Applied Probability Comprehensive Exam

Students are expected to know the following basics from MATH 4740 as they form the basis of MATH 5740 topics.

> Probabilities defined on events and counting methods Conditional probabilities
> Independent events
> Bayes' theorem
> Random variables, cumulative distribution functions, probability density functions
> Joint, marginal, and conditional distributions
> Expectation, variance, covariance, and moment generating function of random variables
> Random sample and properties of random samples
> Law of large numbers and central limit theorem
> Binomial, Poisson, normal, and exponential distributions

Students are expected to know the following topics from MATH 5740
Computing expectations, variances, and probabilities by conditioning
Markov chains and the Chapman-Kolmogorov equations
Classification of states
Long-run probabilities and limiting probabilities of a Markov chain
Properties of exponential distributions
Counting processes and Poisson processes
Interarrival and waiting time distributions
Brownian motion process
Hitting times and maximum variable
Variations of Brownian motion, Gaussian processes
For review of these topics, the following are reference texts.
Math 4740 Probability and Statistics, $4^{\text {th }}$ edition, by M. H. De Groot and M. J. Schervish
Sections $1.1-1.10$
$2.1-2.3$
3.1-3.9
$4.1-4.6$
5.2, 5.4, 5.6

Math 5740 Introduction to Probability Models, $11^{\text {th }}$ edition by Sheldon Ross, Academic Press Sections 1.1-1.6 Review
2.1-2.9 Review
3.1-3.5
$4.1-4.4$
$5.1-5.3$
$10.1,10.2,(10.3,10.6,10.7,10.8$ briefly)
Majority of questions will be selected from MATH 5740, but may incorporate some basics from MATH 4740. The pdf or pf of probability distributions will be provided on the exam.

