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ABSTRACT

To what Extent is the Kazhdan Constant

a Graph Invariant?

By

Marcos Antonio Reyes

In this thesis, we investigate the Kazhdan constant of groups and generating

sets associated with Cayley graphs. In particular, we look at groups and generating

sets that yield isomorphic Cayley graphs and compute their Kazhdan constants–in

other words we are asking if the Kazhdan constant is a Cayley graph invariant. We

give explicit formulas for the Kazhdan constant of the group Zn with generating set

{1, n−1} and the dihedral group Dn, which has order 2n, with generating set {s, sr},

where s is a reflection and r is a rotation. We also find a sufficient condition for the

Kazhdan constant to be a Cayley graph invariant.
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2.2. Ádám’s Conjecture ......................................................................... 6

2.3. Introduction to Expander Families ................................................. 9

3. Representation Theory............................................................................. 11

3.1. Irreducible Representations of a Finite Group ............................... 12

3.2. Characters ...................................................................................... 16

3.3. Examples of Representations .......................................................... 17

4. Kazhdan constants .................................................................................... 23

4.1. Properties of the Kazhdan Constant .............................................. 23

4.2. Examples and Known Results ........................................................ 27

5. Main Results ............................................................................................. 30

5.1. Isomorphic Cayley graphs with different groups and equal Kazh-

dan constants.................................................................................. 31

vi



5.2. Isomorphic Cayley graphs with the same group give equal Kazh-

dan constants ................................................................................. 38

5.3. Conjectures Regarding the Kazhdan Constant............................... 45

References .............................................................................................................. 46

Appendices

A. C++ code for the Kazhdan constant ........................................................ 47

vii



LIST OF FIGURES

Figure

2.1. Comparing Cayley graphs from our previous two examples. ................... 5

5.1. Justification for θ ..................................................................................... 33

5.2. Visualization of argument ........................................................................ 33

5.3. Visualization of argument rotated............................................................ 34

viii



CHAPTER 1

Introduction

1.1 Overview

In Chapter 1 of this thesis we give an overview of the thesis and a brief discus-

sion about the Kazhdan constant. Chapter 2 will encompass the basic background we

need from graph theory in order to make our problem more tangible for the reader.

We discuss properties of Cayley graphs, the adjacency matrix associated to a graph,

the isoperimetric constant of a graph, and most importantly expander families. Chap-

ter 3 is the study of representation theory and character theory. We again go over

basic results in this field with examples that will later aid us in solving our main ques-

tion at hand. Chapter 4 is the study of the Kazhdan constant and its properties. We

derive useful properties and state known results which relate the Kazhdan constant

to other graph theory invariants. Our last chapter will focus on the main result and

some conjectures we propose for the next generation of scholars.

Remark 1.1. We expect the reader to have a sufficient knowledge of group theory

and basic knowledge in graph theory. Readers inclined to learn the needed graph

theory can refer to [7]. We include the theory of graphs in order to obtain a tangible

application of our main result to the reader.

1.2 Significance

Expander families (certain sequences of graphs) are a subject of much interest, both
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in their own right, and also because of their many applications in computer science.

See, for example, [6] for a survey of this topic. One way to produce expander families

is through the Cayley graph construction, in which a group G and a symmetric subset

Γ of G are used to create a graph. Every such pair (G,Γ) has an associated Kazhdan

constant κ(G,Γ), as defined in Section 4.1 below. As discussed in [6], one common

method for studying the expansion properties of a sequence of Cayley graphs is to

look at the Kazhdan constants of the pairs (G,Γ) used to create the graphs. Hence

our interest in Kazhdan constants.

It is possible for two different pairs (G1,Γ1) and (G2,Γ2) to produce iso-

morphic Cayley graphs. The book [7] raises the question: To what extent is the

Kazhdan constant a graph invariant? In particular, if (G1,Γ1) and (G2,Γ2) pro-

duce isomorphic Cayley graphs, must we then have κ(G1,Γ1) = κ(G2,Γ2)? In this

thesis, we answer that question in the positive way, by exhibiting infinitely many

examples of pairs (G1,Γ1) and (G2,Γ2) which yield isomorphic Cayley graphs and

κ(G1,Γ1) = κ(G2,Γ2). The groups in question are cyclic and dihedral groups, and

we choose Γ1 and Γ2 such that the corresponding Cayley graphs are cycle graphs.

Kazhdan constants are defined in terms of representations of the underlying

group. We assume familiarity with basic representation theory.
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CHAPTER 2

Graph Theory

The study of graph theory is a deep and rich subject, from the birth of graph

theory due to Euler up until the recent discovery of showing the chromatic number of

the plane is at least five. This thesis will only discuss a small sample of topics in the

field of graph theory which are pertinent to our main discussion. This chapter builds

up to the interplay between representation theory and graph theory, so we want the

reader to have exposure to how the Kazhdan constant plays a role in graph theory.

This chapter is structured as follows. We define what a Cayley graph is and

give examples and properties. We then look at the associated matrix which stems

from a graph. In the same section we discuss a conjecture stated by Ádám [1] that

gives another form of isomorphism related to Cayley graphs. The last section discusses

expander families, which relates to the core of the thesis.

2.1 What are Cayley Graphs?

The definition of Cayley graphs gives an algorithm to construct a graph from a group

and a subset of that group. Besides this useful algorithm to generate a graph, Cayley

graphs are used because we can use properties in group theory to tell us information

about the graph. We give the following definition that describes this type of graph

below.

Remark 2.1. Note that we will only consider simple graphs in this thesis.

Definition 2.2 (vertex set, edge set). A graph is composed of a vertex set Vx and an
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edge set E. Let v, w ∈ Vx. If {v, w} ∈ E, then we say that v and w are adjacent.

Definition 2.3 (graph isomorphism). An isomorphism from a graph G to a graph

H is a bijection f : V (G) → V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈

E(H). We say “G is isomorphic to H” if there is an isomorphism from G to H.

Definition 2.4 (symmetric subset). Let G be a group and Γ a subset of G. We say

that Γ is a symmetric if whenever γ is an element of Γ, then γ−1 is an element of

Γ. We denote a symmetric subset by the symbol ⊂s .

Definition 2.5 (Cayley Graph). Let G be a group and Γ ⊂s G. The Cayley graph

of G with respect to Γ, denoted by Cay(G,Γ), is defined as follows. The vertices of

Cay(G,Γ) are the elements of G. Two vertices x, y ∈ G are adjacent if and only if

there exists γ ∈ Γ such that x = γy. In other words, y−1x ∈ Γ.

We give a couple of examples to illustrate the definition of a Cayley graph.

Example 2.6. We compute the Cayley graph of the group Z6 with subset {1, 5}.

adj. vert. 1 x ∼ y 5 x ∼ y
0 0 + 1 = 1 0 ∼ 1 0 + 5 = 5 0 ∼ 5
1 1 + 1 = 2 1 ∼ 2 1 + 5 = 0 1 ∼ 0
2 2 + 1 = 3 2 ∼ 3 2 + 5 = 1 2 ∼ 1
3 3 + 1 = 4 3 ∼ 4 3 + 5 = 2 3 ∼ 2
4 4 + 1 = 5 4 ∼ 5 4 + 5 = 3 4 ∼ 3
5 5 + 1 = 0 5 ∼ 0 5 + 5 = 4 5 ∼ 4

Refer to Figure 2.1(a).

Example 2.7. We compute the Cayley graph of the group D3 with subset {s, sr}

where s denotes the reflection about the x-axis and r a rotation of 120 degrees.
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adj. vert. s x ∼ y sr x ∼ y

e e(s) = s e ∼ s e(sr) = sr e ∼ sr
r r(s) = sr2 r ∼ sr2 r(sr) = s r ∼ s
r2 r2(s) = sr r2 ∼ sr r2(sr) = sr2 r2 ∼ sr2

s s(s) = e s ∼ e s(sr) = r s ∼ r
sr sr(s) = r2 sr ∼ r2 sr(sr) = e sr ∼ e
sr2 sr2(s) = r sr2 ∼ s sr2(sr) = r2 sr2 ∼ r2

Refer to Figure 2.1(b).

(a) Cay(Z6, {1, 5}) (b) Cay(D3, {s, sr})

Figure 2.1: Comparing Cayley graphs from our previous two examples.

Remark 2.8. From the previous two examples we can notice some trends about

Cayley graphs. Note that even though our corresponding groups are not isomorphic,

the Cayley graphs of non-isomorphic groups can be isomorphic Cayley graphs. Also,

does it always have to be the case that the if the subset of the group generates the

group then the Cayley graph associated to those pairs forms a connected graph? A

last note, is every Cayley graph |Γ|-regular where Γ is the generating set? Are these

conjectures true for all Cayley graphs or are these cycle graphs a special case of this

phenomenon? It turns out these facts are true for any Cayley graphs. We present

the propositions below.
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Proposition 2.9. Let G be a finite group and Γ a symmetric subset of the group with

cardinality d. Then the following properties hold:

(1) Cay(G,Γ) is |d|-regular.

(2) Cay(G,Γ) is connected if and only if Γ generates G.

Remark 2.10. We note that not every regular graph is a Cayley graph. The canonical

example is the Peterson graph.

Proposition 2.11. Let G be a finite group and Γ⊂s G. Suppose Cay(G,Γ) is a cycle

graph then G is a either a cyclic group or dihedral group.

The proofs of proposition 2.9 and 2.11 are straightforward and left to the

reader.

2.2 Ádám’s Conjecture

In 1967, A. Ádám conjectured necessary and sufficient conditions for two Cayley

graphs of a cyclic group of order n to be isomorphic. In 1969, the first counterexample

was given by Bernard Elspas and James Turner (1969)[4]. In the same paper they

give conditions for n that make Ádám’s conjecture hold. Pàlfy[9] later gives necessary

and sufficient conditions for when Ádám’s conjecture holds. In section 5.2 we create

a family of Cayley graphs for which Ádám’s conjecture fails.

This section is devoted to the statement of Ádáms conjecture. To state it, we

must define “Cayley isomorphism” which plays an important role in later chapters.

We first state Ádám’s conjecture in its original form. We then rephrase it using more

general group–theoretical language.
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Definition 2.12 (Adjacency Matrix). Let X be a graph with an ordering of its vertices

given by v1, v2, . . . , vn. Then the adjacency matrix for X is the matrix A, where

Ai,j is the number of edges that are incident to both vi and vj.

Example 2.13. We find the adjacency matrix of Cay(Z6, {1, 5}). Looking back at

Figure 2.1 we can determine the adjacency matrix of our Cayley graph, which is:


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


with respect to the natural ordering of the vertices.

Remark 2.14. We notice from the previous example that the rows of the matrix are

cyclic permutations of each other. This motivates a definition.

Definition 2.15. A matrix C is called circulant if it can be written in the form

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0 . . . cn−3
...

...
...

. . .
...

c1 c2 c3 . . . c0


Remark 2.16. We note two things. Since we can create an adjacency matrix associ-

ated to a graph we can talk about eigenvalues. Also, since we are only working with

Cayley graphs, which are simple, with symmetric subset our adjacency matrix will

be symmetric, hence we get that the eigenvalues are all real. Now for our research,

it turns out that for regular graphs the most interesting and useful eigenvalue is the

second-largest eigenvalue. It turns out that the second-largest eigenvalue is strongly

related to the Kazhdan constant. Readers can refer to [7] if they are inclined to learn
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more about how the second largest eigenvalue interacts with the Kazhdan constant.

Definition 2.17. Let G be a graph with n vertices, and let 0 < γ1 < . . . < γm < n be a

given set of m integers. The set Γ = {γ1, . . . , γm} is said to be called the connection

set of G if the adjacency matrix of G is a circulant matrix with 1’s in positions

γ1, . . . , γm of the first row.

Definition 2.18. Let G be a graph with n vertices, and let Γ1 = {γ1, . . . , γm} be

a connection set of G. If there exists an integer r relatively prime to n such that

Γ2 = rΓ1 = {rγi : γi ∈ Γ1}, then this is called equivalence of connection set.

Conjecture 2.19. Two graphs with circulant adjacency matrices are isomorphic if

and only if there is an equivalence of their connection sets.

With a little deciphering of the language used in the conjecture we get a

modified version of Adams conjecture. We state a necessary definition to help make

this modified conjecture come to life. It turns out this idea will also play a pivotal

role in the upcoming chapters.

There is a straightforward sufficient condition for when Cayley graphs are

isomorphic. The proof is left to the reader.

Proposition 2.20. Let G be a group. Let Γ1,Γ2 ⊂s G. If there exists φ ∈ Aut(G)

such that φ(Γ1) = Γ2, then Cay(G,Γ1) ∼= Cay(G,Γ2).

Definition 2.21. Let G be a group. Let Γ1,Γ2 ⊂ G. We say (G,Γ1) and (G,Γ2)are

Cayley isomorphic if there exists an automorphism φ of G such that φ(Γ1) = Γ2.

Definition 2.22. A group G is called a CI-group if, for any subsets Γ1,Γ2 ⊂ G,

whenever Cay(G,Γ1) ∼= Cay(G,Γ2), then there exists an φ ∈ Aut(G) such that

φ(Γ1) = Γ2.
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Remark 2.23. Àdàm’s conjecture precisely states that every finite cyclic group is a

CI-group. As it turns out, there are necessary and sufficient conditions for Àdàm’s

conjecture to be true.

Theorem 2.24. Zn is a CI-group if and only if (n, ϕ(n)) = 1 or n = 4, where ϕ in

this case is the Euler function [9].

2.3 Introduction to Expander Families

We think of expander families as being a “good” communication network, i.e., reli-

able, fast while still being cost-effective. There is a strong connection regarding the

isoperimetric constant and the second- largest eigenvalue. Readers can refer to [7] if

interested. The isoperimetric constant plays a pivotal role in making the Kazhdan

constant palpable to graph theorist.

Definition 2.25 (Boundary). Let X be a graph with vertex set V . Let F ⊂ V . The

boundary of F , denoted by ∂F , is defined to be the set of edges with one endpoint

in F and one endpoint in F c. That is, ∂F is the set of edges connecting to F to F c.

Definition 2.26 (Isoperimetric constant). The isoperimetric constant of a graph

X with vertex set V is defined as

h(X) = min

{
|∂F |
|F |

: F ⊂ V and |F | ≤ |V |
2

}
.

Definition 2.27 (Expander Family). Let d be a positive integer. Let (Xn) be a

sequence of d-regular graphs such that |Xn| → ∞ as n→∞. We say that (Xn) is an

expander family if the sequence (h(Xn)) is bounded away from zero.

Let us consider a cycle graph of order n when n is even. If |F | = n
2

and the
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vertices of F form a path in the cycle graph, then |∂F | = 2. Hence, h(Cn) ≤ 4
n
.

Thus, limn→∞ h(Cn) = 0. Therefore by Definition 2.39, cycle graphs of even

order do not form expander families. A similar argument works for odd cycle graphs

also.

Remark 2.28. We notice that cycle graphs do not form an expander family. In

other words, they are bad communication networks— which was already apparent

in the structure of the graphs. They are neither fast, nor reliable as communication

networks.
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CHAPTER 3

Representation Theory

In the world of mathematics it is extremely difficult to pinpoint the manifes-

tation of an idea, but in the case of representation theory historians were able to

accomplish this task. The birth of representation theory came from a correspondence

from Frobenius to Dedekind via letters starting April 12, 1896. The content of these

letters discussed the factoring of “group determinants”. It was in this exchange that

character theory came forth and helped solidify the idea of a representation. Now the

general style of teaching representation theory is to define a representation and then

from this create the definition of a character, while Frobenius’ original approach was

the opposite. [8]

In this chapter we work with the ideas of representations of a finite group and

the characters of those representations. The first section gives the basic definition

of a representation with some examples. We also state a theorem by Maschke that

is a well-known structure theorem in algebra. The second section is devoted to the

characters of these representations and how they play a pivotal role in constructing

irreducible representations. Lastly, we give classical examples of the irreducible rep-

resentations of the dihedral and cyclic group; we also use character theory to aid us

in finding these irreducible representations. We warn the reader that this material

is not self-contained. These are merely tools that we need to help us solve our main

problem. Many of the pivotal proofs of the theory will not be presented. We incorpo-

rated what we deemed necessary for each subject in order for the reader to familiarize

themselves with the techniques. Another reason why we choose these results in par-
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ticular is because we find them beautiful results in the world of mathematics. Readers

inclined to see a proof of these results can refer to [7] or [10].

3.1 Irreducible Representations of a Finite Group

This section will include examples and definitions that are pertinent to the discus-

sion of the Kazhdan constant. A global restriction we impose in this paper is that

the vector spaces are finite-dimensional; the field we are considering is the complex

numbers; and lastly that our group is finite.

Definition 3.1. Let G be a finite group. A linear representation of G is a group

homomorphism ρ : G → GL(V ), where V is a finite-dimensional vector space over

C. We define the degree of ρ or the dimension of ρ to be the dimension of V as a

vector space over C.

Definition 3.2. Let n ∈ N. A matrix representation of G is a group homomor-

phism from G to GL(n,C).

Definition 3.3. We say that ρ : G→ GL(V ) and ρ′ : G→ GL(V ′) are equivalent

(or similar) representations if there is a linear isomorphism φ : V → V ′ such

that

ρ′(g) ◦ φ = φ ◦ ρ(g).

Remark 3.4. From the definition of equivalent representations, we notice that linear

representations and matrix representations coincide for a finite-dimensional vector

space. This is evident by fixing a basis of V to obtain an isomorphism from GL(V ) to

GL(n,C). Most of the computations will be done considering matrix representations,
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while most theorems will be stated in the context of a linear representation.

Example 3.5. We find two representations for the Klein group.

We will construct two representations. Let K4G be the Klein group: K4G =

{e, a, b, ab}. Let us look at the case when our general linear group is the group of units

of the complex numbers, i.e GL1(C) = C∗. So our goal is to find two homomorphisms

ρ1, ρ2 : G → C∗. If our map, ρ, is a homomorphism then it must be the case that

ρ(e) = 1. Now if ρ(a) ∈ C∗ then |ρ(a)| = 1 or 2 and so ρ(a) = 1 or ρ(a) = −1. Let

us consider the case when |ρ(a)| = 1. Now ρ(b) ∈ C∗, so |ρ(b)| = 1 or 2.

Subcase(1): ρ(b) = 1, so ρ(ab) = ρ(a)ρ(b) but then ρ(ab) = 1.

Subcase(2): ρ(b) = −1, so ρ(ab) = ρ(a)ρ(b) = 1ρ(b) = ρ(b) = −1.

Now the possible functions: ρ1(x) = 1 for all x ∈ K4G and ρ2(e) = ρ2(a) = 1

and ρ2(b) = ρ2(ab) = −1 could be homomorphisms. The reader is left to show that

in fact they are. Thus, these two functions are representations from the Klein four

group to GL1(C∗). Note that Im(ρ2) = 〈−1〉 which is a subgroup of the group of

units of the complex numbers.

Remark 3.6. First things first. We call ρ1 the trivial representation, i.e. the trivial

homomorphism, which is always a representation for each group. Now the technique

described above is important because it is one way to construct a representation. It

is not the most efficient way but at least we have a possible method. This technique

also shows why we work with finite groups.

Example 3.7. Is it possible to find a non-trivial n–dimensional representation of the

Klein group, where n is an integer greater then one?

The question is asking if there exists a function ρ such that ρ : G→ GLn(C)
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is a homomorphism. Let us look at the case when n = 2. Following the same logic as

above we are left to find which elements have order 2 in GL2(C). Below we have one:

(
0 1
1 0

)
.

Note that it doesn’t matter which element of order two we choose, so long

as we stay consistent through out the construction of the representation. Therefore,

following the same logic as the previous example, one representation is defined as

below:

ρ(e) = ρ(a) =

(
1 0
0 1

)
, ρ(b) = ρ(ab) =

(
0 1
1 0

)
The reader can now generalize this idea to n dimensions to construct repre-

sentations.

Example 3.8. We will find a non-trivial representation for the cyclic group of order

four.

Let us not work too hard on this one. Intuitively, the elements of Z4 are the

rotations of a square that leave it invariant. Hence, let ρ(a) = e
aπi
2 . This is in fact a

homomorphism from Z4 → C∗. Let a, b ∈ Z4 then ρ(a + b) = e
(a+b)πi

2 = e
aπi
2 · e bπi2 =

ρ(a) · ρ(b) which shows that ρ is a representation.

Remark 3.9. The reader might be wondering at this point if there are an infinite

number of non-trivial representations for a finite group. If we look at special represen-

tations, called irreducible representations, we can answer this question in a surprising

way. The answer to this question will be in the next section.

Definition 3.10. Let G be a finite group and ρ : G→ GL(V ) be a representation of

G. We say that a subspace W of V is a G-invariant subspace if ρ(g)w ∈ W for

14



all g ∈ G and w ∈ W . The G-invariant subspaces {0} and V are called the trivial

invariant subspace of V . We say that V is reducible if it contains a nontrivial

G-invariant subspace. Otherwise, we say V is irreducible.

Remark 3.11. By the definition of an irreducible representation we automatically

get that every one-dimensional representation is an irreducible representation.

Example 3.12. Which representations, from the previous examples, are irreducible

representations? We know all one-dimensional representations are irreducible rep-

resentations. We look at example 3.6. Every representation is reducible in that

example when n ≥ 2. Consider the vector subspace Span{(1, 1, . . . , 1)t} with where

(1, 1, . . . , 1)t} ∈ Cn.

Definition 3.13. Let ρ : G→ GL(V ) be a representation of a group G. If the vector

space under consideration, V , has an inner product such that:

〈ρ(g)v, ρ(g)w〉 = 〈v, w〉

for all g ∈ G and v, w,∈ V , then we say that ρ is a unitary representation with

respect to 〈·, ·〉.

Remark 3.14. Note that not every representation is unitary with respect to every

inner product, but it turns out that we can construct a new inner product from an

old one such that with respect to the new inner product the representation will be

unitary.

Theorem 3.15. Ever representation is a direct sum of irreducible representations.[10]
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3.2 Characters

Characters are a useful tool to help classify representations. More importantly

they carry important information about the representation in a more compact form.

Character theory was used in the classification of finite simple groups. In this section

we state definitions and important results that will aid us in the next section. Each

theorem, lemma or definition can be found in [10].

Definition 3.16 (character). Let ρ(g), g ∈ G be a matrix representation. Then the

character of ρ is defined as:

χ(g) = tr ρ(g)

where tr is the trace of the matrix.

Note that elements in the same conjugacy class have the same character value.

Definition 3.17. Let G be a group. The character table of G is an array with

rows indexed by the non-equivalent irreducible characters of G and columns indexed

by the conjugacy classes.

Definition 3.18. Let χ and ψ be any two functions from a group G to the complex

numbers. The inner product of χ and ψ is defined as :

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

Theorem 3.19. Let G be a finite group and ρ a representation of G with associated

character χ. Then ρ is irreducible if and only if 〈χ, χ〉 = 1.

Theorem 3.20. Two representations of a finite group are equivalent if and only if

they have the same characters.
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Theorem 3.21. The number of non-equivalent irreducible representations of the

group is equal to the number of conjugacy classes.

Lemma 3.22. Let G be a group. Then G is abelian if and only if all the irreducible

representations of G have degree 1.

Lemma 3.23. Let G be a finite group, then the number of 1-dimensional represen-

tations is equal to |G/[G,G]|, where [G,G] denotes the commutator subgroup of G.

3.3 Examples of Representations

One goal of finite group representation theory is to classify all irreducible repre-

sentations of a group. One can gather some information about the characters and

representations that gives you results about the group. As it turns out, all irreducible

representations of cyclic groups, abelian groups, dihedral groups and many other

groups have been classified. In this section we construct the irreducible representa-

tions of the cyclic and dihedral groups. We use most of the results in the previous

section to construct these irreducible representations. We will need these families

of representations to aid us in proving our main result. These constructions can be

found in [7] and [10].

Example 3.24. We find all unitary irreducible representations of Zn.

From lemma 3.22 above, we know that every irreducible representation of Zn

is of degree 1. Now, intuitively the elements of the cyclic group of order n are the

rotations of an n-gon that leave the n-gon fixed. Now rotations in the complex plane

look like eiθ. With a moment’s thought, we realize that e
2πi
n is a rotation of 2π

n
that
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leaves the n-gon invariant about the origin. We quickly realize that 〈e 2πi
n 〉 is a cyclic

subgroup of C∗, hence isomorphic to Zn– because any two cyclic groups of order n

are isomorphic. Now, let ρ be a function such that ρ : Zn → C∗, where ρ(1) = e
2πi
n ,

since in an isomorphism a generator must be mapped to a generator. We also know

that a generator dictates the map, so ρ(a) = e
2aπi
n where a ∈ Zn. We show that for

each 1 ≤ j ≤ n, ρj(a) = e
2ajπi
n is a homomorphism from Zn to C∗. Let a, b ∈ Zn.

Then ρi(a + b) = e
2(a+b)jπi

n = e
2ajπi
n · e 2bjπi

n = ρ(a) · ρ(b). We now need to show that

these irreducible representations are pairwise distinct to show we have constructed all

n representations. This is done by showing 〈ρj(l), ρk(l)〉 = 0 for 0 ≤ k < j ≤ n − 1.

So 〈ρj(l), ρk(l)〉 = 1
|G|
∑n−1

l=0 e
2ljπi
n · e−2akπi

n = 1
|G|
∑n−1

l=0 e
2l(j−k)πi

n . Let ξ = e
2(j−k)πi

n . Then

we get 1
|G|
∑n−1

l=0 ξ
l = 1

|G| ·
1−ξn
1−ξ = 0, since 1 − ξ 6= 0 and ξ ∈ 〈e 2πi

n 〉. This shows that

these representations are inequivalent to each other; ergo, we have n one-dimensional

irreducible representations of Zn. Lastly, these representations are unitary, because

〈e 2πiaj
n z1, e

2πiaj
n z2〉2 = e

2πiaj
n z1 · e

−2πiaj
n z2 = e

2πiaj
n · e−2πiaj

n · z1 · z2 = 〈z1, z2〉.

Example 3.25. We find all unitary irreducible representations of Dn.

The dihedral group of order 2n can be defined as:

Dn := 〈r, s : rn = s2 = e, rs = sr−1〉 = {e, r, r2, . . . , rn−1, s, sr, . . . , srn−1}.

Let us find the conjugacy classes for Dn. This will tell us how many irreducible

representations it has by theorem 3.21. Our first step is to compute the conjugacy

class of a rotation ri. Conjugating ri by another rotation, rj, we get the same rotation

ri. Let us now conjugate ri by some reflection srk:

srk(ri)(srk)−1 = srkrir−ks = srk+i−ks = sris = ssr−i = r−i.
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We can now conclude that the conjugacy class of ri consists of {ri, r−i}. We notice

that if n is even, the inverse of rn/2 is itself. Thus the conjugacy classes for the

rotations, when n is even, breaks up into these class types: {e}, {rn/2}, {ri, r−i} for

i = 1, . . . (n− 2)/2 . Now if n is odd, the conjugacy classes break up into two types:

{e}, {ri, r−i} for i = 1, . . . , (n− 1)/2.

Let us now compute the conjugacy class of an element of the form srk.

If we conjugate by some ri, we get:

ri(srk)r−i = srk−2i.

If we conjugate by some sri, we get:

sri(srk)(sri)−1 = sr2i−k.

We readily see that the conjugacy class of an element of the form srk consists

of {srk−2i : i ∈ Z}. From the above, we see that sr is conjugate to sr3, sr5 . . . while

s is conjugate to sr2, sr4, . . . and these two sets are disjoint if n is even. However,

sr is conjugate to srn−1 (via r) so if n is odd, all nontrivial reflections form a single

conjugacy class. This information is summarized below.

If n is odd, all of the reflections form a single conjugacy class:

{s, sr, . . . , srn−1}.

If n is even then the reflections break into two different classes:

{s, sr2, . . . , srn−2} and {sr, sr3, . . . , srn−1}.

Let us now count how many conjugacy classes we have. First, let us consider

when n is odd. From the analysis above, conjugacy classes of rotations come in pairs.
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Since we have n − 1 rotations and n is odd, we have (n − 1)/2 conjugacy classes.

Now because the identity element is always in its own conjugacy class we have one

more conjugacy class. And from our previous calculations the reflections form a single

conjugacy class when n is odd. This gives us a total of (n + 3)/2 conjugacy classes

when n is odd.

Let us consider now when n is even. We have again n− 1 rotations. We have

also again that rotations come in pairs when n is even. The only difference in this

case is that rn/2 is in its own conjugacy classes; hence, we have (n−2)/2+2 conjugacy

classes of rotations and 2 conjugacy classes of reflections. We have in total n/2 +3

conjugacy classes when n is even.

We are now ready to construct our classes of representations for the dihedral

group. Let ξ = e
2πi
n . For each integer j with 1 ≤ j < n/2, define

Rj =

(
ξj 0
0 ξ−j

)
, S =

(
0 1
1 0

)
, SRj =

(
0 ξ−j

ξj 0

)
,

We can readily see that the following equations hold:

Rn
j = S2 = I, RjS = SR−1

j .

We note that 〈Rj, S〉 forms a subgroup of GL(2,C)

If we define ρj : Dn → GL(2,C) by:

ρj(r
a) =

(
ξaj 0
0 ξ−aj

)
,

ρj(sr
a) =

(
0 ξ−aj

ξaj 0

)
(a, b,∈ Z).

20



we obtain a representation ρj of Dn for each j with 1 ≤ j < n/2.

We now show these representations of degree two are irreducible and distinct.

We use the inner product method to show this.

Let 1 ≤ l ≤ j < n
2
, then 〈χ(ρj), χ(ρl)〉 = 1

|Dn|
∑n−1

k=0 χ(ρj(r
k))χ(ρl(r

k)) +∑n−1
k=0 χ(ρj(sr

k))χ(ρl(sr
k)) = 1

|Dn|
∑n−1

k=0(ξkj + ξ−kj)(ξkl + ξ−kl) = 1
|Dn|

∑n−1
k=0(ξk(j−l) +

ξk(j+l) +ξ−k(j+l) +ξk(l−j)) by our assumption, we get 0 < j+l < n. therefore, ξj+l 6= 1.∑n−1
k=0 ξ

k(j+l) = χn(j+l)−1
χ(j+l)−1

= 0 by the same reasoning
∑n−1

k=0 ξ
−k(j+l) = 0. We now get

〈χ(ρj), χ(ρl)〉 = 1
|Dn|

∑n−1
k=0(ξk(j−l) + ξk(l−j)).

If l = k then 1
|Dn|

∑n−1
k=0(ξ0k + ξ0k) = 1 which shows that ρj is an irreducible

representation for all 1 ≤ j < n
2
. We now show all these representations are distinct.

If l 6= k, then 0 < l− k < n and
∑n−1

k=0 ξ
k(j−l) =

∑n−1
k=0 ξ

k(l−j) = 0 which shows each ρj

are distinct for every 1 ≤ ρ < n/2.

We have now constructed distinct irreducible characters χj of Dn, one for each

j which satisfies 1 ≤ j < n/2.

Let us now find the one-dimensional irreducible representations. From lemma3.23,

it is enough to find the commutator subgroup of G.

[ri, rj] = ri(rj)r−i(rj)−1 = e,

[ri, srj] = ri(srj)r−i(srj)−1 = (r2)i,

[srj, ri] = (srj)ri(srj)−1(ri)−1 = (r2)−i,

[sri, srj] = sri(srj)(sri)−1(srj)−1 = (r2)(j−i).

Ergo, the commutator subgroup is equal to 〈r2〉.
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Now, when n is even we will have four one-dimensional irreducible representa-

tions and when n is odd we will have two one-dimensional irreducible representations.

The representations for the one-dimensional case are equal to the character of the rep-

resentation. A final note: Each two-dimensional representation is unitary since each

matrix is equal to its own conjugate transpose.

We give the one-dimensional irreducible representation of Dn below. The first

table gives the nontrivial irreducible representations when n is even.

χ rk srk

χ1 1 1
χ2 1 −1
χ3 (−1)k (−1)k

χ4 (−1)k (−1)k+1

This table gives the nontrivial irreducible representations when n is odd.

χ rk srk

χ1 1 −1
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CHAPTER 4

Kazhdan constants

This chapter will begin with the definition of the Kazhdan constant followed by

some properties relating to the Kazhdan constant. In the next section we compute the

Kazhdan constant of tangible abelian groups so the reader can become familiar with

the techniques used. We then state known results of computed Kazhdan constants.

4.1 Properties of the Kazhdan Constant

This section consists of the definition of the Kazhdan constant with some

necessary properties of the Kazhdan constant. A good amount of the results from

the next chapter will refer to these properties to help eliminate redundant cases when

computing the Kazhdan constant.

Definition 4.1. Let G be a finite group, and let Γ ⊂ G. Let ρ be a unitary repre-

sentation of G on some representation space V with G-invariant inner product 〈·, ·〉

where ‖ · ‖ is the associated norm. When Γ 6= φ, we define

κ(G,Γ, ρ, 〈·, ·〉) = min
‖v‖=1

max
γ∈Γ
‖ρ(γ)v − v‖.

Definition 4.2. Let G be a finite nontrivial group, and let Γ ⊂ G. Define

κ(G,Γ) = min
ρ
{κ(G,Γ, ρ)},

where the minimum is over all nontrivial irreducible unitary representations of G.

The quantity κ(G,Γ) is called the Kazhdan constant of the pair (G,Γ).
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Lemma 4.3. If φ and ρ are equivalent representations, then κ(G,Γ, φ) = κ(G,Γ, ρ).

The proof of this can be found in [7].

Remark 4.4. Note that representations inGL(V ) are equivalent to representations in

GL(n,C) where n is the dimension of the vector space V . Due to this fact, we mostly

work with matrix representations to find the Kazhdan constant in the upcoming

chapter.

Lemma 4.5. Let G be a group and Γ1,Γ2 ⊂ G. Suppose that Γ1 ∪ Γ−1
1 = Γ2 ∪ Γ−1

2 .

Then κ(G,Γ1) = κ(G,Γ2).

Proof. It is enough to show that ||ρ(γ)v − v|| = ||ρ(γ−1)v − v|| since the Kazhdan

constant ranges over the same irreducible representations for both norms. With-

out loss of generality assume ρ is a unitary irreducible representation of G on some

representation space V with a G-invariant inner product.

||ρ(γ)v − v|| = ||ρ(γ)v − Iv|| = ||ρ(γ)v − ρ(e)v|| = ||ρ(γ)v − ρ(γγ−1)v|| =

||ρ(γ)v − ρ(γ)ρ(γ−1)v|| = ||ρ(γ)[v − ρ(γ−1)v]|| = ||v − ρ(γ−1)v|| = ||ρ(γ−1)v − v||.

Here we use that ρ is unitary with respect to the inner product on V .

Lemma 4.6. Let G be a group and Γ1,Γ2 ⊂ G. If there exists φ ∈ Aut(G) such that

φ(Γ1) = Γ2 then κ(G,Γ1) = κ(G,Γ2).

Proof. The crux of the argument is to show that the set {ρ1, ρ2, . . . , ρn} of all irre-

ducible representations on V has the same cardinality as the set of all irreducible

representations of the form ρi ◦ φ, where φ is an automorphism of G. Suppose ρ is

a nontrivial irreducible representation on V , and φ ∈ Aut(G). Then ρ ◦ φ is a rep-

resentation on V , since the composition of two homomorphisms is a homomorphism.

We need to show that ρ ◦ φ is a nontrivial representation whenever ρ is a nontrivial
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representation.

Claim 4.7. If ρ is a nontrivial representation from G to GL(V ), and φ ∈ Aut(G),

then ρ ◦ φ is a nontrivial representation from G to GL(V ).

Proof. We prove the contrapositive of the statement. Suppose ρ ◦ φ is the trivial

representation, then ρ ◦ φ(g1) = idv, for all φ(g1) ∈ G, where idv is the identity on V

and g1 ∈ G. Since φ is onto, for all g ∈ G, there exists a g1 ∈ G such that φ(g1) = g.

Therefore, ρ(g) = idv for all g ∈ G. This proves the claim.

Claim 4.8. If ρ is a nontrivial irreducible representation from G to GL(V ), and

φ ∈ Aut(G), then ρ ◦ φ is a nontrivial irreducible representation from G to GL(V ).

Proof. We prove the contrapositive of the statement. Suppose ρ◦φ is reducible. Then

there exists a proper nontrivial subspace W of V such that ρ ◦ φ(g)w ∈ W for all

g ∈ G and w ∈ W . Since φ is an automorphism of the group, it is an onto function

unto itself. Hence ρ(g1)w ∈ W for all g1 ∈ G and w ∈ W , where g1 = φ(g). This says

that ρ is a reducible representation, which proves the claim.

Let φ ∈ Aut(G). A = {ρ | ρ : G → GL(V ) is a nontrivial irreducible

representation} and B = {ρ ◦ φ | ρ ◦ φ : G → GL(V ) is a nontrivial irreducible

representation}.

Claim 4.9. |A| = |B|.

Proof. Let T : A→ B such that T (ρ) = ρ◦φ and S : B → A such that S(σ) = σ◦φ−1.

Let ρ ∈ A. Then S ◦T (ρ) = S(ρ ◦φ) = ρ. Let ρ ◦φ ∈ B. Then T ◦S(ρ ◦φ) = T (ρ) =

ρ ◦ φ. This shows that S = T−1, which implies that the cardinality of the sets A and

B are the same. This proves the claim.

The lemma now follows from the following equations.
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κ(G,Γ1) = min
ρ

min
‖v‖=1

max
γ1∈Γ1

‖ρ(γ1)v − v‖

= min
ρ◦φ

min
‖v‖=1

max
γ1∈Γ1

‖ρ ◦ φ(γ1)v − v‖

= min
ρ

min
‖v‖=1

max
γ2∈Γ2

‖ρ(γ2)v − v‖ = κ(G,Γ2).

Remark 4.10. Note that the Kazhdan constant is non-negative, therefore bounded

below. Now a follow-up question to this would be “Is the set of all Kazhdan constants

bounded above?” The next proposition answers this question.

Proposition 4.11. Let G be a finite nontrivial group, and Γ ⊂ G. Then κ(G,Γ) ≤ 2.

Proof. Let ρ be a unitary irreducible representation on a vector space V ,then:

κ(G,Γ) ≤ max
γ∈Γ
‖ρ(γ)v − v‖ ≤ ‖ρ(γ)v‖+ ‖v‖ = 2.

The following theorem is what makes the Kazhdan constant relevant to graph

theory.

Theorem 4.12. Let d be a positive integer. Let (Gn) be sequence of groups with

|Gn| → ∞. For each n, let Γn ⊂s Gn such that |Γn| = d. Then (Cay(Gn,Γn)) is an

expander family if and only if there exists ε > 0 such that κ(Gn,Γn) ≥ ε for all n.[7]

Remark 4.13. So far we have some pretty neat results about the Kazhdan constant

but never really mention if the Kazhdan constant exists. We show existence in the

next theorem, but we need a lemma first.

Lemma 4.14. If V is a normed vector space, thenf : V → R defined by f(v) = ‖v‖

for all v ∈ V is continuous.

Proof. Let ε > 0, δ = ε and assume ‖v−v0‖ < δ, then |f(v)−f(v0)| = |‖v‖−‖v0‖| ≤

‖v − v0‖ ≤ δ = ε which proves the result.
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Theorem 4.15. The Kazhdan constant always exists, for finite groups.

Proof. Let G be a finite group, and let Γ ⊂ G. Without loss of generality assume

ρ is a nontrivial unitary representation of G on some representation space V with

G-invariant inner product 〈·, ·〉 . We have that

κ(G,Γ, ρ, 〈·, ·〉) = min
‖v‖=1

max
γ∈Γ
‖ρ(γ)v − v‖.

From lemma 4.14 above we know ‖ · ‖ is a continuous function on V . Since

|Γ| ≤ |G| and G is finite, Γ is finite. Therefore, max ‖ρ(γ)v − v‖ is a continuous

function, but our domain is compact so it attains a minimum. Hence κ(G,Γ, ρ, 〈·, ·〉)

exists for each ρ, but we only have finitely many irreducible representations up to

equivalence so minρ{κ(G,Γ, ρ)} also exists, but

κ(G,Γ) = min
ρ
{κ(G,Γ, ρ)}.

This proves the statement.

4.2 Examples and Known Results

In this section we compute Kazhdan constants of abelian groups in order to

get the feel for computing Kazhdan constants. We define the circular norm which will

aid us in computing Kazhdan constants in the next chapter. We then state known

results on Kazhdan constants. We first need a preliminary lemma.

Lemma 4.16. Whenever 0 ≤ θ ≤ 2π, we have |eiθ − 1| = 2 sin θ
2
.

Proof. Let θ ∈ [0, 2π], then |eiθ − 1|2 = (cos(θ) − 1)2 + sin2(θ) = 2(1 − cos(θ)) =
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4 sin2( θ
2
). Taking square roots, we get:

|eiθ − 1| = 2 sin
θ

2

since sin( θ
2
) ≥ 0 for 0 ≤ θ

2
≤ π.

Example 4.17. We will compute κ(Z4, {1, 3}).

From lemma 4.5 we know κ(Z4, {1}) = κ(Z4, {1, 3}).

Let us first recall the one-dimensional, nontrivial, irreducible representations

of Z4:

ρj(γ) = e
2πγji

4 , such that 1 ≤ j ≤ 3 and γ ∈ Z4.

By the definition of the Kazhdan constant, we have:

κ(G,Γ) = min
ρj

max
γ∈Γ
‖ρj(γ)− 1‖ = min

ρj
max
1∈{1}

‖e
πji
2 − 1‖

= min{|e
πi
2 − 1|, |e

2πi
2 − 1|, |e

3πi
2 − 1|} = |e

πi
2 − 1| = 2 sin

π

4
=
√

2.

Definition 4.18. Let n be a positive integer. Let LR(k) be the least residue of k

mod n i.e LR(k) ≡ k (mod n), and 0 ≤ LR(k) < n.The circular norm of k,

CN(k), is defined to be equal to min{LR(k), LR(−k)}.

Example 4.19. We find κ(K4G, {a, b}). To accomplish this task we must first find

all irreducible representations of this group. Readers can show that the table below

completes the list of all irreducible representations for the Klein group.

ρ e a b ab

ρ0 1 1 1 1
ρ1 1 −1 1 −1
ρ2 1 −1 −1 1
ρ3 1 1 −1 −1
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Now for each representation ρi(a) or ρi(b) is equal to −1. Therefore,

max
γ∈{a,b}

‖ρi(γ)v − v‖ = 2

from which we can now conclude that κ(K4G, {a, b}) = 2.

The examples we gave were very modest. Only in a few cases have the Kazhdan

constants been computed. We state some known results below. Note that this list is

not exhaustive. The first results were discovered by [2].

Theorem 4.20.

(1) κ(Zn, {1}) = 2 sin π
n

,

(2) κ(Dn, {s, r}) = 2 sin( π
2n

),

(3) κ(Sn, {(1, 2), . . . , (n− 1, n)}) =
√

24
n3−n .

In Derbidge’s master’s thesis [3] he shows the following result.

Theorem 4.21. Let Γ = {1, 3, . . . , 2n− 1} in Z2n, then

κ(Z2n,Γ) =

{√
2 if n is even,

2 cos( π
2p

) if n is odd, where p is the smallest odd prime dividing n.

We will prove (1) from theorem 4.20 in the next section, since it is relevant to

this thesis.
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CHAPTER 5

Main Results

Now that we have all the necessary background knowledge, we can move for-

ward and discuss new results involving Kazhdan constants. When we started studying

the Kazhdan constant, we had strong hopes that it would be a graph invariant. Hence

the goal for this research was to show that the Kazhdan constant was an invariant

under isomorphic Cayley graphs. As it turns out, this is not the case and we need a

stronger condition for the Kazhdan constant to be an invariant. In the first section, we

give an example of infinitely many pairs, each time involving distinct groups, where

both the Cayley graphs and the Kazhdan constants are the same. In the second sec-

tion we show that Cayley isomorphism is a sufficient condition for our conjecture to

hold but not a necessary condition. The last section will be dedicated to conjectures

and our thoughts on the subject.
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5.1 Isomorphic Cayley graphs with different groups and equal Kazhdan

constants

This section is devoted to proving that our conjecture about the Kazhdan constant

holds infinitely many times. We also state some corollaries of the main theorem.

With all the background information already handled, we are now ready to attack

the main result.

Theorem 5.1. There exist infinitely many graphs such that:

(1) Cay(G1,Γ1) ∼= Cay(G2,Γ2), and

(2) κ(G1,Γ1) = κ(G2,Γ2),

where G1, G2 are non-isomorphic groups and Γ1, Γ2 are subsets of G1, G2 re-

spectively.

Proof. The proof we give is constructive.

Let G1 be the dihedral group Dn of order 2n, with n ≥ 3.

Dn = 〈r, s : rn = s2 = e, s−1rs = r−1〉,

and X = Cay(Dn, {s, sr}).

Let G2 be the cyclic group of order 2n and Y = Cay(Z2n, {1, 2n − 1}). Note

that since X and Y are both 2-regular connected graphs, they must be cycle graphs

of order 2n, hence they are the same graph isomorphic. We have thus proved (1).

To accomplish (2) we first work with κ(Z2n, {1, 2n− 1}).

From the lemma 4.5 above we know κ(Z2n, {1}) = κ(Z2n, {1, 2n− 1}).

Let us first recall the one-dimensional, nontrivial, irreducible representations
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of Zk:

ρj : Z2n → C∗ defined by

ρj(γ) = e
2πγji
2n , such that 1 ≤ j ≤ 2n− 1 and γ ∈ Z2n.

By the definition of the Kazhdan constant, we have:

κ(Z2n, {1, 2n− 1}) = min
ρj

max
γ∈Γ
‖ρj(γ)− 1‖ = min

ρj
max
1∈{1}

‖e
2πji
2n − 1‖

= min{|e
2πi
2n − 1|, |e

2(2)πi
2n − 1|, . . . , |e

2(k−1)πi
2n − 1|} = |e

2πi
2n − 1| = 2 sin

π

2n
.

We now calculate κ(Dn, {s, sr}).

Recall that for a 2-dimensional representation of the dihedral group, s and sr

get mapped to:

ρj : Dn → GL(2,C)

ρj(s) =

(
0 1
1 0

)
, ρj(sr) =

(
0 ξ−j

ξj 0

)
.

Let v = (a, b)T , |a|2+|b|2 = 1, a, b ∈ C, then ‖ρj(s)v−v‖ = ‖(b−a, a−b)‖ =
√

2|b−a|.

Similarly, ‖ρj(sr)v−v‖ = ‖(bξj−a, aξ−j−b)‖ =
√
|ξjb− a|2 + |ξ−ja− b|2 =

√
2|ξjb−a|,

since |ξjb− a| = |ξj(b− aξ−j) = |ξj||b− ξ−ja| = |ξ−ja− b|.

Now the angle from a to aξ−j is 2jπ/n. Apply a rotation in order for the

imaginary axis to bisect the angle from a to aξ−j. Therefore, the angle from the

x-axis to aξ−j is π/2 − jπ/n = (nπ − 2jπ)/2n. In other words, a = re[(nπ+2jπ)/2n]i,

where 1 ≤ j < n/2 for some positive real number r. Refer to Figure 5.1.

We can now see if γ ∈ Γ, then

max ‖ρj(γ)v − v‖ = max

{√
2|b− ξ−ja| Re (b) ≤ 0,√
2|b− a| Re (b) ≥ 0.
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Figure 5.1: Justification for θ

Figure 5.2: Visualization of argument

Refer to Figure 5.2 and 5.3. Without loss of generality, assume Re b ≥ 0.

We know a = reiθ where θ = nπ+2jπ
2n

and 1 ≤ j < n/2. Let b = x+ iy where x, y ∈ R

and x2 + y2 + r2 = 1. We seek to minimize |a− b|2.

Let |a− b|2 := f(r, x, y) = |reiθ − (x+ iy)|2. Then f(r, x, y) = |(r cos θ− x) +
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Figure 5.3: Visualization of argument rotated

(r sin θ− y)i|2 = (r cos θ− x)2 + (r sin θ− y)2 = r2 cos2 θ− 2rx cos θ+ x2 + r2 sin2 θ−

2ry sin θ + y2 = 1 − 2rx cos θ − 2ry sin θ. Let g(r, x, y) = r2 + x2 + y2 − 1. If we

invoke the Lagrange multiplier method we get the following equations, for some real

number λ:

x cos θ + y sin θ = −rλ (5.1)

r cos θ = −xλ (5.2)

r sin θ = −yλ. (5.3)

Multiplying the first equation by r, the second equation by −x, the third

equation by −y then adding each each equation we get:

0 = −r2λ+ x2λ+ y2λ.

Adding 2r2λ to both sides and using our relation of the variables r, x, y yields
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the new equation:

2r2λ = λ.

We have two cases to consider: λ = 0 and r =
√

2
2

.

If λ = 0, then r cos θ = 0, so r = 0 or cos θ = 0. Note that π
2
< θ < π, which

means cos θ is never zero. If r = 0 then a = 0 and |b− a|2 = 1.

Let r =
√

2
2

. Substituting this value for r above and multiplying row 2 by −y,

row 3 by x and adding these two equations gives us: y = x tan θ. Substituting r and

y into g(r, x, y) we get x =
√

2
2
| cos θ|. Recall f(r, x, y) = 1− 2rx cos θ − 2ry sin θ.

So f(
√

2
2
,
√

2
2
| cos θ|,

√
2

2
| cos θ| tan θ) = 1− | cos θ| cos θ − | cos θ| tan θ sin θ.

We noticed from our choice of θ, cos θ will be less than zero, therefore

f = 1 + cos2 θ + sin2 θ = 2.

From the Lagrange multiplier technique, we know our minimum should be less

than min{1, 2}. We now find the minimum on the boundary, that is when x = 0.

Let us consider the function f(r, 0, y) = 1 − 2ry sin θ where r2 + y2 = 1. Let

g(r, 0, y) = r2 + y2. Then we get the following equations for some real γ value:

y sin θ = −rλ

r sin θ = −yλ.

Multiplying the first equation by r and the second equation by y then adding

the two equations yields r =
√

2
2

. Solving for y gives y = ±
√

2
2

.

f(

√
2

2
,

√
2

2
) = 1− sin θ.
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f(

√
2

2
,−
√

2

2
) = 1 + sin θ.

Our minimum should now be less than min{1− sin θ, 1 + sin θ, 1, 2}, and it is

clear that the minimum is 1− sin θ. Therefore min |b− a| =
√

1− sin θ.

We now find the minimum of j in θ. Recall θ = π
2

+ jπ
n

. Since sin θ is

decreasing on the interval (π
2
, π) therefore our minimum occurs when j = 1, that is,

when θ = π
2

+ π
n
. Therefore, the minimum Kazhdan constant for the two-dimensional

representations is

κ(Dn, {s, sr}, ρ1) =

√
2(1− cos

π

n
).

Recall the one-dimensional irreducible representations of Dn. The first table

gives the nontrivial irreducible representations when n is even.
χ rk srk

χ1 1 −1
χ2 (−1)k (−1)k

χ3 (−1)k (−1)k+1

This table gives the nontrivial irreducible representations when n is odd.

χ rk srk

χ1 1 −1

Note that χi(s) = −1 or χi(sr) = −1 when n is even or odd and 1 ≤ i ≤ 3.

The minimum Kazhdan constant for the one-dimensional representations is :

κ(Dn, {s, sr}, χk) = 2.

Therefore, κ(Dn, {s, sr}) =
√

2(1− cos π
n
).

The double angle formula then shows κ(Dn, {s, sr}) = κ(Z2n, {1, 2n− 1})

Corollary 5.2. Let G be a finite group that has order greater than 4 and Γ ⊂s G. If

Cay(G,Γ) is a cycle graph then κ(G,Γ) = 2 sin π
n

.
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Proof. So it turns out, up to Cayley isomorphism, only the pair (Zn, {1, n− 1}) and

(Dn, {s, sr}) yield cycle graphs. But by theorem 5.1 we know the Kazhdan constant

associated to these pairs are equal: 2 sin(π
n
).

Corollary 5.3. Cycle graphs do not form an expander family.

Proof. By theorem 5.1 and 5.2, we know that we just need to consider κ(Zn, {1, n−1}).

But this Kazhdan constant goes to zero as n approaches infinity,

lim
n→∞

κ(Zn, {1, n− 1}) = lim
n→∞

2 sin(
π

n
) = 0.

Because the Kazhdan constant is not bounded away from zero, the associated Cayley

graphs of the pair (Zn, {1, n− 1}) does not form an expander family.

Remark 5.4. Remember what the goal of our research was: to determine if the Kazh-

dan constant was a Cayley graph invariant. As it turns out, combining Examples 4.17

and 4.19 give a counterexample for our conjecture of the Kazhdan constant being a

Cayley graph invariant. The question we ask ourselves now is “If we restrict ourselves

to only cyclic groups,would the Kazhdan constant be a Cayley graph invariant?” We

investigate this idea in the following section.
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5.2 Isomorphic Cayley graphs with the same group give equal Kazhdan

constants

We gave a remark at the end of section 5.1 stating that the Kazhdan constant

is not a graph invariant. In this section we show Cayley isomorphism is enough to

show the Kazhdan constant is equal, and the Cayley graphs are isomorphic . The

main theorem of this section generalizes a counterexample from [4] disproving Àdàm’s

conjecture. The theorem below shows that being Cayley isomorphic is not a necessary

condition for our conjecture to hold for a family of cyclic groups. With this result

proven, we are left to wonder whether being cyclic groups and having isomorphic

Cayley graphs makes the Kazhdan constant a Cayley graph invariant.

Theorem 5.5. There exist infinitely many pairs such that :

(1) Cay(G1,Γ1) ∼= Cay(G2,Γ2), and

(2) Cay(G1,Γ1) is not Cayley isomorphic to Cay(G2,Γ2), and

(3) κ(G1,Γ1) = κ(G2,Γ2),

where G1, G2 are finite cyclic groups, and Γ1, Γ2 are subsets of G1, G2 respec-

tively.

Proof. The proof is constructive. Let G1=G2=Zn, where n ≥ 16 and 8|n.

Let Γ1 = {1, 2, n
2
−1, n

2
+1, n−2, n−1} and Γ2 = {2, 3n

4
−1, n

4
−1, n

4
+1, 3n

4
+1, n−2}.

We will start off by showing Cay(G1,Γ1) ∼= Cay(G2,Γ2).

Consider the mapping f : Zn → Zn
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f(i) =

{
i if i is even,

i+ n
4

otherwise.

We first note that this mapping is well-defined, hence a function.

Next we show that f is bijective. It is enough to show that f has an inverse function.

Consider the function g : Zn → Zn

g(i) =

{
i if i is even,

i− n
4

otherwise.

We claim that g is the inverse of f . We first consider f(g(i)). Let i be even. Then

g(i) = i so f(g(i)) = f(i) = i. Assume now that i is odd. Then g(i) = i − n
4

so

f(i− n
4
) = i− n

4
+ n

4
= i.

We next consider g(f(i)). Let i be even. Then f(i) = i so g(f(i)) = g(i) = i.

Assume now that i is odd, then f(i) = i + n
4
. Therefore, g(i + n

4
) = i + n

4
− n

4
= i.

Hence, g = f−1.

We now show the function f is a graph automorphism. Assume i and j are adjacent

i.e. i− j ∈ Γ1. Consider the following cases.

(1) Suppose i and j are both even. Then f(i) − f(j) = i − j ∈ Γ2 since each set

has the same even elements and i− j is even.

(2) Suppose i is odd and j even. Then i− j is odd. Now f(i)− f(j) = i− j + n
4
.

Claim 5.6. If γ is an odd element of Γ1, then γ + n
4
∈ Γ2.

Proof. If we assume γ is an odd element in Γ1 then we only have four cases to

consider.

(a) If γ = n
2
− 1 then, n

2
− 1 + n

4
= 3n−4

4
∈ Γ2.
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(b) If γ = n
2

+ 1 then, n
2

+ 1 + n
4

= 3n+4
4
∈ Γ2.

(c) If γ = 1 then, 1 + n
4

= n+4
4
∈ Γ2.

(d) If γ = n− 1 then, n− 1 + n
4

= −1 + n
4

= n−4
4
∈ Γ2.

These cases complete the proof.

Hence, f(i)− f(j) ∈ Γ2 so f(i) is adjacent to f(j).

(3) Suppose i is even and j odd. Then i − j is odd. Because we are working with

symmetric subsets −(i−j) ∈ Γ1. Now f(i)−f(j) = i−j− n
4

= −[−(i−j)+ n
4
],

but since −(i−j) ∈ Γ1 and is odd, we know [−(i−j)+ n
4
] ∈ Γ2 by the argument

in (2). Appealing to the fact that Γ2 is a symmetric subset again, we get that

−[−(i− j) + n
4
] ∈ Γ2 so f(i) is adjacent to f(j).

(4) Suppose i and j are both odd. Then i−j is even. Now f(i)−f(j) = i+ n
4
−(j+

n
4
) = i − j ∈ Γ2 since both sets have the same even elements in them. Hence,

f(i) and f(j) are adjacent. Ergo, f is a graph isomorphism.

We now show that (Zn,Γ1) is not Cayley isomorphic to (Zn,Γ2). Assume to

the contrary that (Zn,Γ1) is Cayley isomorphic to (Zn,Γ2). Then there must exist a

φ ∈ Aut(Zn) such that φ(Γ1) = Γ2. Recall that all automorphisms of the group Zn

look like f(x) = ax where gcd(a, n) = 1 . Since 1 ∈ Γ1 f(1) = a and also f(1) ∈ Γ2.

Therefore, it must be the case that f(1) maps to a generator of Zn in Γ2. We know

that the subgroup 〈2〉 does not generate Zn. Hence, it is enough to consider only four

cases for f :

(1) f1(k) = 3n+4
4
k

(2) f2(k) = n+4
4
k
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(3) f3(k) = 3n−4
4
k

(4) f4(k) = n−4
4
k

Before we consider these four cases we look at how the automorphism, fi, acts

on the element 2 ∈ Γ1. Let γ be an odd element in Γ2 and recall that |γ| = n
gcd(n,γ)

.

Note that the order of γ depends on gcd(n, γ), and gcd(n, γ) is always odd. Hence

|γ| 6= n
2
, but |2| = n

2
and because fi is an automorphism of Zn, f(2) 6= γ. So it must

be the case that fi(2) = 2 or fi(2) = n − 2 where 1 ≤ i ≤ 4. We consider these

subcases below.

Case 1: Consider the function f1(k) = 3n+4
4
k. Then

f1(2) = (3n+4
4

)2 = 2(n− n
4

+ 1) = −n
2

+ 2

Subcase 1: f1(2) = 2 = −n
2

+ 2 then n
2
≡ 0 (mod n), which is a contradiction.

Subcase 2: f1(2) = n − 2 = −n
2

+ 2 then n
2
≡ 4 (mod n) so 8 ≡ 0 (mod n)

which is a contradiction because n ≥ 16.

From the results of subcase 1 and 2, we conclude that f1(2) /∈ Γ2.

Case 2: Consider the function f2(k) = n+4
4
k. Then f2(2) = (n+4

4
)2 = n

2
+ 2.

Subcase 1: f2(2) = 2 = n
2

+ 2. Then n
2
≡ 0 (mod n),which is a contradiction

from the same reason as the previous case.

Subcase 2: f2(2) = n − 2 = n
2

+ 2. Then 0 ≡ −8 (mod n), which is a

contradiction.

Hence, f2(2) /∈ Γ2.

Case 3: Consider the function f3(k) = 3n−4
4
k.

Then f3(2) = (3n−4
4

)2 = −(n
2

+ 2), but by Case 2: n
2

+ 2 /∈ Γ2 and because Γ2
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is symmetric f3(2) /∈ Γ2.

Case 4: Consider the function f4(k) = n−4
4
k.

Then f4(2) = (n−4
4

)2 = n
2
− 2 = −(−n

2
+ 2). By similar reasoning as in case 3

we can conclude f4(2) /∈ Γ2.

Thus these (Zn,Γ1) and (Zn,Γ2) are not Cayley isomorphic.

We now show κ(Zn,Γ1) = κ(Zn,Γ2)

Let us recall the one-dimensional, nontrivial, irreducible representations of Zn:

ρj(γ) = e
2πγji
n , such that 1 ≤ j ≤ n− 1 and γ ∈ Zn.

Let Γ = {1, 2, n
2
− 1}. Then we know by lemma 4.5 κ(G,Γ) = κ(G,Γ1). By

the definition of the Kazhdan constant, we have:

κ(Zn,Γ) = min
ρj

max
γ∈Γ
‖ρj(γ)− 1‖.

Now, intuitively, ‖ρj(γ)− 1‖ = ‖e 2πγji
n − 1‖ tells us the distance from a certain point

on the unit circle to 1. Since we seek to find the maximum of this distance, where γ

runs over Γ, we need to look for values of j that e
2πγji
n is the minimal distance to eπi;

in other words, we want γj to be near n
2
. To make our lives easier, it is enough to

only consider values from 1 ≤ j ≤ n
2
, since

‖e
2πγji
n − 1‖ = ‖e

2πγ(n−j)i
n − 1‖.

We are now ready to find the Kazhdan constant. We can now think of this

problem as finding the minimum of the maximum circular norms. The table below

summarizes the circular norm for each element of Γ1.
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j 1 2 n
2
− 1 max

1 1 2 n
2
− 1 n

2
− 1

2 2 4 −2 4
3 3 6 n

2
− 3 n

2
− 3

4 4 8 1 8
. . . . .
. . . . .
. . . . .

Note that when 5 ≤ j ≤ n
2

the maximum is at least 4. Now the minimum of

the set of all maxima is 4, hence

κ(Zn,Γ1) = κ(Zn,Γ) = 2 sin(4π
n

).

Next we compute κ(Zn,Γ2).

Let Γ3 = {2, n
4
− 1, n

4
+ 1}. Again, from lemma 4.5, we know κ(Zn,Γ2) =

κ(Zn,Γ3). The argument to compute this Kazhdan constant is similar to how we

found the Kazhdan constant for the pair (Zn,Γ1). The table below summarizes the

circular norm for each element of Γ2.

j 2 n
4
− 1 n

4
+ 1 max

1 2 n
4
− 1 n

4
+ 1 n

4
+ 1

2 4 n
2
− 2 n

2
+ 2 n

2
+ 2

3 6 3n
4
− 3 3n

4
+ 3 3n

4
− 3

. . . . .

. . . . .

. . . . .
n
2
− 2 n− 4 −2 2 n− 4

n
2
− 1 −2 n

4
+ 1 n

4
− 1 n

4
+ 1

n
2

0 n
2

n
2

n
2

Now the minimum of the set of all maxima is 4, hence κ(Zn,Γ3) = 2 sin(4π
n

),

but κ(Zn,Γ2) = κ(Zn,Γ3) = 2 sin(4π
n

).

Hence, κ(Zn,Γ2) = κ(Zn,Γ1).

Remark 5.7. I created an algorithm in C++ in order to calculate formulas for the

Kazhdan constant for this type of cyclic group. I have placed the code in the Appendix
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if the reader is interested. It is possible to generalize this code to find the Kazhdan

constant constant for cyclic groups of even order. If you want to find the Kazhdan

constant for an odd order cyclic group a little work needs to be done to the logic of

the program.
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5.3 Conjectures Regarding the Kazhdan Constant

In this section we state conjectures that we hope to investigate in the future.

Conjecture 5.8. Let G a finite cyclic group of order 9n where n is greater than 2.

Let Γi = {±1,±(3n + 1),±(6n + 1),±3(in + 1)}, i = 0, 1, 2. Then Cay(Z9n,Γ0) ∼=

Cay(Z9n,Γi) if 3 does not divide im+ 1. Moreover, κ(Z9n,Γ0) = κ(Z9n,Γi).

Conjecture 5.9. Let G be a finite cyclic group of order n and Γ1,Γ2 ⊂s G. If

Cay(Zn,Γ1) ∼= Cay(Zn,Γ2) then κ(G,Γ1) = κ(G,Γ2).

Conjecture 5.10. Let G be a finite group. Then κ(G,Γ) = 2, if and only if |G| = 2k,

for some positive integer k.

Question 1. Let α ∈ [0, 2] ∩ Q. Then there exists a group G and Γ ⊂ G such that

κ(G,Γ) = α.

A more ambitious conjecture would be as followed.

Question 2. Let α ∈ [0, 2]. Then there exists a group G and Γ ⊂ G such that

κ(G,Γ) = α.

Remark 5.11. To even attempt to attack this conjecture we can no longer be re-

stricted to finite groups.
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APPENDIX A

C++ code for the Kazhdan constant

We give the C++ code that lets us calculate the Kazhdan constant for a cyclic

group of even order with our particular generating set and conditions.

#include < iostream >

#include < cassert >

#include < vector >

#include < string >

#include < cmath >

using namespace std;

int main() {

int n=16;

cout<<”n=”<< n <<”\n”;

vector < int > Z;

vector < int > Max;

vector < int > data;

vector < int > Y ;// this is vector Z in the other main one

vector < int > Top;// this is vector Max

vector < int > dee;//this is vector data

vector < int > H;

47



H.push back(1);

H.push back(2);

H.push back(n/2-1);

// I should put vector D here for convince

vector < int > D; //call a int vector pos with 3 slots this is vector H

D.push back(2);

D.push back((n-4)/4);

D.push back((n+4)/4);

// this spits out the vector

cout<< ”A={”;

for( unsigned int h=0; h< H.size(); h++)// H.size() gives the number of elements in

the vector H.

{ if(h==0 || h==1) {

cout<<H[h]<< ”,”; } else { cout<<H[h]; } } cout<< ”}”;// and here is where

it ends

cout<<”\n”;// We are couting the elements in H.

for(int j=1; j<=n/2; j++)

{ int x =(( j) * H[0]) % n; int y =(( j) * H[1]) % n; int z =(( j) * H[2]) % n;

Z.push back(x); Z.push back(y); Z.push back(z);

}// We will note that there are 3*(n/2) elements in Z[i] where i starts at 0.
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cout<<”\n”;

for(unsigned i=0; i< Z.size();i++) { if(i%3 ==0) { int min; int value;

min = abs(n/2-Z[i]); /* assume x is the largest */

if (abs(n/2-Z[i+1]) < min) { /* if y is larger than max, assign y to max */

min = abs(n/2-Z[i+1]); } /* end if */

if (abs(n/2-Z[i+2]) < min) { /* if z is larger than max, assign z to max */ min

= abs(n/2-Z[i+2]); } /* end if */

int minz=min; if(n/2<Z[i]& abs(n/2-Z[i])==minz) { value=abs(n/2-minz)+2*minz;

}

else if(n/2<Z[i+1]& abs(n/2-Z[i+1])==minz) { value=abs(n/2-minz)+2*minz;

}

else if(n/2<Z[i+2]& abs(n/2-Z[i+2])==minz) { value=abs(n/2-minz)+2*minz;

}

else {

value=abs(n/2-minz);

}

Max.push back(value);

cout<<”i=”<<i/3+1<<” ”<<”{”<<Z[i]<<”,”<<Z[i+1]<<”,”<<Z[i+2]<<”}”<<”

”<<”Max=”<<value<<”\n”; }

} cout<<”\n”;

cout<<”{”; for(unsigned i=0; i<Max.size(); i++) {

data.push back(Max[i]);

if(i==0) { cout<<data[i]; } else {
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cout<<”,”<<data[i]; }

}

cout<<”}”;

int j;

int change;

for(int i=0; i<=data.size()-2; i++)// this is where we sort the vector in an

increasing fashion. { for(j=i+1; j<=data.size()-1; j++) { int w; do { change =0;

for(i=0;i<data.size()-1; i++) { if(data[i]>data[i+1]) { w=data[i]; data[i]=data[i+1];

data[i+1]=w; change =1;

} } } while (change==1); } cout<<”\n”;

cout<<”This is your vectors sorted in increasing order”<<endl;

cout<<”{”; for(i=0;i<=data.size()-1;i++) { if(i==data.size()-1) { cout<<data[i];

} else cout<< data[i]<<”,”;

} //this is were the first sorting ends.

cout<<”}”<<”\n”;

if(data[0]<=n-data[data.size()-1]) { cout<<”The minimum element in this

vector is ”<<data[0]; } else cout<<”The minimum element in this vector is ”<<n-

data[data.size()-1];

//cout<<”The minimum element in this vector is ”<<data[0]<<”\n”;

cout<<”\n”;

}

cout<<”*************************************************”<<endl;

//We are again generating the elements in D. cout<< ”B={”; for( unsigned

50



int h=0; h< D.size(); h++)// or we can use H.size { if(h==0|| h==1) {

cout<<D[h]<< ”,”; } else { cout<<D[h]; } } cout<<”}”;// and here is where

it

cout<<”\n”;

cout<<”\n”;

for(int j=1; j<=n/2; j++)

{ int x =(( j) * D[0]) % n; int y =(( j) * D[1]) % n; int z =(( j) * D[2]) % n;

Y.push back(x); Y.push back(y); Y.push back(z);

}// We will note that there are 3*(n/2) elements in Z[i] where i starts at 0.

cout<<”\n”;

for(unsigned i=0; i< Y.size();i++) { if(i%3 ==0)//here is where it depends

on the number of elements in H. { int ab;//min int walue;//value

ab = abs(n/2-Y[i]); /* assume x is the largest */

if (abs(n/2-Y[i+1]) < ab) { /* if y is larger than max, assign y to max */ ab

= abs(n/2-Y[i+1]); } /* end if */

if (abs(n/2-Y[i+2]) <4 ab) { /* if z is larger than max, assign z to max */ ab

= abs(n/2-Y[i+2]); } /* end if */

int mins=ab; if(n/2<Y[i]& abs(n/2-Y[i])==mins) { walue=abs(n/2-mins)+2*mins;

}

else if(n/2<Y[i+1]& abs(n/2-Y[i+1])==mins) { walue=abs(n/2-mins)+2*mins;

}

else if(n/2<Y[i+2]& abs(n/2-Y[i+2])==mins) { walue=abs(n/2-mins)+2*mins;

}
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else {

walue=abs(n/2-mins);

}

Top.push back(walue);

cout<<”i=”<<i/3+1<<” ”<<”{”<<Y[i]<<”,”<<Y[i+1]<<”,”<<Y[i+2]<<”}”<<”

”<<”Max=”<<walue<<”\n”; }

} cout<<”\n”;

cout<<”{”; for(unsigned i=0; i <Top.size(); i++) {

dee.push back(Top[i]);

if(i==0) { cout<<dee[i]; } else {

cout<<”,”<<dee[i]; }

}

cout<<”}”;

for(int i=0; i¡=dee.size()-2; i++)// this is where we sort the vector in an

increasing fashion. { for(j=i+1; j<=dee.size()-1; j++) { int w; do { change =0;

for(i=0;i<dee.size()-1; i++) { if(dee[i]>dee[i+1]) { w=dee[i]; dee[i]=dee[i+1]; dee[i+1]=w;

change =1;

} } } while (change==1); } cout<<”\n”;

cout¡¡ ”This is your vectors sorted in increasing order”¡¡endl;

cout<<”{”; for(i=0;i<=dee.size()-1;i++) { if(i==dee.size()-1) { cout<<dee[i];

} else cout<<dee[i]<<”,”;

} //this is were the first sorting ends.

cout<<”}”<<”\n”; //I am making the adjusments here if(dee[0]<=n-dee[dee.size()-
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1]) { cout<<”The minimum element in this vector is ”<<dee[0]; } else cout<<”The

minimum element in this vector is ”<<n-dee[dee.size()-1];

//cout<<”The minimum element in this vector is ”<<dee[0];

cout<<endl;

}

}
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