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Abstract

A partially ordered (generalized) pattern (POP) is a generalized pattern some of whose letters are incom-
parable. In this paper, we study avoidance of POPs in compositions and generalize results for avoidance
of POPs in permutations and words. Specifically, we obtain results for the generating functions for
the number of compositions that avoid shuffle patterns and multi-patterns. In addition, we give the
generating function for the distribution of the maximum number of non-overlapping occurrences of a seg-
mented POP τ among the compositions of n, provided we know the generating function for the number
of compositions of n that avoid τ .
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1 Introduction

Pattern avoidance was originally studied in permutations (see [7, 26]), and the patterns studied were also
permutation patterns. Generalizations in several directions took place: 1) Looking at pattern avoidance
in permutations with different types of patterns and avoidance of sets of patterns (see [19] and references
therein), and 2) asking the same questions for words (see [3, 5, 6, 22]). Independently, several authors
(see [8, 9, 10, 11, 12, 13, 14, 15]) gave results on enumerating compositions of n with parts in a given set A
according to rises, levels and drops (which can be considered as the simplest 2-letter patterns). Heubach
and Mansour (see [16, 17]) combined these two areas by giving results on the generating function for the



number of compositions of n with m parts in a set A that avoid 3-letter patterns. Moreover, Kitaev et
al. [23] introduced segmented partially ordered (generalized) patterns in compositions.

In this paper we generalize some of the results in the literature on pattern avoidance in permuta-
tions [19], [21] and words [22] by studying pattern avoidance of partially ordered patterns (POPs) in
compositions. Section 2 contains basic definitions and terminology. In Section 3, we give a general result
that expresses the generating function of the number of compositions that avoid a POP composed of two
smaller patterns in terms of the generating functions for the smaller patterns. We apply this result (The-
orem 3.2) to two specific types of POPs, namely shuffle patterns and multi-patterns and show equivalence
for families of patterns of each type. We close in Section 4 by giving a result for the maximum number of
non-overlapping occurrences of a POP in a composition, which is a generalization of a theorem proved
by Kitaev [19, Theorem 32] for permutations and by Kitaev and Mansour [22, Theorem 5.1] for words.

2 Definitions and Terminology

Let N be the set of all positive integers, and let A be any ordered finite set of positive integers, say
A = {a1, a2, . . . , ak}, where a1 < a2 < a3 < · · · < ak. (An “ordered set” in this paper will always refer to
a set whose elements are listed in increasing order.) Also, let [k]n denote the set of all words of length n
over the (totally ordered) alphabet [k] = {1, 2, . . . , k}.

A composition σ = σ1σ2 . . . σm of n ∈ N is an ordered collection of one or more positive integers
whose sum is n. The number of summands or letters, namely m, is called the number of parts of the
composition. For any ordered set A = {a1, a2, . . . , ak} ⊆ N, we denote the set of all compositions of n
with parts in A (resp. with m parts in A) by CAn (resp. CAn;m).

A generalized pattern τ is a word in [ℓ]m (possibly with dashes between some letters) that contains
each letter from [ℓ] (possibly with repetitions). Generalized patterns that contain dashes in all possible
positions (e.g., 2-1-4-3) are called classical patterns. Note that classical patterns place no adjacency
requirements on occurrences of the letters of a pattern in words or compositions. If all the dashes are
removed, we have a consecutive, or segmented, pattern. For ease of readability, we will refer to generalized
patterns simply as patterns in the remainder of this paper.

We say that a composition σ ∈ CAn contains a pattern τ if σ contains a subsequence isomorphic to τ
in which the entries corresponding to consecutive entries of τ (those not separated by a dash) must be
adjacent. Otherwise, we say that σ avoids τ and write σ ∈ CAn (τ). Thus, CAn (τ) denotes the set of all
compositions of n with parts in A that avoid τ . Moreover, if T is a set of patterns, then CAn (T ) denotes
the set of all compositions of n with parts in A that avoid each pattern from T simultaneously. For
example, 241874 avoids 312 and contains five occurrences of 1-32, namely 287, 274, 487, 187, and 174.
(Note that 284 is not an occurrence of 1-32 due to the adjacency requirement).

Kitaev [19], [21] introduced partially ordered patterns (POPs)1 on permutations, which extend gen-
eralized permutation patterns introduced by Babson and Steingŕımsson [2]. Specifically, a POP τ is a
word consisting of letters from a partially ordered alphabet T such that the letters in τ constitute an
order ideal in T . If letters a and b are incomparable in a POP τ , then the relative size of the letters in σ
corresponding to a and b is unimportant in an occurrence of τ in σ. For instance, if T = {1, 1′, 2′} and
the only relation is 1′ < 2′, then the sequence 31254 has two occurrences of τ = 11′2′, namely 312 and
125. As for generalized patterns, if a POP τ = τ1 . . . τk has a dash between, say, τi and τi+1, then in an
occurrence of τ in a composition σ, the letters corresponding to τi and τi+1 do not have to be adjacent.
For example, for T given above, if τ = 1-1′2′, then the composition 113425 contains seven occurrences of
τ , namely 113, 134 twice, 125 twice, 325, and 425.

1In [19], POPs are called POGPs (Partially Ordered Generalized Patterns). We use POPs instead to shorten the
notation in this paper.
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Following [19] and [22], we consider two particular classes of POPs – shuffle patterns and multi-
patterns – which allows us to give an analogue of the main results in [19] and [22] for compositions. Let
{τ0, τ1, . . . , τs} be a set of consecutive patterns. A multi-pattern is of the form τ = τ1-τ2- · · · -τs and a
shuffle pattern is of the form τ = τ0-a1-τ1-a2- · · · -τs−1-as-τs, where each letter of τi is incomparable with
any letter of τj whenever i 6= j. In addition, the letters ai are either all greater or all smaller than any
letter of τj for any i and j. For example, assuming 1′ < 2, 1′′ < 2, and 1′ and 1′′ are incomparable,
1′-2-1′′ is a shuffle pattern, and 1′-1′′ is a multi-pattern. Clearly, we can get a multi-pattern from a shuffle
pattern by removing all the letters ai. Furthermore, there is a connection between avoidance of a POP
and multi-avoidance of generalized patterns in compositions. For example, avoiding the POP 2′-1-2′′,
where 2′ > 1, 2′′ > 1, and 2′ and 2′′ are incomparable, is the same as simultaneously avoiding the patterns
2-1-2, 3-1-2, and 2-1-3 (similar to [22, Proposition 2.7]).

3 POPs in compositions with parts in a given set

We will now derive results on avoidance of POPs in compositions. In order to distinguish which letters
are comparable and which ones are not, we will use primes in the following way. If two letters, say 1 and
2, have the same number of primes, say two, then they are comparable and naturally 1′′ < 2′′. Any two
letters with a different number of primes are incomparable. Unless dealing with shuffle or multi-patterns,
if a letter in a POP has no primes, then that letter is greater than every letter with one or more primes and
we will emphasize this fact by using a value that is bigger than those for the primed letters. For example,
in τ = 1′-2-1′′, the second letter is the greatest one and the first and the last letters are incomparable to
each other. The composition σ = 31421 has five occurrences of τ , namely 342, 341, 142, 141, and 121.

Let CAτ (x) =
∑

n≥0

|CAn (τ)|xn (resp. CAτ (x;m) =
∑

n≥0

|CAn;m(τ)|xn and CAτ (x, y) =
∑

n,m≥0

|CAn;m(τ)|xnym)

denote the generating function for the numbers |CAn (τ)| (resp. |CAn;m(τ)|) of compositions in CAn (resp.

CAn;m) avoiding the pattern τ . For example, if A = {a1, a2, . . . , ak} is any ordered set and τ = 1′-2-1′′,
then we have

CA1′-2-1′′(x, y) =
1

∏

a∈A(1 − xay)2
−
∑

a∈A

xay
∏

a≤b∈A(1 − xby)2
. (3.1)

This result follows from the specific structure of the compositions σ that avoid τ = 1′-2-1′′. If σ avoids τ ,
and σ contains s > 0 copies of the letter ak, then the letters ak can only appear as blocks on the left and
right end of σ. If σ contains no ak, then σ ∈ CA

′

n,m(τ) where A′ = A− {ak}. So, for all n ≥ 0, we have

CAτ (x;m) =

m−1∑

i=0

(i+ 1)xiakCA
′

τ (x;m− i) + xmak ,

since the generating function for the possibilities to place i letters ak into σ is given by (i+1)CA
′

τ (x;m−i),
for 0 ≤ i < m, and by xmak for i = m. Thus, for m ≥ 2,

CAτ (x;m) − 2xakCAτ (x;m− 1) + x2akCAτ (x;m− 2) = CA
′

τ (x;m),

together with CAτ (x; 0) = 1 and CAτ (x; 1) =
∑

a∈A x
ay. Multiplying both sides of the recurrence above

by ym, summing over all m ≥ 2 and using induction on elements of A together with the fact that

C
{a1}
τ (x, y) = 1

1−xa1y
= 1

(1−xa1y)2 − xa1y
(1−xa1y)2 , we get (3.1). Equation (3.1) for x = 1 and A = [k] gives

the corresponding result for words [22, Equation 2.1].

In order to prove general results, it is convenient to introduce the notion of quasi-avoidance. Let τ
be a consecutive pattern. A composition σ quasi-avoids τ if σ has exactly one occurrence of τ and this
occurrence consists of the |τ | rightmost parts of σ, where |τ | denotes the number of letters in τ . For
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example, the composition 4112234 quasi-avoids the pattern 1123, whereas the compositions 5223411 and
1123346 do not.

First, relate the generating function for the number of compositions avoiding a given pattern τ with
the generating function for the number of compositions that quasi-avoid τ .

Lemma 3.1 Let τ be a non-empty consecutive pattern. Let DA
τ (x, y) denote the generating function for

the number of compositions in CAn;m that quasi-avoid τ . Then

DA
τ (x, y) = 1 + CAτ (x, y)

(

y
∑

a∈A

xa − 1

)

. (3.2)

Proof We use arguments similar to those in the proof of [19, Proposition 4]. Adding the part a to the
right of a composition with m− 1 parts that avoids τ creates either a composition with m parts that still
avoids τ or that quasi-avoids τ . Thus, for m ≥ 1,

DA
τ (x;m) =

(
∑

a∈A

xa

)

CAτ (x;m− 1) − CAτ (x;m).

Multiplying both sides of this equality by ym and summing over all natural numbers m we get the desired
result.

Lemma 3.1 for A = [k] and x = 1 gives the corresponding result for words [22, Proposition 2.4].

We now obtain a general theorem that is a good auxiliary tool for calculating the generating function
for the number of compositions that avoid a given POP.

Theorem 3.2 Let A = {a1, . . . , ak} be any ordered finite set of positive integers. Suppose τ = τ0-φ,
where φ is an arbitrary POP, and the letters of τ0 are incomparable to the letters of φ. Then for all
k ≥ 1, we have

CAτ (x, y) = CAτ0(x, y) +DA
τ0

(x, y)CAφ (x, y).

Proof To find CAτ (x, y), we observe that there are two possibilities: either σ avoids τ0, or σ does not
avoid τ0. In the first case, the generating function is given by CAτ0(x, y). If σ does not avoid τ0, then we
can write σ in the form σ = σ1σ2σ3, where σ1σ2 quasi-avoids the pattern τ0, and σ2 is order isomorphic
to τ0. Clearly, σ3 must avoid φ, thus, the generating function is equal to DA

τ0
(x, y)CAφ (x, y), and we obtain

the stated result.

Theorem 3.2 can be used for reduction, but also to easily compute the generating function for a
new pattern from the generating function of a known pattern. We will use the notion of equivalence of
patterns to obtain several results that hold for whole families of patterns. Two POPs τ and φ are said
to be equivalent, and we write τ ≡ φ, if the number of compositions in CAn;m that avoid τ is equal to the

number of compositions in CAn;m that avoid φ for all n,m.

Let A = {a1, . . . , ak} be any ordered finite set of positive integers and σ = σ1σ2 . . . σm ∈ CAn;m. Then

the reverse R(σ) of a composition σ is the composition σm . . . σ2σ1. We call this bijection of CAn;m to
itself trivial. (The other trivial bijection is I, the identity bijection). Note that the complement operation
defined for permutations and words is not defined for compositions. It is easy to see that τ ≡ R(τ) for
any pattern τ . For example, the number of compositions that avoid the pattern 21-2 is the same as the
number of compositions that avoid the pattern 2-12.

In the following two subsections we obtain results for two specific classes of POPs – shuffle patterns
and multi-patterns.
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3.1 Shuffle patterns in compositions.

We consider the shuffle patterns τ -ℓ-ν and τ -1-ν, where ℓ (resp. 1) is the greatest (resp. smallest) element
of the pattern.

Theorem 3.3 Let A = {a1, a2, . . . , ak} be any ordered set of positive integers.

1. Let φ be the shuffle pattern τ-ℓ-ν. Then for all k ≥ ℓ,

CAφ (x, y) =
C
A−{ak}
φ (x, y) − xakyC

A−{ak}
τ (x, y)C

A−{ak}
ν (x, y)

(1 − xakyC
A−{ak}
τ (x, y))(1 − xakyC

A−{ak}
ν (x, y))

.

2. Let ψ be the shuffle pattern τ-1-ν. Then for all k ≥ ℓ,

CAψ (x, y) =
C
A−{a1}
ψ (x, y) − xa1yC

A−{a1}
τ (x, y)C

A−{a1}
ν (x, y)

(1 − xa1yC
A−{a1}
τ (x, y))(1 − xa1yC

A−{a1}
ν (x, y))

.

Proof We derive a recurrence relation for CAφ (x, y) where φ = τ -ℓ-ν. Let σ ∈ CAn,m(φ) be such that it
contains exactly s copies of the letter ak. If s = 0, then the generating function for the number of such
compositions is CA

′

φ (x, y), where A′ = A − {ak}. For s ≥ 1, we write σ = σ0akσ1ak · · ·akσs, where σj
is a φ-avoiding composition with parts in A′, for j = 0, 1, . . . , s. Then either σj avoids τ for all j, or
there exists a j0 such that σj0 contains τ , σj avoids τ for all j = 0, 1, . . . , j0 − 1 and σj avoids ν for
any j = j0 + 1, . . . , s. In the first case, the generating function for the number of such compositions is

xsakys
(

CA
′

τ (x, y)
)s+1

. In the second case, the generating function is given by

xsakys
s∑

j=0

(

CA
′

τ (x, y)
)j (

CA
′

ν (x, y)
)s−j

(CA
′

φ (x, y) − CA
′

τ (x, y)).

Therefore, we get

CAφ (x, y) = CA
′

φ (x, y) + CA
′

φ (x, y)
∑

s≥1

xsakys
s∑

j=0

(

CA
′

τ (x, y)
)j (

CA
′

ν (x, y)
)s−j

−
∑

s≥1

xsakys
s∑

j=1

(

CA
′

τ (x, y)
)j (

CA
′

ν (x, y)
)s+1−j

,

or equivalently,

CAφ (x, y) = (CA
′

φ (x, y) − xakyCA
′

τ (x, y)CA
′

ν (x, y))
∑

s≥0

xsakys
s∑

j=0

(

CA
′

τ (x, y)
)j (

CA
′

ν (x, y)
)s−j

.

Hence, using the identity
∑

n≥0

xn
n∑

j=0

pjqn−j =
1

(1 − xp)(1 − xq)
we get the desired result 1. Using similar

arguments and replacing a1 by ak, we obtain 2.

For certain shuffle patterns φ we can compute the generating function CAφ (x, y) explicitly, using the
recursion given in Theorem 3.3.

Example 3.4 Let A = {a1, . . . , ak} be any ordered set of positive integers and φ = 1′-2-1′′ (resp. ψ =
2′-1-2′′). Here τ = ν = 1, so CAτ (x, y) = CAν (x, y) = 1 for any A, since only the empty composition
avoids τ . Hence,

CAφ (x, y) =
1

(1 − xaky)2
(C

A−{ak}
φ (x, y) − xaky).
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Also, C
{a1}
φ (x, y) = 1

1−xa1y
as for any m, only the composition a1a1 . . . a1

︸ ︷︷ ︸

m times

avoids φ and therefore,

CA1′-2-1′′(x, y) =
1

∏

a∈A(1 − xay)2
−
∑

a∈A

xay
∏

a≤b∈A(1 − xby)2
,

the result obtained in Equation (3.1) directly. Likewise, we obtain

CA2′-1-2′′(x, y) =
1

∏

a∈A(1 − xay)2
−
∑

a∈A

xay
∏

a≥b∈A(1 − xby)2
.

We now give two corollaries to Theorem 3.3.

Corollary 3.5 Let φ = τ-ℓ-ν (resp. φ = τ-1-ν) be a shuffle pattern, and let f(φ) = f1(τ)-ℓ-f2(ν) (resp.
f(φ) = f1(τ)-1-f2(ν)), where f1, f2 ∈ {R, I} are any trivial bijections. Then φ ≡ f(φ).

Proof Using Theorem 3.3, and the fact that the number of compositions in CAn;m avoiding τ (resp. ν)
and f1(τ) (resp. f2(ν)) have the same generating functions, we get the desired result.

Corollary 3.6 For any shuffle pattern τ-ℓ-ν (resp. τ-1-ν), we have τ-ℓ-ν ≡ ν-ℓ-τ (resp. τ-1-ν ≡ ν-1-τ).

Proof Corollary 3.5 yields that the pattern τ -ℓ-ν (resp. τ -1-ν) is equivalent to the pattern τ -ℓ-R(ν) (resp.
τ -1-R(ν)), which is equivalent to the pattern R(τ -ℓ-R(ν)) = ν-ℓ-R(τ) (resp. R(τ -1-R(ν)) = ν-1-R(τ)).
Finally, we use Corollary 3.5 one more time to get the desired result.

3.2 Multi-patterns in compositions.

We now look at the second class of patterns. Recall that a multi-pattern is of the form τ = τ1-τ2- · · · -τs,
where {τ1, . . . , τs} is a set of consecutive patterns and each letter of τi is incomparable with any letter of
τj whenever i 6= j.

The simplest non-trivial example of a multi pattern is the pattern φ = 1′ − 1′′2′′ (which is the same
as 1 − 1′2′, which we will use for ease of notation). To avoid φ is the same as to avoid the patterns
1-12, 1-23, 2-12, 2-13, and 3-12 simultaneously. To count the number of compositions in CAn;m(1-1′2′),

we choose the leftmost letter of σ ∈ CAn;m(1-1′2′) in k ways, namely a1, . . . , ak, and observe that all the
other letters of σ must be in non-increasing order. Hence,

CA1-1′2′(x, y) = 1 +
y
∑

a∈A x
a

∏

a∈A(1 − xay)
.

More generally, using Lemma 3.1 and Theorem 3.2, we get the following theorem that is the basis for
calculating the number of compositions that avoid a multi-pattern, and therefore is the main result for
multi-patterns in this paper.

Theorem 3.7 Let A = {a1, . . . , ak} be any ordered finite set of positive integers and let τ = τ1-τ2- · · · -τs
be a multi-pattern. Then

CAτ (x, y) =

s∑

j=1

CAτj
(x, y)

j−1
∏

i=1

[(

y
∑

a∈A

xa − 1

)

CAτi
(x, y) + 1

]

.
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Example 3.8 Let A = {a1, . . . , ak} be any ordered set of positive integers. Let τ = τ1-τ2- · · · -τs be a
multi-pattern such that τj is equal to either 12 or 21, for j = 1, 2, . . . , s. It is easy to see that CA12(x, y) =
CA21(x, y) = 1

Q

a∈A(1−xay) and we obtain from Theorem 3.7

CAτ (x, y) =
1 −

(

1 +
y

P

a∈A xa−1
Q

a∈A(1−xay)

)s

1 − y
∑

a∈A x
a

.

Using arguments similar to those in the proof of [22, Theorem 4.1] we get the following theorem which
is an analogue to [19, Theorem 21] and [22, Theorem 4.1].

Theorem 3.9 Let τ = τ0-τ1 and φ = f1(τ0)-f2(τ1), where f1 and f2 are any of the trivial bijections.
Then τ ≡ φ.

Proof First we prove that τ = τ0-τ1 ≡ τ0-f(τ1), where f is a trivial bijection. Suppose that σ = σ1σ2σ3

avoids τ and σ1σ2 has exactly one occurrence of τ0, namely σ2. Then σ3 must avoid τ1, so f(σ3) avoids
f(τ1) and σf = σ1σ2f(σ3) avoids τ0-f(τ1). The converse is also true, if σf avoids τ0-f(τ1) then σ avoids
τ . Since any composition either avoids τ0 or can be factored as above, we have a bijection between the
class of compositions avoiding τ and the class of compositions avoiding τ0-f(τ1). Thus τ0-τ1 ≡ τ0-f(τ1).
Using this result as well as the properties of trivial bijections we get

τ ≡ τ0-f2(τ1) ≡ R(τ0-f2(τ1)) ≡ R(f2(τ1))-R(τ0) ≡
≡ R(f2(τ1))-f1(R(τ0)) ≡ R(f2(τ1))-R(f1(τ0)) ≡ f1(τ0)-f2(τ1).

Corollary 3.10 The multi-patterns τ1-τ2 and τ2-τ1 are equivalent.

Proof From Theorem 3.9, using the properties of the trivial bijection R, we get

τ1-τ2 ≡ τ1-R(τ2) ≡ R(R(τ2))-R(τ1) ≡ τ2-R(R(τ1)) ≡ τ2-τ1.

We can obtain an even more general result.

Theorem 3.11 Suppose we have multi-patterns τ = τ1-τ2- · · · -τs and φ = φ1-φ2- · · · -φs, where τ1τ2 . . . τs
is a permutation of φ1φ2 . . . φs. Then τ ≡ φ.

Proof We use induction on s. For s = 2, the statement follows from Corollary 3.10. Suppose the
statement is true for all k < s. If the composition σ has no occurrences of φ1, then it obviously avoids
both τ and φ. Otherwise, we can write σ = σ1σ2σ3, where σ1σ2 quasi-avoids φ1. Then σ3 has to avoid
φ2- · · · -φs. Since the φi are incomparable, it is irrelevant from which letters σ1σ2 is built, and we can
apply the inductive hypothesis to φ2- · · · -φs. We can rearrange φ′2, . . . φ

′
s of φ2, . . . φs in such a way that

the blocks in τ1τ2 . . . τs corresponding to φ2, . . . , φs are arranged in the same order as the τ ’s. Then

φ = φ1-φ2- · · · -φs ≡ φ1-φ
′
2- · · · -φ

′
s ≡ R(φ′s)- · · · -R(φ′2)-R(φ1). (3.3)

Now we consider two cases: either τs 6= φ1 or τs = φ1. In the first case, we apply the hypothesis to the
pattern R(φ′s)- · · · -R(φ′2)-R(φ1), with the role of φ1 played by R(φ′s). Thus, we can move the pattern
R(φ1) to the correct place somewhere to the left of R(φ′2), then apply the bijection R to obtain that
τ ≡ φ. In the second case, we obtain

φ ≡ R(φ′s)- · · · -R(φ′2)-R(φ1) ≡ R(φ′s)- · · · -R(φ1)-R(φ′2) ≡ φ′2-φ1- · · · -φ
′
s ≡ φ′2-φ

′
s- · · · -φ1 = τ.

The first equivalence follows from (3.3); the second one follows from the inductive hypothesis. Applying
the bijection R together with R(R(x)) = x and the inductive hypothesis once more gives the remaining
equivalences.
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4 Non-overlapping occurrences of POPs in compositions

Kitaev [19] and Mendes and Remmel [24, 25] proved the following result on the distribution of non-
overlapping patterns in permutations: Let τ -nlap(σ) be the maximum number of non-overlapping occur-
rences of a consecutive pattern τ in a permutation σ where two occurrences of τ are said to overlap if
they contain any of the same integers. Then

∞∑

n=0

xn

n!

∑

σ∈Sn

yτ-nlap(σ) =
A(x)

(1 − y) + y(1 − x)A(x)
, (4.4)

where A(x) =
∑∞

n=0
xn

n! |{σ ∈ Sn : σ avoids τ}|. In other words, if the exponential generating function
for the number of permutations in Sn avoiding τ is known, then so is the bivariate generating function
for the entire distribution of τ -nlap. Kitaev and Mansour [22, Theorem 5.1] found an analogue to (4.4)
in case of words. We now prove a corresponding result for compositions.

Let τ be an arbitrary consecutive pattern. We say that two patterns overlap in a composition if they
contain any of the same letters of the composition. Using Theorem 3.7 for the multi-pattern τ -τ - · · · -τ
allows us to obtain the generating function for the entire distribution of the maximum number of non-
overlapping occurrences of a pattern τ in compositions.

The simplest consecutive pattern is a descent (or drop) in a composition, which occurs at position i

if σi > σi+1. Clearly, two descents at positions i and j overlap if j = i+ 1. In particular, we can define
the statistic maximum number of non-overlapping descents, or MND, in a composition. For example,
MND(333211) = 1 whereas MND(13321111432111) = 3 (namely 32, 43 and 21). Obviously, this statistic,
maximum number of non-overlapping patterns, can be defined for any consecutive pattern τ , and we
obtain the following result.

Theorem 4.1 Let A be any ordered set of positive integers and let τ be a consecutive pattern. Then

∑

n,m≥0

∑

σ∈CA
n;m

tτ-nlap(σ)xnym =
CAτ (x, y)

1 − t
[(
y
∑

a∈A x
a − 1

)
CAτ (x, y) + 1

] ,

where τ-nlap(σ) is the maximum number of non-overlapping occurrences of τ in σ.

Proof We fix a natural number s and consider the multi-pattern Φs = τ -τ - · · · -τ with s copies of τ . If a
composition avoids Φs then it has at most s− 1 non-overlapping occurrences of τ . Theorem 3.7 yields

CAΦs
(x, y) =

s∑

j=1

CAτ (x, y)

j−1
∏

i=1

[(

y
∑

a∈A

xa − 1

)

CAτ (x, y) + 1

]

.

Therefore, the generating function for the number of compositions that have exactly s non-overlapping
occurrences of the pattern τ is given by

CAΦs+1
(x, y) − CAΦs

(x, y) = CAτ (x, y)

[(

y
∑

a∈A

xa − 1

)

CAτ (x, y) + 1

]s

.

Hence,
∑

n,m≥0

∑

σ∈CA
n;m

tτ-nlap(σ)xnym =
∑

s≥0

tsCAτ (x, y)

[(

y
∑

a∈A

xa − 1

)

CAτ (x, y) + 1

]s

,
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or, equivalently,

∑

n,m≥0

∑

σ∈CA
n;m

tτ-nlap(σ)xnym =
CAτ (x, y)

1 − t
[(
y
∑

a∈A x
a − 1

)
CAτ (x, y) + 1

] .

Note that Theorem 4.1 is a q-analogue to [22, Theorem 5.1], which is the main result of [22] (set x = 1
to get the result for words). We use Theorem 4.1 to obtain the distribution for MND, the maximum
number of non-overlapping descents.

Example 4.2 Let A be any ordered set of positive integers. If we consider descents (the pattern 12) then
CA12(x, y) = 1

Q

a∈A(1−xay) , hence the distribution of MND is given by the formula

∑

n,m≥0

∑

σ∈CA
n;m

t12-nlap(σ)xnym =
1

∏

a∈A(1 − xay) + t
(
1 − y

∑

a∈A x
a −

∏

a∈A(1 − xay)
) .

Specifically, the distribution of MND on the set of compositions of n with parts in A = {1, 2} is given by

1

(1 − x)(1 − x2) − x3t
=
∑

s≥0

x3s

(1 − x)2s+2(1 + x)s+1
ts.
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