, λ3 ∈ C.

Let g = αx+ βy + γz for some α, β, γ ∈ C. Now, σ · g = αy + βz + γx, and so

h = 1
λ1

(αy+βz+γx). Similarly, σ·h = 1
λ1

(αz+βx+γy), so k = 1
λ1λ2

(αz+βx+γy)

and σ ·k = 1
λ1λ2

(αx+βy+γz). Since f is symmetric, the coefficients of y2z and

z2y are equal. By expanding f = ghk and comparing those coefficients, we get

the equation (α−β)(α−γ)(β−γ) = 0. By the zero product rule, α = β, α = γ

or β = γ.

If α = β, then

g = α(x+ y) + γz

h =
1

λ1
(α(y + z) + γx)

k =
1

λ1λ2
(α(z + x) + γy)

So f = ghk has the form of factorization (2). The other two possibilities, α = γ

and β = γ, lead to a factorization of f of the same form.
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For the proof of the main theorem of this chapter, it is useful to write sym-

metric degree three polynomials in a different form than f in Lemma 3.1. This new

form is introduced in the following lemma.

Notice that the form of a homogeneous symmetric degree 3 polynomial in the

upcoming Lemma 3.3 is different than the form in Lemma 3.1. The reason we do this

is because with Theorem 3.4 is easier to prove with the form of Lemma 3.3.

Lemma 3.3. A polynomial f is homogeneous, symmetric and has degree 3 if and

only if it has the form:

f = a0(x+ y + z)3 + b0(x+ y)(x+ z)(y + z) + c0xyz, (3.1)

for some a0, b0, c0 ∈ C.

Proof. By Lemma 3.1, a polynomial f is homogeneous, symmetric and has degree 3

if and only if it has the form: f = a(x3 + y3 + z3) + b(xy2 + xz2 + yx2 + yz2 + zx2 +

zy2) + cxyz, for some a, b, c ∈ C. So, it suffices to show that a polynomial f has the

form of Lemma 3.1 if it has the form of (3.1).

Expanding (3.1) yields, f = a0(x
3 + y3 + z3) + (3a0 + b0)(y

2z + yz2 + x2y +

x2z+ xy2 + xz2) + (6a0 + 2b0 + c0)xyz. By matching coefficients with f written as in

Lemma 3.1 we get:

a = a0

b = 3a0 + b0

c = 6a0 + 2b0 + c0

15



These equations can be solved for a0, b0 and c0.

a0 = a

b0 = b− 3a

c0 = c− 2b

(3.2)

Because of these relationships between the coefficients, any polynomial of the

form in Lemma 3.1 can be written in the form of (3.1) and vice versa.

For the next theorem, set R0 = (b0 − c0)2a0 − c0b20.

Theorem 3.4. Let f = a0(x+ y + z)3 + b0(x+ y)(x+ z)(y + z) + c0xyz. Then f is

reducible if and only if one of the following is true:

(1) b0 = c0. In this case,

f = (x+ y + z)
(
a0(x

2 + y2 + z2) + (2a0 + b0)(xy + xz + yz)
)
. (3.3)

(2) R0 = 0 and b0 6= c0. In this case,

f =
1

(b0 − c0)2
(c0x+ b0(y + z))(c0y + b0(x+ z))(c0z + b0(x+ y)) (3.4)

Proof. If b0 = c0, then an easy calculation gives (3.3).

Now suppose R0 = 0 and b0 6= c0. Solving the equation R0 = 0 for a0 gives

a0 = c0b
2
0/(b0 − c0)2. Substituting this value into f and factoring gives (3.4). In each

of these cases f is reducible.

Now, let’s suppose that f is reducible. In this case f must either factor into

three degree one polynomials or into a degree one polynomial and an irreducible

degree two polynomial (f = ghk, where deg g = deg h = deg k = 1 or f = gh where
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deg g = 1 and deg h = 2 respectively). So let’s do this in cases. To prove these cases

it is important to note that f is symmetric because of Lemma 3.3.

Case I: Let f = gh where h is irreducible, deg g = 1 and deg h = 2. By

Corollary 1.13, g and h are symmetric.

By Lemma 1.14, g = α(x + y + z) for some α ∈ C. By Lemma 2.2, h =

B(xy+ xz+ yz) +C(x2 + y2 + z2) for some B,C ∈ C. Now, by matching coefficients

in f = gh, we get a0 = αC and b0 = c0 = α(B − 2C), so f factors as in (3.3).

Case II: Let f = ghk where deg g = deg h = deg k = 1. By Theorem 3.2, then

f = a(x+ y + z)(x+ λy + λ2z)(x+ λ2y + λz)

or

f = C(A(x+ y) +Bz)(A(x+ z) +By)(A(y + z) +Bx).

If the first of these factorizations occurs we find, by equating coefficients with f as in

(3.1), b0 = c0 = a(λ+ λ2 − 2), so f factors as in (1).

If the second factorization occurs, by equating coefficients with f as in (3.1),

we get a0 = A2BC, b0 = A3C − 2A2BC + AB2C, and c0 = A2BC − 2AB2C +B3C.

Plugging these conditions into R0 we get zero. Since b0 − c0 = (A− B)3C, f factors

as in (2), except when A = B. However, if A = B, then f = CA3(x+ y + z)3, which

is a special case of (1).

For the next theorem, let R = 9a3 − 3ab2 + 2b3 − 3a2c− b2c+ ac2.

Theorem 3.5. Let f = a(x3 + y3 + z3) + b(x2y+xy2 +x2z+ y2z+xz2 + yz2) + cxyz

for some a, b, c ∈ C. Then f is reducible if and only if one of the following occurs:
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(1) 3b− 3a− c = 0. In this case,

f = (x+ y + z)
(
a(x2 + y2 + z2) + (b− a)(xy + xz + yz)

)
.

(2) R = 0 and 3b− 3a− c 6= 0. In this case,

f =
1

(3b− 3a− c)2
(
(c− 2b)x+ (b− 3a)(y + z)

)
×

(
(c− 2b)y + (b− 3a)(x+ z)

)(
(c− 2b)z + (b− 3a)(x+ y)

)
.

Proof. This is Theorem 3.4 applied to polynomials written in the form of Lemma 3.1,

by the coefficient relationship in (3.2).

Example 3.6. Consider the polynomial, f = x2y+xy2+x2z+y2z+xz2+yz2+3xyz,

where a = 0, b = 1 and c = 3. Since 3b− 3a− c = 3− 0− 3 = 0, by Theorem 3.4, f

factors as (x+ y + z)(xy + xz + yz).

Corollary 3.7. In the context of Theorem 3.5, suppose that 3b − 3a − c = 0 and

f = (x + y + z) (a(x2 + y2 + z2) + (b− a)(xy + xz + yz)). Then f is a product of

three linear factors if and only if one of the following occurs:

(1) b = 3a and c = 6a. In this case, f = a(x+ y + z)3.

(2) b = 0 and c = −3a. In this case, f = a(x+ y+ z)(x+ωy+ω2z)(x+ω2y+ωz),

where ω = e2πi/3.

Proof. Since f = (x + y + z) (a(x2 + y2 + z2) + (a− b)(xy + xz + yz)) to see if this

polynomial factors further it suffices to check if

g =
(
a(x2 + y2 + z2) + (b− a)(xy + xz + yz)

)
18



is reducible. Theorem 2.5 tells us that (a(x2 + y2 + z2) + (b− a)(xy + xz + yz)) is

reducible if and only if one of the following occurs: b = 3a then g = a(x+ y + z)2 or

b = 0 then g = a(x + ωy + ω2z)(x + ω2y + ωz), where ω = e2πi/3. This makes the

claim clear, that if b = 3a and c = 6a then f = a(x+ y+ z)3 or if b = 0 and c = −3a

then f = a(x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz), where ω = e2πi/3.

Combining the previous corollary and Theorem 3.5 we see that f = a(x3+y3+

z3) + b(x2y + xy2 + x2z + y2z + xz2 + yz2) + cxyz is completely reducible if and only

if certain conditions apply. These conditions will be described in the next theorem.

For the next theorem, let R = 9a3 − 3ab2 + 2b3 − 3a2c− b2c+ ac2

Theorem 3.8. Let f = a(x3 + y3 + z3) + b(x2y+xy2 +x2z+ y2z+xz2 + yz2) + cxyz

for some a, b, c ∈ C. Then f is completely reducible if and only if one of the following

occurs:

(1) b = 3a and c = 6a. In this case, f = a(x+ y + z)3.

(2) b = 0 and c = −3a. In this case, f = a(x+ y+ z)(x+ωy+ω2z)(x+ω2y+ωz),

where ω = e2πi/3.

(3) R = 0 and 3b− 3a− c 6= 0. In this case,

f =
1

(3b− 3a− c)2
(
(c− 2b)x+ (b− 3a)(y + z)

)
·
(
(c− 2b)y + (b− 3a)(x+ z)

)(
(c− 2b)z + (b− 3a)(x+ y)

)
.

(Note, if R = 0 and 3b− 3a− c = 0 then case(1) occurs.)

Proof. This an easy consequence of Theorem 3.5 and Corollary 3.7.
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Example 3.9. Suppose we have the polynomial f = (x3 + y3 + z3) + (x2y + xy2 +

x2z + y2z + xz2 + yz2). Since 3b− 3a− c = 0, we have f = (x+ y + z)(x2 + y2 + z2)

as in Theorem 3.5.

Example 3.10. Suppose we have the polynomial f = (x3 + y3 + z3) + 3(x2y + xy2 +

x2z+y2z+xz2+yz2)+6xyz. As b = 3a and c = 6a where a = 1, then f = (x+y+z)3

as in Theorem 3.8.

Example 3.11. Suppose we have the polynomial f = 4(x3 + y3 + z3) − 12xyz, as

b = 0, c = 3a and a = 1 then, f = 4(x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz), where

ω = e2πi/3 as in Theorem 3.8.

Corollary 3.12. Let f = a(x3 +y3 +z3)+b(x2y+xy2 +x2z+y2z+xz2 +yz2)+cxyz

for some a, b, c ∈ C. Then f has the form

f = (αx+ β(y + z))(αy + β(x+ z))(αz + β(x+ y))

where α, β ∈ C if and only if R = 0.

Proof. This is an extremely easy consequence of Theorem 3.8(3).
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CHAPTER 4

Factorization of Degree Four Symmetric Polynomials

In this chapter we will discuss the reducibility of degree four symmetric polynomials.

There are essentially four different cases that can occur. The polynomial can factor

into a degree one polynomial and a degree three polynomial, two degree one polyno-

mials and a degree two polynomial, four degree one polynomials, or two degree two

polynomials. Some of these cases can overlap. As the previous chapter, we commence

by looking for a general form for a symmetric, trivariate, degree four polynomial.

Lemma 4.1. A polynomial f is homogeneous, symmetric and has degree 4 if and

only if it has the form:

f = a(x4 + y4 + z4) + b(x2y2 + x2z2 + y2z2)

+ c(x3y + x3z + y3x+ y3z + z3x+ z3y) + d(x2yz + y2xz + z2xy),

(4.1)

where a, b, c, d ∈ C.

Proof. If f is a homogeneous degree 4 polynomial, it can be written as

f = c1x
4 + c2y

4 + c3z
4 + c4x

2y2 + c5x
2z2 + c6y

2z2

+ c7x
3y + c8x

3z + c9y
3x+ c10y

3z + c11z
3x

+ c12z
3y + c13x

2yz + c14y
2xz + c15z

2xy,

for some c1, c2, . . . , c15 ∈ C.
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If, in addition, f is symmetric, then (x y) · f = (z y x) · f = f . Consider,

f = (x y) · f = c1y
4 + c2x

4 + c3z
4 + c4x

2y2 + c5y
2z2 + c6x

2z2

+ c7y
3x+ c8y

3z + c9x
3y + c10x

3z + c11z
3y

+ c12z
3x+ c13y

2xz + c14x
2yz + c15z

2xy.

Also note that

f = (z y x) · f = c1y
4 + c2z

4 + c3x
4 + c4y

2z2 + c5y
2x2 + c6z

2x2

+ c7y
3z + c8y

3x+ c9z
3y + c10z

3x+ c11x
3y

+ c12x
3z + c13y

2zx+ c14z
2yx+ c15x

2yz.

Matching coefficients we obtain:

c1 = c2 = c3, c4 = c5 = c6,

c7 = c8 = c9 = c10 = c11 = c12

c13 = c14 = c15.

Consequently, by setting a = c1, b = c4, c = c7, and d = c13, f has the form of (4.1).

Conversely, if f has the form of (4.1), it’s clear that f is a degree 4 symmetric

homogeneous polynomial.

We shall now discuss the four different possible factorizations of degree four

symmetric polynomial mentioned above. Our main tools are the unique factorization

property of polynomials and some group theory.
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Theorem 4.2. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial. If f = gh with deg g = 3, deg h = 1 and g irreducible, then h = α(x + y + z)

for some α ∈ C× and g is symmetric.

Proof. Suppose f = gh, deg g = 3, g is irreducible and deg h = 1. By Corollary 1.13,

g and h are symmetric. By Lemma 1.14, h = α(x+ y + z) for some α ∈ C×.

Theorem 4.3. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial. If f = ghk where deg h = deg k = 1 and deg g = 2 with g irreducible, then

(1) g is symmetric

(2) hk = a1(x+ λy + λ2z)(x+ λ2y + λz) for some a1, λ ∈ C× such that λ3 = 1

Proof. Suppose f = ghk where deg h = deg k = 1 and deg g = 2 where g is irreducible.

Let σ ∈ S{x,y,z}. By Corollary 1.13, g and hk are symmetric.

Since hk is symmetric and reducible, by Theorem 2.5, hk = a1(x + λy +

λ2z)(x+ λ2y + λz) for some a1, λ ∈ C× and λ3 = 1.

Theorem 4.4. Let f be a trivariate, homogeneous, degree 4 and symmetric poly-

nomial. If f is a product of four degree one polynomials, then one of the following

occurs:

(1) f = a(x+λy+λ2z)(x+λ2y+λz)(x+ τy+ τ 2z)(x+ τ 2y+ τz) for some λ, τ ∈ C

where λ3 = 1 and τ 3 = 1.

(2) f = γ(x + y + z)(c1x + b1(y + z))(c1y + b1(x + z))(c1z + b1(x + y)) for some

γ, b1, c1 ∈ C× and b1 6= c1.

Proof. Let f = ghkl, where deg g = deg h = deg k = deg l = 1. By the unique

factorization theorem of polynomials we get a group homomorphism φ : S{x,y,z} → ST
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where T = {C×g,C×h,C×k,C×l} as in Lemma 1.11. The proof now splits into three

cases depending on the kernel of φ.

Case (1): Suppose that kerφ = S{x,y,z}. This means that each element in

S{x,y,z} gets sent to the identity element of ST . In particular, σ · g = λσg for

all σ ∈ S{x,y,z} and, by Lemma 1.14, this implies that g is a scalar multiple of

x+y+z. Similarly h, k and l are also scalar multiples of x+y+z. This implies

that f = a(x+ y + z)4, a special case of (1) with λ = τ = 1.

Case (2): Suppose that kerφ = {1, (z y x), (x y z)}. Then | imφ| = 2. This

implies that imφ = {1T , µ}, where µ ∈ ST and |µ| = 2. Now, µ is either

a transposition, or a product of two disjoint transpositions. Without loss of

generality, imφ is {1, (C×g,C×h)} or {1, (C×g,C×h)(C×k,C×l)}.

Case (2a): Suppose that imφ = {1, (C×g,C×h)}. This implies that k and

l are scalar multiples of x+ y+ z. Now, we have that f = ghα(x+ y+ z)2

where α ∈ C×. Since f is symmetric and α(x + y + z)2 is symmetric,

Lemma 1.6 implies that gh is symmetric. Because gh is reducible, by

Theorem 2.5, gh is a scalar multiple of (x+λy+λ2z)(x+λ2y+λz), where

λ3 = 1. This implies that f = a(x+ y + z)2(x+ λy + λ2z)(x+ λ2y + λz),

which is equation (2) with τ = 1.

Case (2b): Now, suppose that imφ = {1, (C×g,C×h)(C×k,C×l)}. As

a result, gh and kl are each almost symmetric. By Theorem 1.9, the

products gh and kl are symmetric as each product has degree 2. Then, by

Theorem 2.5, f = a(x+λy+λ2z)(x+λ2y+λz)(x+τy+τ 2z)(x+τ 2y+τz),

24



where λ3 = 1 and τ 3 = 1.

Case (3): Suppose that kerφ = {1}. Then, we have φ(S{x,y,z}) ∼= S3 and so

|T | = 3 or |T | = 4.

We will show by contradiction that |T | = 3 is not possible. If |T | = 3, then

without loss of generality, T = {C×g,C×h,C×k} and C×k = C×l. Since the

group S{x,y,z} permutes the elements of T = {C×g,C×h,C×k}, ghk is fixed by

all elements of the group S{x,y,z} up to scalar multiples, therefore, ghk is almost

symmetric. Consider the following: (ghk)l = f = σ · f = (σ · (ghk))(σ · l) =

(λσghk)(σ · l). By cancelation, λσσ · l = l. Since σ was arbitrary, l is almost

symmetric by Theorem 1.9 and hence symmetric by Corollary 1.10. Since l

is symmetric, by Lemma 1.14, l = α1(x + y + z) and k = α2(x + y + z) as

C×k = C×l for some α1, α2. Since C×k ∈ T , then without loss of generality,

σ · k = λσh for some σ ∈ S{x,y,z}. Since k is a multiple of x + y + z, then so

is h by construction, hence C×k = C×l = C×h and |T | ≤ 2, contradicting the

assumption that |T | = 3.

So |T | = 4 and {C×g,C×h,C×k,C×l} are distinct elements of T . Without loss

of generality, C×g, C×h and C×k are permuted amongst themselves, and C×l

is fixed by all elements of S{x,y,z}. As C×l is fixed by all elements of S{x,y,z}, l

is almost symmetric. Because l has degree one, l is symmetric by Theorem 1.9

and l is a scalar multiple of x + y + z by Lemma 1.14. Now, since l and f are

symmetric, ghk is symmetric by Lemma 1.6.

The fact that C×g, C×h and C×k are permuted amongst themselves implies that

25



g, h and k are not symmetric. Since ghk is a completely reducible symmetric

degree three polynomial, by Theorem 3.8, ghk is a scalar multiple of

(c1x+ b1(y + z))(b1x+ c1y + b1z)(b1x+ b1y + c1z)

for some b1, c1 ∈ C, or a scalar multiple of

(x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz)

where ω = e2πi/3.

Therefore, f is a scalar multiple of

(x+ y + z)(c1x+ b1(y + z))(c1y + b1(x+ z))(c1z + b1(x+ y))

or a scalar multiple of

(x+ y + z)2(x+ ωy + ω2z)(x+ ω2y + ωz).

In the first case, f has the form of (2) and in the second case f has the form of

(1) with τ = 1 and λ = ω.

Theorem 4.5. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial. If f = gh where deg g = deg h = 2 and g, h are irreducible, then g and h are

symmetric or

f = A(α(x2 + λ2y2 + λz2) + β(xy + λ2yz + λxz))

· (α(y2 + λ2x2 + λz2) + β(xy + λ2xz + λyz))

(4.2)

for some α, β, λ, A ∈ C with λ3 = 1.
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Proof. By the unique factorization theorem of polynomials we get a group homomor-

phism φ : S{x,y,z} → ST where T = {C×g,C×h} as in Lemma 1.11. We consider the

three different cases for the kernel of this homomorphism.

(1) Suppose kerφ = S{x,y,z}. As a result, g and h are almost symmetric. However,

since g and h are each degree 2, by Theorem 1.9, g and h are symmetric.

(2) Suppose kerφ = {(z y x), (x y z), 1}. As (z y x) ∈ kerφ, then, (z y x) · g = λg

for some λ ∈ C and, by Lemma 2.1, λ3 = 1 and g = α(x2 +λ2y2 +λz2)+β(xy+

λ2yz + λxz) for some α, β ∈ C. Since (x y) 6∈ kerφ, h is a scalar multiple of

(x y) · g. That is,

h = A(x y) · (α(x2 + λ2y2 + λz2) + β(xy + λ2yz + λxz))

= A(α(y2 + λ2x2 + λz2) + β(xy + λ2xz + λyz))

for some A ∈ C. Therefore, f = gh has the claimed form.

(3) Suppose kerφ = {1}. This case cannot occur because, if it did, imφ would be

isomorphic to S{x,y,z}/(kerφ), a group of order 6. This is clearly impossible as

imφ ≤ ST where |ST | ≤ 2.

We now know all possible factorizations of symmetric trivariate homogeneous

degree four polynomials. Our next goal is to find conditions on the coefficients of

these polynomials that determine which factorizations occur.

Theorem 4.6. Let f be a trivariate, homogeneous, degree 4 and symmetric poly-

nomial as in (4.1). Then (x + y + z) | f if and only if 2a + b − 2c = 0. In this
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circumstance,

f = (x+ y + z)
(
a(x3 + y3 + z3)

+ (c− a)(xy2 + xz2 + yx2 + yz2 + zx2 + zy2) + (2a− 2c+ d)xyz
)
.

(4.3)

Proof. Suppose (x+ y + z) | f , that is, f(x, y, z) = (x+ y + z)g(x, y, z). Plugging in

x = 1, y = −1, z = 0 into f we get, f(1,−1, 0) = (1− 1 + 0)g(1,−1, 0) = 0. Plugging

in the same values into the equation f = a(x4+y4+z4)+b(x2y2+x2z2+y2z2)+c(x3y+

x3z+ y3x+ y3z+ z3x+ z3y) + d(x2yz+ y2xz+ z2xy) we get f(1,−1, 0) = 2a+ b− 2c.

Comparing this with the previous value of f(1,−1, 0) = 0, we have 2a+ b− 2c = 0.

Conversely, suppose 2a+b−2c = 0. This implies that b = −2(a−c). Plugging

in this condition into (4.1) we get, after factoring, (4.3). This makes it clear that

(x+ y + z) | f .

Example 4.7. Suppose

f = 10(x4 + y4 + z4)

+ 10(x3y + x3z + y3x+ y3z + z3x+ z3y) + 1000(x2yz + y2xz + z2xy),

(4.4)

with a = c = 10, b = 0 and d = 1000. Since 2a + b − 2c = 0 holds, we can apply

Theorem 4.6 to factor f :

f = 10(x+ y + z)(x3 + y3 + z3 + 100xyz).

It is interesting that the reducibility of f does not depend on d at all. This

is because the term of f containing d is already a multiple of x + y + z. Also, the

factorization in Theorem 4.6 can hold for even a bizarre choice of a, b and c — as

long as the equation 2a+ b− 2c = 0 is satisfied.
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Theorem 4.8. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial as in (4.1). Then, f has the form

γ(x+ y + z)(c1x+ b1(y + z))(c1y + b1(x+ z))(c1z + b1(x+ y))

for some γ, b1, c1 ∈ C× and b1 6= c1 if and only if 2a+ b− 2c = 0, −8a+ 5c− d 6= 0,

and 16a2c− 11ac2 + 4c3 − 2acd− c2d+ ad2 = 0. In this case,

f =
−1

(8a− 5c+ d)2
(x+ y + z)

(
(4a− c)(x+ z) + (4c− 4a− d)y

)
·
(
(4a− c)(x+ y) + (4c− 4a− d)z

)(
(4a− c)(y + z) + (4c− 4a− d)x

)
.

Proof. By Theorem 4.6, x + y + z is a factor of f if and only if 2a + b − 2c = 0.

When this happens, f factors as in (4.3). The rest of the claim follows from applying

Theorem 3.5(2) to the degree 3 factor of f in (4.3).

Theorem 4.9. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial as in (4.1). Then f has the form

(
β(xy + xz + yz) + α(x2 + y2 + z2)

) (
δ(xy + xz + yz) + γ(x2 + y2 + z2)

)
,

for some α, β, γ, δ ∈ C if and only if 2b− 4a+ c− d = 0. When this happens α, β, γ

and δ are determined by a factorization ax2 + cxy+ (b− 2a)y2 = (αx+βy)(γx+ δy).

Proof. By matching coefficients, f has the claimed form if and only if

a = αγ b = 2αγ + βδ c = βγ + αδ d = βγ + αδ + 2βδ (4.5)

If f factors as claimed, then plugging in the equations in (4.5) into 2b − 4a + c − d

we get that 2b− 4a+ c− d = 0.
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Conversely, suppose 2b− 4a+ c− d = 0. Consider the polynomial

Q = ax2 + cxy + (b− 2a)y2.

Since Q is bivariate, it factors over C. Let α, β, γ, δ be determined by such a factor-

ization: Q = (αx+βy)(γx+ δy). By matching coefficients in this equation we obtain

αγ = a, αδ + βγ = c, and b = 2αγ + βδ. Plugging in these equations for a, b, c into

d = 2b− 4a+ c, we find that d = βγ + αδ + 2βδ. Since the equations (4.5) above are

satisfied, f has the desired factorization.

Theorem 4.10. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial as in (4.1). Set

S = a+ b+ d+ 2c T = a2 + ab− c2 U = 2ac+ c2 + ad.

Then f has the form

f = A
(
α(ωx2 + y2 + ω2z2) + β(ω2xy + xz + ωyz)

)
×

(
α(ω2x2 + y2 + ωz2) + β(ωxy + xz + ω2yz)

)
with A,α, β ∈ C and ω = e2πi/3 if and only if S = T = U = 0. Since aS = U + T , if

a 6= 0, this implies that if two of these quantities are zero then so is the third.

Proof. If f has the claimed form, then matching coefficients we get

a = Aα2 b = A(β2 − α2) c = −Aαβ d = A(2α− β)β.

Plugging these expressions into the definitions of S, T and U gives S = T = U = 0.

The converse splits into two cases:
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(1) Suppose that S = T = U = 0 and a 6= 0. Set

F =
(
a(ωx2 + y2 + ω2z2)− c(ω2xy + xz + ωyz)

)
·
(
a(ω2x2 + y2 + ωz2)− c(ωxy + xz + ω2yz)

)
.

Then a tedious calculation, done without the assumption S = T = U = 0, gives

af = F + (x2y2 + x2z2 + y2z2)T + (x2yz + xy2z + xyz2)U.

Since U = T = 0 and a 6= 0, we have f =
1

a
F and so f has the claimed form

with A = 1/a, α = a and β = −c.

(2) Suppose that S = T = U = 0 and a = 0. These equations imply that c = 0 and

b+ d = 0, and so

f = b(x2y2 − x2yz − xy2z + x2z2 − xyz2 + y2z2)

= b(ω2xy + xz + ωyz)(ωxy + xz + ω2yz).

Thus f has the claimed form with A = b, α = 0 and β = 1. Note that the

factorization above occurs if and only if a = c = 0 and b = −d 6= 0.

Now we know all possible factorizations of trivariate, homogeneous, degree

4 and symmetric polynomials and we know conditions on the coefficients of f that

determine when such factorizations occur. Next we can combine all this information

into the main theorem of this chapter.

Theorem 4.11. Let f be a trivariate, homogeneous, degree 4 and symmetric polyno-

mial. Then, f is reducible if and only if at least one of the following occurs:
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(1) 2a+ b− 2c = 0. In this case,

f = (x+ y + z)
(
a(x3 + y3 + z3)

+ (c− a)(xy2 + xz2 + yx2 + yz2 + zx2 + zy2) + (2a− 2c+ d)xyz
)
.

(a) In addition, if −8a+ 5c− d = 0 then,

f = (x+ y + z)2((−2a+ c)(xy + xz + yz) + a(x2 + y2 + z2)).

i. In addition, if c = 4a then, f = a(x+ y + z)4.

ii. In addition, if c = a then, f = a(x+y+z)2(x+ωy+ω2z)(x+ω2y+ωz).

(b) In addition, if −8a+5c−d 6= 0 and 16a2c−11ac2+4c3−2acd−c2d+ad2 = 0,

then

f =
−1

(8a− 5c+ d)2
(x+ y + z)

(
(4a− c)(x+ z) + (4c− 4a− d)y

)
·
(
(4a− c)(x+ y) + (4c− 4a− d)z

)(
(4a− c)(y + z) + (4c− 4a− d)x

)

(2) 2b− 4a+ c− d = 0. In this case,

f =
(
β(xy + xz + yz) + α(x2 + y2 + z2)

)
·
(
δ(xy + xz + yz) + γ(x2 + y2 + z2)

)
for some α, β, γ, δ ∈ C, that are determined by the factorization

ax2 + cxy + (b− 2a)y2 = (αx+ βy)(γx+ δy). (4.6)

In addition, at least one of the following occurs given it meets certain criteria:
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(a) If b = 6a and c = 4a then, f = a(x+ y + z)4

(b) If b = 3a and c = −2a then, f = a(x+ ωy + ω2z)2(x+ ω2y + ωz)2

(c) If b = 0 and c = a then, f = a(x+ y + z)2(x+ ωy + ω2z)(x+ ω2y + ωz)

(3) a = c = 0, and b = −d 6= 0. In this case,

f = b(ω2xy + xz + ωyz)(ωxy + xz + ω2yz).

(4) a 6= 0, S = a+ b+ d+ 2c = 0, T = a2 + ab− c2 = 0 and U = 2ac+ c2 + ad = 0.

In this case, f has the form

f =
1

a

(
a(ωx2 + y2 + ω2z2)− c(ω2xy + xz + ωyz)

)
·
(
a(ω2x2 + y2 + ωz2)− c(ωxy + xz + ω2yz)

)
.

In all of these cases, ω = e2πi/3.

Proof. Since deg f = 4, f must factor into one degree one polynomial and a degree

three polynomial, four degree one polynomials, two degree one polynomials and one

degree two polynomials, or two degree two polynomials (assuming the each polynomial

in the factorization of f is irreducible).

(1) Suppose that f = gh factors into a degree one polynomial h and a degree three

irreducible polynomial g. By Theorem 4.2, h is a multiple of x + y + z and f

factors as in case (1). (Since g is irreducible, f does not factor as in case (1a)

or (1b).)

(2) Suppose that f factors as a product of four degree one polynomials. Using

Theorem 4.4, our argument splits up into two cases:
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(a) If f factors as in Theorem 4.4(1), it factors as in (2a), (2b) or (2c).

(b) If f factors as in Theorem 4.4(2), then Theorem 4.8 implies that f factors

as in case (1b) .

(3) Suppose that f factors into two degree one polynomials and a degree two polyno-

mial. By Theorem 4.3, f is a product of two degree two symmetric polynomials.

By Theorem 4.9, 2b− 4a+ c−d = 0 and f factors as item (2), where one factor

is reducible and the other one is not.

(4) Suppose that f = gh is a product of two degree two irreducible polynomials.

Now, by Theorem 4.5, we have 2 cases to consider;

(a) g and h are symmetric. By Theorem 4.9, 2b− 4a+ c− d = 0 and f factors

as case (2).

(b) g and h are not symmetric and a 6= 0. By Theorem 4.5, f has the form of

(4.2). By Theorem 4.10, S = a+ b+ d+ 2c = 0, T = a2 + ab− c2 = 0 and

U = 2ac+ c2 + ad = 0 and f factors as in case (4).

In the next two examples, 2a + b − 2c = 0, hence we can apply Theorem 4.6

to factor them.

Example 4.12. Let

f = 10(x4 + y4 + z4) + 10(x3y + x3z + y3x+ y3z + z3x+ z3y)

+ 974567(x2yz + y2xz + z2xy).

Then, a = c = 10, b = 0 and d = 974567, so case (1) of Theorem 4.11 applies and

f = (x+ y + z)(10x3 + 10y3 + 10z3 + 974567xyz)
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.

Example 4.13. Let a = 10, b = 2, c = 11 and d = π
√

5017, so case (1) of Theo-

rem 4.11 applies and

f = 10(x4 + y4 + z4) + 2(x2y2 + x2z2 + y2z2)

+ 11(x3y + x3z + y3x+ y3z + z3x+ z3y) + π
√

5017(x2yz + y2xz + z2xy)

= (x+ y + z)

· (10x3 + 10y3 + 10z3 + x2y + xy2 + x2z + y2z + xz2 + yz2 + (π
√

5017− 2)xyz).

Example 4.14. If a = 1, b = 6, c = 4 and d = 12, then case (1ai) of Theorem 4.11

holds and we get:

f = 1(x4 + y4 + z4) + 6(x2y2 + x2z2 + y2z2)

+ 4(x3y + x3z + y3x+ y3z + z3x+ z3y) + 12(x2yz + y2xz + z2xy)

= (x+ y + z)4.

Example 4.15. If a = 2, b = 6, c = 4, and d = 8, then case (3) of Theorem 4.11

holds and we get:

f = 2(x4 + y4 + z4) + 6(x2y2 + x2z2 + y2z2)

+ 4(x3y + x3z + y3x+ y3z + z3x+ z3y) + 8(x2yz + y2xz + z2xy)

= 2(x2 + xy + y2 + xz + yz + z2)2.

Example 4.16. Let a = 1, b = 4, c = 10 and d = 14. Since 2b − 4a + c − d =

0, f factors as in case (2) of Theorem 4.11. To determine α, β, γ, δ we need the

factorization

x2 + 10xy + (4− 2)y2 = (x+ (5 +
√

23)y)(x+ (5−
√

23)y).
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We choose α = γ = 1, β = 5 +
√

23 and δ = 5−
√

23, therefore,

f = (x4 + y4 + z4) + 4(x2y2 + x2z2 + y2z2)

+ 10(x3y + x3z + y3x+ y3z + z3x+ z3y) + 14(x2yz + y2xz + z2xy)

=
(

(5 +
√

23)(xy + xz + yz) + (x2 + y2 + z2)
)

·
(

(5−
√

23)(xy + xz + yz) + (x2 + y2 + z2)
)
.

Example 4.17. Let a = c = 0 and b = −d = 1. Since a + b + d + 2c = 0,

a2 + ab− c2 = 0, and 2ac+ c2 + ad = 0, f factors as in case (4) of Theorem 4.11.

f = (x2y2 + x2z2 + y2z2)− (x2yz + y2xz + z2xy)

= (ω2xy + xz + ωyz)(ωxy + xz + ω2yz).

Example 4.18. Let a = −c = d = 1 and b = 0. Since S = a + b + d + 2c = 0,

T = a2 + ab − c2 = 0 and U = 2ac + c2 + ad = 0, f factors as in case (5) of

Theorem 4.11.

f = (x4 + y4 + z4)

− (x3y + x3z + y3x+ y3z + z3x+ z3y) + (x2yz + y2xz + z2xy)

=
(
(ωx2 + y2 + ω2z2) + (ω2xy + xz + ωyz)

)
·
(
(ω2x2 + y2 + ωz2) + (ωxy + xz + ω2yz)

)
.
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CHAPTER 5

Factorization of Degree Five Symmetric Polynomials

In this chapter, we will discuss the factorization of degree five homogeneous symmetric

polynomials. A degree five polynomial can factor in various ways: five degree one

polynomials, a degree four polynomial and a degree one polynomial, a degree three

polynomial and a degree two polynomial, a degree three polynomial and two degree

one polynomials, two degree two polynomials and a degree one polynomial, and a

degree three polynomial and two degree one polynomials.

Lemma 5.1. A polynomial f is homogeneous, symmetric and has degree 5 if and

only if it has the form:

f = a(x5 + y5 + z5) + b(x4y + x4z + y4x+ y4z + z4x+ z4y)

+ c(x3y2 + x3z2 + y3x2 + y3z2 + z3x2 + z3y2)

+ d(x2y2z + z2y2x+ z2x2y) + e(x3yz + y3xz + z3xy)

(5.1)

where a, b, c, d, e ∈ C.

Proof. If f is a homogeneous degree 5 polynomial, it can be written as

f = c1x
5 + c2y

5 + c3z
5 + c4x

4y + c5x
4z + c6y

4x+ c7y
4z + c8z

4x+ c9z
4y

+ c10x
3y2 + c11x

3z2 + c12y
3x2 + c13y

3z2 + c14z
3x2 + c15z

3y2

+ c16x
2y2z + c17z

2y2x+ c18z
2x2y + c19x

3yz + c20y
3xz + c21z

3xy

(5.2)

Since f is a symmetric polynomial, σ · f = f for all σ ∈ S{x,y,z}. As in previous

theorems, the fact that (x y) · f = (x y z) · f = f implies that f has the claimed

form. The converse is trivial.
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Theorem 5.2. Let f be a trivariate, homogeneous, degree 5 and symmetric poly-

nomial. If f is a product of five degree one polynomials, then one of the following

occurs:

(A) f = µ(x + y + z)2(A(x + y) + Bz)(A(x + z) + By)(A(z + y) + Bx) for some

µ,A,B,C ∈ C.

(B) f = M(x+ωy+ω2z)(x+ω2y+ωz)(A(x+y)+Bz)(A(x+z)+By)(A(z+y)+Bx)

for some M,A,B,C ∈ C.

(C) f = a(x+ y + z)(x+ λy + λ2z)(x+ λ2y + λz)(x+ τy + τ 2z)(x+ τ 2y + τz), for

some λ3 = 1 and τ 3 = 1.

Proof. Let f = ghklm, where deg g = deg h = deg k = deg l = degm = 1. By

the unique factorization theorem of polynomials we get a group homomorphism φ :

S{x,y,z} → ST where T = {C×g,C×h,C×k,C×l,C×m} as in Lemma 1.11. The proof

now splits into three cases depending on the kernel of φ.

Case (1): Suppose that kerφ = S{x,y,z}. This means that each element in

S{x,y,z} gets sent to the identity element of ST . In particular, σ · g = λσg for

all σ ∈ S{x,y,z} and, by Lemma 1.14, this implies that g is a scalar multiple of

x + y + z. Similarly h, k, l and m are also scalar multiples of x + y + z. This

implies that f = a(x+ y + z)5 and this is a special case of (A) and (C).

Case (2): Suppose that kerφ = {1, (z y x), (x y z)}. Then | imφ| = 2. This

implies that imφ = {1T , µ}, where µ ∈ ST and |µ| = 2. Now, µ is either

a transposition, or a product of two disjoint transpositions. Without loss of

38



generality, imφ is {1, (C×g,C×h)} or {1, (C×g,C×h)(C×k,C×l)}.

Case (2a): Suppose that imφ = {1, (C×g,C×h)}. This implies that k, l

and m are scalar multiples of x+y+z. Now, we have that f = ghα(x+y+

z)3 where α ∈ C×. Since f is symmetric and α(x + y + z)3 is symmetric,

Lemma 1.6 implies that gh is symmetric. Because gh is reducible, by

Theorem 2.5, gh is a scalar multiple of (x+λy+λ2z)(x+λ2y+λz), where

λ3 = 1. This implies that f = a(x+ y + z)3(x+ λy + λ2z)(x+ λ2y + λz).

This is a special case of (C) where τ = 1.

Case (2b): Now, suppose that imφ = {1, (C×g,C×h)(C×k,C×l)}. As a

result, m, gh and kl are each almost symmetric. By Theorem 1.9, the

products m, gh and kl are symmetric as each product has degree less than

3. Then, by Theorem 2.5, f = a(x+y+z)(x+λy+λ2z)(x+λ2y+λz)(x+

τy + τ 2z)(x+ τ 2y + τz), where λ3 = 1 and τ 3 = 1, as in (C).

Case (3): Suppose that kerφ = {1}. Then the image of the homomorphism φ is

a subgroup of ST that is isomorphic to S3. Hence |T | ≤ 3. Up to renumbering,

the only subgroup of S4 that is isomorphic to S3 is S3 itself. And, up to

renumbering, the only subgroups of S5 that are isomorphic to S3 are S3 and the

subgroup generated by (1 2)(4 5) and (1 2 3), namely,

〈(1 2)(4 5), (1 2 3)〉 = {1, (1 2 3), (3 2 1), (2 3)(4 5), (1 2)(4 5), (1 3)(4 5)}.

In all of these cases, there is a 3 element subset of T , U = {C×g,C×h,C×k} say,

such that S{x,y,z} permutes the elements of U amongst themselves. In particular,

ghk is almost symmetric. In fact, ghk must be symmetric since f = (g h k)(l m)
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implies lm is almost symmetric and since deg lm = 2, lm is symmetric.

Now we have f = (ghk)(lm) with ghk and lm symmetric and reducible. The

possible forms of ghk are in Corollary 3.7 and the possible forms of lm are in

Theorem 2.5. Combining these we see that f has the form (A), (B), or (C).

Theorem 5.3. Let f be a trivariate, homogeneous, degree 5 and symmetric poly-

nomial. If f = ghk where deg g = deg h = 2 and deg k = 1 and g, h and k are

irreducible, then g, h and k are symmetric or

f = A(x+ y + z)(α(x2 + λ2y2 + λz2) + β(xy + λ2yz + λxz))

· (α(y2 + λ2x2 + λz2) + β(xy + λ2xz + λyz))

(5.3)

for some α, β, A, λ ∈ C with λ3 = 1.

Proof. By Corollary 1.13, gh and k are symmetric. Since g and h are irreducible and

deg g = deg h = 2, it follows from Theorem 4.5 that g and h are symmetric or gh is

a scalar multiple of

(α(x2 + λ2y2 + λz2) + β(xy + λ2yz + λxz))

· (α(y2 + λ2x2 + λz2) + β(xy + λ2xz + λyz)),

(5.4)

for some α, β, λ ∈ C where λ3 = 1. Hence, g, h and k are symmetric or f = ghk

has the form of (5.3) as k is a symmetric degree one polynomial, then k is a scalar

multiple of x+ y + z by Lemma 1.14.

Theorem 5.4. Let f be a trivariate, homogeneous, degree 5 and symmetric poly-

nomial. If f = ghk where deg g = deg h = 1 and deg k = 3 and g, h and k are
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irreducible, then gh and k are symmetric and

f = (x+ λy + λ2z)(x+ λ2y + λz)

· (a1(x3 + y3 + z3) + b1(xy
2 + xz2 + yx2 + yz2 + zx2 + zy2) + c1xyz)

for some a1, b1, c1, λ ∈ C where λ3 = 1.

Proof. By Corollary 1.13, gh and k are symmetric. As gh is symmetric, gh is a scalar

multiple of (x + λy + λ2z)(x + λ2y + λz) for some λ ∈ C and λ3 = 1 as stated in

Theorem 2.5. Because k is a symmetric degree 3 polynomial, k = a1(x
3 + y3 + z3) +

b1(xy
2 + xz2 + yx2 + yz2 + zx2 + zy2) + c1xyz for some a1, b1, c1 ∈ C by Lemma 3.1.

Hence f = (x+λy+λ2z)(x+λ2y+λz)(a1(x
3 +y3 + z3) + b1(xy

2 +xz2 +yx2 +

yz2 + zx2 + zy2) + c1xyz), for some a1, b1, c1, λ ∈ C where λ3 = 1.

Theorem 5.5. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial.

(1) If f = gh where deg g 6= deg h and g and h are irreducible, then g and h are

symmetric.

(2) If f = gh where deg g = 3 and g is irreducible, then g and h are symmetric.

Proof. (1) Since f factors as in Corollary 1.13, g and h are symmetric.

(2) Either h is irreducible (in which case the result follows from (1)) or h is a

product of two degree one polynomials (where each degree one polynomial need

not be symmetric). In the second case, the claim is a direct consequence of

Corollary 1.13.

Theorem 5.6. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial. Suppose f = ghkl with deg g = 2, deg h = deg k = deg l = 1 and g irreducible.
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Then g and hkl are symmetric and hkl has one of three forms from Theorem 3.8.

Proof. Since f factors as in Corollary 1.13, g and hkl are symmetric. By construction,

hkl is completely reducible and thus has one of three forms from Theorem 3.8.

We have seen proofs of the theoretical type. We are also interested in the

conditions the coefficients have to have in order for particular factorizations to occur.

That is precisely what these next theorems are all about.

Theorem 5.7. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Set W = 5a−5b+ c−d+ 2e, U = 5a−3b+ c and V = 15a−7b+ e.

(1) (x+ y + z) | f if and only if W = 0.

(2) (x+ y + z)2 | f if and only if W = 0 and U = 0.

(3) (x+ y + z)3 | f if and only if W = 0, U = 0 and V = 0.

(4) (x + y + z)4 | f if and only if (x + y + z)5 | f if and only if b = 5a, c = 10a,

d = 30a, and e = 20a.

Proof. (1) Suppose (x+ y+ z) | f , that is, f = (x+ y+ z)g for some g ∈ C[x, y, z].

Plugging in x = 2, y = −1, z = −1 into f we get, f(2,−1,−1) = (2−1−1)g = 0.

Plugging in the same values into (5.1), we get f(2,−1,−1) = 5a−5b+c−d+2e.

Comparing this with the previous value of f(2,−1,−1) = 0 we have W = 0.

Conversely, suppose W = 0. The remainder of (5.1) divided by x + y + z is a

polynomial that, after factoring, has the coefficient −(5a− 5b+ c− d+ 2e). As

5a− 5b+ c− d+ 2e = 0, the remainder is 0 and hence (x+ y + z) | f .

(2) Suppose (x+ y+ z)2 | f , that is f = (x+ y+ z)2g for some g ∈ C[x, y, z]. From

(1) it is clear that W = 0. Equating coefficients of f in the form of (5.1) with
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f = (x + y + z)2g where g is a degree three polynomial of the form in (3.1)

having coefficients A, B, and C, one gets that a = A, b = 2A+B, c = A+ 3B,

d = 6B + 2C, and e = 2A+ 4B + C. These relationships imply that U = 0.

Conversely, suppose W = 0 and U = 0. These equations imply that d =

5a − 5b + c + 2e and c = 3b − 5a. Plugging in these conditions into f we find

that f factors as

(x+ y + z)2
[
a(x3 + y3 + z3) + (b− 2a)(x2y + x2z + y2x+ y2z + z2x+ z2y)

+ (6a− 4b+ e)xyz
]
.

(5.5)

Clearly (x+ y + z)2 | f .

(3) Suppose (x + y + z)3 | f , that is f = (x + y + z)3g for some g ∈ C[x, y, z]. It

is clear that the argument above will hold and that we’ll get that W = 0 and

U = 0. Equating coefficients of f in the form of (5.1) with f = (x + y + z)3g

where g is a degree two symmetric homogeneous polynomial of the form in (2.1)

having coefficients A and B one gets that a = A, b = 3A + B, c = 4A + 3B,

d = 6A+ 12B, e = 6A+ 7B. These conditions show that V = 0.

Conversely, suppose W = U = V = 0. These equations imply that d =

5a− 5b+ c+ 2e, c = 3b− 5a and e = 7b− 15a. Plugging in these equations into

f we find that f factors as

(x+ y + z)3(a(x2 + y2 + z2) + (b− 3a)(xy + xz + yz)).

Clearly (x+ y + z)3 | f .
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(4) Suppose f = (x + y + z)4g for some g ∈ C[x, y, z]. As f and (x + y + z)4 are

symmetric, then by Lemma 1.6, g is symmetric. So, g = ε(x + y + z) for some

ε ∈ C by Lemma 1.14(2). So, f = (x + y + z)4g = ε(x + y + z)5. So, clearly

(x+ y + z)4 | f if and only if (x+ y + z)5 | f .

Next, by expanding a(x + y + z)5 and equating coefficients with f as in (5.1),

we see that f = a(x + y + z)5 if and only if b = 5a, c = 10a, d = 30a, and

e = 20a.

Let L = (a− b)2 + ae and K = 3a− 4b− d+ e.

Theorem 5.8. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Then f has the form

f = (x+ y + z)
(
α(ωx2 + y2 + ω2z2) + β(ω2xy + xz + ωyz)

)
×

(
α(ω2x2 + y2 + ωz2) + β(ωxy + xz + ω2yz)

) (5.6)

for some α, β ∈ C and ω = e2πi/3 if and only if W = K = L = 0.

Proof. By equating coefficients of f in (5.6) with f as in (5.1), we see that f has the

claimed form if and only if a = α2, b = α(α−β), c = −α2−αβ+β2, d = −α2+4αβ−β2,

and e = −β2. Plugging in these conditions into W , K, and L will result in 0.

Conversely, suppose W = K = L = 0. Because L = 0, we have (a − b)2 =

−ae. Therefore it is possible to choose α and β such that α2 = a, β2 = −e and

αβ = a− b. These equations imply b = α(α − β). The equation K = 0 now implies

that d = −α2 + 4αβ−β2 and similarly W = 0 implies c = −α2−αβ+β2. Therefore,

f factors as claimed.
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Let M = 25a3 − 40a2b+ 21ab2 − 6b3 − 5a2e+ 4abe+ b2e− ae2

Theorem 5.9. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Then f has the form

(x+ y + z)2(c1x+ b1(y + z))(c1y + b1(x+ z))(c1z + b1(x+ y))

for some b1, c1 ∈ C if and only if W = U = M = 0.

Proof. By Theorem 5.7, (x+ y + z)2 is a factor of f if and only if W = U = 0 and f

factors as in (5.5). Because of Corollary 3.12, the cubic factor of f in (5.5) factors as

claimed if and only if M = 0.

Let I = 10a + 2 − 7c + d + e, J = a − c and N = 8a3 + 3ab2 + 2b3 + 4a2d +

2abd+ b2d+ ad2.

Theorem 5.10. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in Lemma 5.1. Then

f = (x+ ωy + ω2z)(x+ ω2y + ωz)(A(x+ y) +Bz)(A(x+ z) +By)(A(z + y) +Bx)

where A,B ∈ C if and only if I = J = N = 0.

Proof. By Theorem 5.7, (x + ωy + ω2z)(x + ω2y + ωz) is a factor of f if and only if

I = J = 0 and f factors as in (5.8). Because of Corollary 3.12, the cubic factor of f

in (5.8) factors as claimed if and only if N = 0.

Theorem 5.11. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in Lemma 5.1. Then

f = (x+ ωy + ω2z)(x+ ω2y + ωz)g

for some g ∈ C[x, y, z] if and only if I = J = 0.
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Proof. Suppose f = (x+ωy+ω2z)(x+ω2y+ωz)g. Then g is symmetric by Lemma 1.6

and so f = (x+ωy+ω2z)(x+ω2y+ωz)(α(x3 + y3 + z3) +β(xy2 +xz2 + yx2 + yz2 +

zx2 + zy2) + γxyz) for some α, β, γ ∈ C. Comparing the coefficients of this equation

with the form of f in (5.1) we get the following equations.

a = α

b = −α + β

c = α

d = −γ

e = −α− 2β + γ

(5.7)

Plugging these equations into I and J we get 0 for both of them.

Now, suppose I = J = 0. Solving these equations we get e = −3a − 2b − d

and c = a, and now plugging these equations into f as in (5.1) we get,

f = (x+ ωy + ω2z)(x+ ω2y + ωz)

(a(x3 + y3 + z3) + (a+ b)(xy2 + xz2 + yx2 + yz2 + zx2 + zy2)− dxyz).

(5.8)

So f factors as claimed.

Theorem 5.12. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in Lemma 5.1.

(1) f = a(x + y + z)3(x + ωy + ω2z)(x + ω2y + ωz) if and only if b = 2a, c = a,

d = −6a and e = −a.

(2) f = a(x + y + z)(x + ωy + ω2z)2(x + ω2y + ωz)2 if and only if b = −a, c = a,

d = 3a and e = −4a.
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Proof. Both of these results are direct consequences of matching coefficients with the

equation (5.1).

Theorem 5.13. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Set

S = 5a− b− 2c+ e

T = 5a+ 3b− 5c+ d.

(5.9)

Then f = (x+ y+ z)gh, where deg g = deg h = 2 and g and h are symmetric, if and

only if S = T = 0.

Proof. Suppose f = (x+y+z)gh, where deg g = deg h = 2 and g and h are symmetric.

Then f = (x+y+z)(s1(x
2+y2+z2)+t1(xy+xz+yz))(s2(x

2+y2+z2)+t2(xy+xz+yz))

for some s1, s2, t1, t2 ∈ C. Comparing the coefficients of this equation with the form

of f in (5.1) we get the following equations.

a = s1s2

b = s1s2 + s2t1 + s1t2

c = 2s1s2 + s2t1 + s1t2 + t1t2

d = 2s1s2 + 2s2t1 + 2s1t2 + 5t1t2

e = 3s2t1 + 3s1t2 + 2t1t2

(5.10)

Plugging in these equations into S and T we get 0 for both of them.

Now, suppose S = T = 0. Solving for e in S = 0 and d in T = 0 and plugging these
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equations into f as in (5.1) we get,

f = (x+ y + z)(ax4 − ax3y + bx3y + ax2y2 − bx2y2

+ cx2y2 − axy3 + bxy3 + ay4 − ax3z + bx3z

− 3ax2yz − bx2yz + 2cx2yz − 3axy2z − bxy2z

+ 2cxy2z − ay3z + by3z + ax2z2 − bx2z2

+ cx2z2 − 3axyz2 − bxyz2 + 2cxyz2 + ay2z2

− by2z2 + cy2z2 − axz3 + bxz3 − ayz3 + byz3 + az4)

= (x+ y + z)
(
A(x4 + y4 + z4) +B(x2y2 + x2z2 + y2z2)

+ C(x3y + x3z + y3x+ y3z + z3x+ z3y) +D(x2yz + y2xz + z2xy)
)
,

where

A = a

B = a− b+ c

C = −a+ b

D = −3a− b+ 2c.

Because 2B−4A+C−D = 0, Theorem 4.9 implies that the degree four factor

of f is a product of two degree two symmetric polynomials as claimed.

Theorem 5.14. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Set

R = 25a3 + 5ab2 + 2b3 − 40a2c+ 10abc− 2b2c+ 11ac2 − 10bc2

+ 4c3 + 15a2d+ b2d− 12acd+ 2bcd+ ad2 − 5a2e− 10abe

− b2e+ 9ace+ 7bce− 4c2e+ ade− bde− ae2 − be2 + ce2.

48



Then f = gh, where deg g = 2, deg h = 3 and g and h are symmetric, if and

only if R = 0. When this happens,

f =
1

S2
(S(x2 + y2 + z2) + T (xy + xz + yz))

·
(
aS(x3 + y3 + z3) + (bS − aT )(x2y + xy2 + y2z + z2y + xz2 + zx2)

+ ((2a+ 2b− 2c+ e)S − 3aT )xyz
) (5.11)

if S 6= 0, or otherwise,

f = (xy+xz+yz)(b(x3 +y3 +z3)+c(x2y+xy2 +x2z+y2z+xz2 +yz2)+(2c+d)xyz).

Proof. Suppose f = gh, where deg g = 2, deg h = 3 and g and h are symmetric.

Then, f = (s(x2 + y2 + z2) + t(xy+ xz+ yz))
(
A(x3 + y3 + z3) +B(xy2 + xz2 + yx2 +

yz2 + zx2 + zy2) + Cxyz
)

for some s, t, A, B, C ∈ C. Comparing the coefficients of

this equation with the form of f in (5.1) we get the following equations.

a = As

b = Bs+ At

c = As+B(s+ t)

d = 2B(s+ t) + Ct

e = Cs+ At+ 2Bt.

(5.12)

Plugging in these equations into R gives 0.

For the converse, define S and T as in (5.9) and

F = (S(x2 + y2 + z2) + T (xy + xz + yz))

·
(
aS(x3 + y3 + z3) + (bS − aT )(x2y + xy2 + y2z + z2y + xz2 + zx2)

+ ((2a+ 2b− 2c+ e)S − 3aT )xyz
)
.
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A tedious calculation shows that S2f = F + R(x + y + z)(xy + yz + zx)2. If

R = 0 and S 6= 0, then it is clear that f is a scalar multiple of F . Hence, f

factors as claimed. We are now left with the case that S = R = 0. Solving for e in

S = 0 and plugging this condition into R we get that R = aT 2. Therefore a = 0 or

T 2 = 0. If T = 0, Theorem 5.13 implies that f factors as expected. If a = 0 then

f = (xy+xz+yz)(b(x3 +y3 +z3)+c(x2y+xy2 +x2z+y2z+xz2 +yz2)+(2c+d)xyz)

and f factors as expected.

This theorem tells you when f factors as a degree 2 factor and a degree 3

factor. To determine when the degree 3 factor is completely reducible, we define

P = 8b3 + 50a2c− 70abc+ 20b2c+ 20ac2 − 14bc2 + 2c3 + 10abd+ 2b2d− 5acd

+ bcd− c2d+ 5ad2 − bd2 − 25a2e+ 20abe− 19b2e+ 6bce+ c2e

− 15ade+ bde+ cde+ 10ae2 + 2be2 − 2ce2

Q = 25a4 + 10a3b− 5a2b2 + 2ab3 + 35a3c− 28a2bc+ 13ab2c− 2b3c− 29a2c2

+ 18abc2 − 4b2c2 − 4ac3 − 5a3d+ 3a2bd+ 9a2cd− 2abcd− 15a3e+ 9a2be

− 7ab2e+ b3e+ 7a2ce− 13abce+ 4b2ce+ 8ac2e− 5a2de+ abde+ 5a2e2

+ 2abe2 − b2e2 − 5ace2 + ae3.

Theorem 5.15. Let f be a trivariate, homogeneous, degree 5 and symmetric polyno-

mial as in (5.1). Then

f = (αx+ β(y + z))(αy + β(x+ z))(αz + β(y + x))g (5.13)

for some α, β ∈ C and g ∈ C[x, y, z] if and only if R = P = Q = 0.
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Proof. Suppose f = (αx + β(y + z))(αy + β(x + z))(αz + β(y + x))g, where g is a

symmetric degree two polynomial of the form a2(x
2 + y2 + z2) + b2(xy+ yz+ xz), for

some a2, b2 ∈ C. Equating coefficients of f as given by (5.1) and (5.13) we get

a = αa2β
2

b = α2a2β + αa2β
2 + a2β

3 + αβ2b2

c = α2a2β + 2αa2β
2 + a2β

3 + α2βb2 + αβ2b2 + β3b2

d = 2α2a2β + 2αa2β
2 + 2a2β

3 + α3b2 + 2α2βb2 + 5αβ2b2 + 4β3b2

e = α3a2 + 3αa2β
2 + 2a2β

3 + 2α2βb2 + 3αβ2b2 + 2β3b2.

Plugging these equations into R, P , and Q gives 0 in each case.

Conversely, suppose P = Q = R = 0. Let

F = (Ax+B(y+z))(Ay+B(x+z))(Az+B(y+x))(S(x2+y2+z2)+T (xy+xz+yz))

where A = 5a2 − 5ab− 9ac+ 2bc+ 4c2 − ad+ 7ae− be− 4ce+ e2 and B = −20a2 +

5ab − b2 + 11ac − 2bc − ad − 3ae + be, with S and T as defined in (5.9). A tedious

calculation without the assumption that P = Q = R = 0 gives

S6f = F +R(a2T + 2a(4a− b)S)H1 + S4RH2 + S2(Q− aR)H1

where

H1 = (S(x2 + y2 + z2) + T (xy + xz + yz))(x+ y + z)3

H2 = (x+ y + z)(xy + xz + yz)2.

If S 6= 0 and Q = R = 0 then this equation implies f = F/S6 and f has the claimed

the form. (Notice that if S 6= 0 then the condition P = 0 is not needed.)
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Suppose now that S = 0. As in the proof of Theorem 5.14, the condition

R = S = 0 implies that a = 0 or T = 0.

(1) Suppose S = T = P = 0. Solving the equations S = T = 0 for d and e we get

e = −5a+ b+ 2c and d = −5a− 3b+ 5c. Plugging these equations into P = 0

and factoring gives (−5a+3b−c)3 = 0, which can be rewritten as c = −5a+3b.

Plugging in these expressions for c, d and e into f as in (5.1) we get

f = (x+ y + z)3(a(x2 + y2 + z2) + (−3a+ b)(xy + xz + yz))

and so, f has the claimed form of (5.13) with α = β.

(2) Suppose S = a = P = 0. Solving S = 0 for e we get e = −5a+ b+ 2c. Plugging

these equations into f we get

f = (xy+xz+yz)(b(x3+y3+z3)+c(x2y+xy2+y2z+z2y+xz2+zx2)+(d−2c)xyz).

Now by Corollary 3.12, the degree 3 factor of f here has the form (αx+ β(y +

z))(αy + β(x+ z))(αz + β(y + x)) for some α, β ∈ C if and only if 9b3 + 6b2c+

bc2 + 4c3 − 3b2d − 4bcd − c2d + bd2 = 0. Setting a = 0 and c = −5a + 3b in

P = 0 gives us this exact same equation.

In Table 5.1 we have collected all of the results in Theorems 5.7–5.15.

Theorem 5.16. Let

f = a(x5 + y5 + z5) + b(x4y + x4z + y4x+ y4z + z4x+ z4y)

+ c(x3y2 + x3z2 + y3x2 + y3z2 + z3x2 + z3y2)

+ d(x2y2z + z2y2x+ z2x2y) + e(x3yz + y3xz + z3xy)
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where a, b, c, d, e ∈ C. Set

W = 5a− 5b+ c− d+ 2e U = 5a− 3b+ c V = 15a− 7b+ e

I = 10a+ 2b− 7c+ d+ e J = a− c K = −2a+ b− e− c

S = 5a− b− 2c+ e T = 5a+ 3b− 5c+ d

L = (a− b)2 + ae

M = 25a3 − 40a2b+ 21ab2 − 6b3 − 5a2e+ 4abe+ b2e− ae2

N = 8a3 + 3ab2 + 2b3 + 4a2d+ 2abd+ b2d+ ad2

R = 25a3 + 5ab2 + 2b3 − 40a2c+ 10abc− 2b2c+ 11ac2 − 10bc2 + 4c3 + 15a2d

+ b2d− 12acd+ 2bcd+ ad2 − 5a2e− 10abe− b2e+ 9ace+ 7bce− 4c2e

+ ade− bde− ae2 − be2 + ce2

P = 8b3 + 50a2c− 70abc+ 20b2c+ 20ac2 − 14bc2 + 2c3 + 10abd+ 2b2d− 5acd

+ bcd− c2d+ 5ad2 − bd2 − 25a2e+ 20abe− 19b2e+ 6bce+ c2e

− 15ade+ bde+ cde+ 10ae2 + 2be2 − 2ce2

Q = 25a4 + 10a3b− 5a2b2 + 2ab3 + 35a3c− 28a2bc+ 13ab2c− 2b3c− 29a2c2

+ 18abc2 − 4b2c2 − 4ac3 − 5a3d+ 3a2bd+ 9a2cd− 2abcd− 15a3e+ 9a2be

− 7ab2e+ b3e+ 7a2ce− 13abce+ 4b2ce+ 8ac2e− 5a2de+ abde+ 5a2e2

+ 2abe2 − b2e2 − 5ace2 + ae3

Then f is reducible if and only if W = 0 or R = 0. The possible factorizations of f

and when each occurs are in Table 5.1.
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Factorization Equivalent Condition

1 f = (x+ y + z) g W = 0

2 f = (x+ y + z)2 g W = U = 0

3 f = (x+ y + z)3 g W = U = V = 0

4 f = a(x+ y + z)5 a =
b

5
=

c

10
=

d

30
=

e

20

5 f = (x+ ωy + ω2z)(x+ ω2y + ωz)h I = J = 0

6 f = a(x+ ωy + ω2z)(x+ ω2y + ωz)(x+ y + z)3 a =
b

2
= c = −d

6
= −e

7 f = a(x+ ωy + ω2z)2(x+ ω2y + ωz)2(x+ y + z) a = −b = c =
d

3
= −e

4

8

f = (α(ωx2 + y2 + ω2z2) + β(ω2xy + ωyz + xz))

× (α(ω2x2 + y2 + ωz2) + β(ωxy + ω2yz + xz))

× (x+ y + z)

W = L = K = 0

9
f = (αx+ β(y + z))(αy + β(x+ z))(αz + β(y + x))

× (x+ y + z)2
W = U = M = 0

10
f = (αx+ β(y + z))(αy + β(x+ z))(αz + β(y + x))

× (x+ ωy + ω2z)(x+ ω2y + ωz)

I = J = N = 0

11 f = (x+ y + z) g h with deg g = deg h = 2 S = T = 0

12 f = gh with deg g = 3 and deg h = 2 R = 0

13 f = (αx+ β(y + z))(αy + β(x+ z))(αz + β(y + x))g R = P = Q = 0

Table 5.1: Factorization of degree five polynomials
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Proof. Since deg f = 5 and f is reducible, f must factor into one degree one poly-

nomial and a degree four polynomial, five degree one polynomials, three degree one

polynomials and one degree two polynomials, two degree two polynomials and a de-

gree one polynomial, one degree three polynomial and a degree two polynomial, or one

degree three polynomial and two degree one polynomials (assuming each polynomial

in the factorization of f is irreducible).

(1) Suppose f is a product of a degree one irreducible polynomial and a degree

four irreducible polynomial. By Theorem 5.5(1), the degree one polynomial is

symmetric, and is a scalar multiple of x + y + z by Lemma 1.14(2). Now, by

Theorem 5.7, W = 0 and hence f factors as in line 1 of the table.

(2) Suppose f is a product of five degree one polynomials. Now, by Theorem 5.2,

f factors in one of three ways: If f factors as Theorem 5.2(A), then f factors

as in line 9 of the table. If f factors as Theorem 5.2(B), then f factors as in

line 10 of the table. If f factors as Theorem 5.2(C), then f factors as in either

line 4, line 6 or line 7 of the table.

(3) Suppose f is a product of three degree one polynomials and one degree two

polynomials. Let f = gh where g is the product of the degree one polynomi-

als. According to Theorem 5.6, g factors as described by Theorem 3.8. If g

factors as Theorem 3.8(1), then f factors as in line 3 of the table. If f fac-

tors as Theorem 3.8(2), then f factors as in line 5 of the table. If f factors as

Theorem 3.8(3), then f factors as in line 13 of the table.

(4) Suppose f = ghk where g, h and k are irreducible and deg g = deg h = 2
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and deg k = 1. Then by Theorem 5.3, f is a product of two degree two irre-

ducible polynomials and a degree one irreducible polynomial and k is symmet-

ric. By Theorem 1.12, k is symmetric, and is a scalar multiple of x + y + z by

Lemma 1.14(2). Therefore f factors as in line 11 of the table with S = T = 0.

(5) Suppose f is a product of one degree three polynomial and a degree two poly-

nomial. According to Theorem 5.14, this occurs when R = 0 and f factors as

in line 12 of the table.

(6) Suppose f is a product of one degree three polynomial and two degree one

polynomials. By Theorem 5.5(2), the product of the two degree one polynomials

is symmetric and hence, by Theorem 2.5, is a scalar multiple of (x+λy+λ2z)(x+

λ2y + λz) where λ3 = 1. If λ = 1, f factors as in line 2 of the table, and if

λ 6= 1, then f factors as line 5 of the table.

It remains to show that in all of these factorizations, either W = 0 or R = 0. If f

factors as in lines 1, 2, 3, 4, 6, 7, 8, 9 or 11 of the table, then x+ y + z divides f and

so W = 0. If f factors as in line 12 or line 13 of the table, then R = 0. If f factors

as in line 5 or line 10 of the table, then f is a product of a degree two and a degree

three polynomial, so R = 0.

Example 5.17. Consider the polynomial f = x5 + y5 + z5 + x3y2 + x2y3 + x3z2 +

y3z2 + x2z3 + y2z3. For this polynomial a = c = 1 and b = d = e = 0. Plugging

these values into the formula for R we find that R = 0. As a result, from line 12 of

the table, we know that f is a product of a degree 3 and degree 2 polynomial. Does f

factor further?
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No. Plugging in the values we find that W = 15 6= 0, and so x + y + z does

not divide f and consequently f does not factor as in lines 1, 2, 3, 4, 6, 7, 8, 9 or 11

of the table. Since I = 3 6= 0, f does not factor as lines 5 and 10 of the table. Since

Q = 27 6= 0, f does not factor as line 13 of the table. Since all possible factorizations

of f are in the table, we now know that f does not factor further.

Since R = 0, we can use Theorem 5.14 to find the factors of f . Because S = 3

and T = 0, (5.11) implies that

f = (x2 + y2 + z2)(x3 + y3 + z3).

As expected, these factors of f are irreducible.

57



References

[1] Richard M. Foote and David S. Dummit, Abstract Algebra, Third Edition, John

Wiley and Sons, Inc., 2004.

[2] Shuhong Gao, Factoring Multivariate Polynomials Via Partial Differential Equa-

tions, Mathematics of Computation Vol. 72, (2002), 801-822.

[3] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics Vol. 73,

Springer-Verlag, 1974.

[4] A.K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, Factoring polynomials with ra-

tional coefficients, Mathematische Annalen, 161 (1982), 515-534. MR 84a:12002

[5] Bruce E. Sagan, The Symmetric Group Representations, Combinatorial Algo-

rithms, and Symmetric Functions, Graduate Texts in Mathematics Second Edi-

tion, Springer-Verlag, 1991.

58


