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ABSTRACT

Pythagorean Alignment

By

Artin Parsanian

A new parameterization of all integer triangles through a simple diagram en-

ables the generation of all the Primitive Pythagorean Triples (PPTs), the alignment

of the major approaches regarding the treatment and production of the set of such

triples, and the discovery of a whole forest of PPT trees in addition to the two cur-

rently existing ones given by Hall and Price. The mathematical bedrock for the

generation of any PPT tree is a fitting branch system: a definite set of co-prime

pairs that is required for input into its corresponding PPT formula to produce as a

tree exactly all the PPTs. Various techniques then allow us to create and transform

branch systems that formulate into the fruit, the PPTs, thus growing many forms of

trees.
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CHAPTER 1

Introduction

The Pythagorean triples are among the most extensively studied mathematical

objects in human history, starting from the Sumerian and continuing until the most

recent mathematical literature, having a constant and central presence.

In the last few centuries a direction towards generalization of known mathe-

matical formulae exceedingly took dominance in the mathematical community. The

mainstream branches of mathematics (e.g. abstract algebra) largely emerged in or-

der to capture, arrange, and develop the known jewels of mathematics, among them

the Pythagorean Theorem, the crown, and its positive Diophantine solutions, the

Pythagorean triples. Many modes of generalization and treatment of the Pythagorean

Theorem a2 + b2 = c2 and the Pythagorean triples have appeared in the literature.

In fact, the Pythagorean equation is a special case of various interesting generalized

formulas engulfing it.

The best way to obtain all the Pythagorean triples is to first generate all the

primitive Pythagorean triples (PPT), where a, b, and c are pairwise coprime, then use

the conventional scalar k to easily obtain all the triples satisfying the Pythagorean

Theorem. That is, if the primitive Pythagorean triple (a, b, c) ∈ N satisfies a2+b2 = c2

and gcd(a, b, c) = 1, then for all k ∈ N, (ka, kb, kc) is a Pythagorean triple, only

primitive when k = 1. This is the most popular way of organizing the Pythagorean
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triples, in use since at least Dickson’s time the early 1900s. For gaining meaningful

mathematical (number theoretical) insight into the characteristic nature and relevance

of the PPTs, only positive and distinct PPTs need be considered in their definition,

that is, the PPTs up to reflection and rotation, respectively. Thus, we allow the PPTs

to dwell at home, in the land of Geometry.

The motivation behind this thesis is a particular diagram depicted in Figure 2.2

and its consequences, which provides us a good view of the primitive Pythagorean

triples and their formulas. The known and newly found formulas for all primitive

Pythagorean triples, along with their parameters, are then aligned as in Figures 4.2

and 4.3.
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CHAPTER 2

The Integer Triangle Diagram and

the Parametrization of Primitive Integer Triangles

Definition 2.1. An integer triangle is a positive integer triple (a, b, c), where a+

b > c, b+ c > a, and a+ c > b.

Definition 2.2. A primitive integer triangle, or PIT, is a positive integer triangle

(a, b, c) with gcd (a, b, c) = 1.

Figure 2.1: The Integer Triangle Diagram 1

As this thesis only considers integer triangles, henceforth we may use “tri-
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Figure 2.2: The Integer Triangle Diagram 2

angles” and “triples” interchangeably, where ”triangle” is used to evoke a geomet-

ric flavor/intuition. For all integer triangles with side lengths a, b, and c, alterna-

tively, triples (a, b, c) where a, b, and c are natural numbers and a + b > c, b + c >

a, and a + c > b, there is an incircle with an inradius r that partitions the sides

a, b, and c into segments with lengths x, v, and w as the radii of the three tangent

circles apparent in the Figure 2.1. Let x be the smallest radius. Constructing circles

of radius x centered at the vertices of the two larger circles, the diagram in Figure

2.2 is created. Cutting out from lengths v and w the shorter length x the remaining

lengths p and q are obtained, respectively.

From Figure 2.2 emerge the next two theorems, which gives a simple cate-

gorized parametrization of all primitive integer triangles. Again, the goal is to find
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only the primitive triples because any other triple is a multiple of a primitive triple.

Afterwards, with the condition a2 + b2 = c2, attention will be restricted to the more

specific Pythagorean case.

Definition 2.3. Let s be the semiperimeter of an integer triangle (a, b, c) defined

as s =
a+ b+ c

2
.

Theorem 2.4. Let x, p, q ∈ R+

v = x+ p,

w = x+ q,

a = x+ v = 2x+ p,

b = x+ w = 2x+ q, and

c = v + w = 2x+ p+ q.

Then (a, b, c) is a triangle. Moreover,

x =
(a+ b− c)

2
,

v =
(a+ c− b)

2
,

w =
(b+ c− a)

2
,

p = v − x = c− b,

q = w − x = c− a, and

s = x+ v + w = 3x+ p+ q.

Proof. We have that a+ b = (2x+ p) + (2x+ q) = 4x+ p+ q > 2x+ p+ q = c,

a+ c = (2x+ p) + (2x+ p+ q) = 4x+ 2p+ q > 2x+ q = b, and
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c+ b = (2x+ p+ q) + (2x+ q) = 4x+ p+ 2q > 2x+ p = a.

So (a, b, c) = (2x+ p, 2x+ q, 2x+ p+ q) is a triangle.

With substitution and simple arithmetic the rest follows.

Nothing specific is mentioned yet about the nature of the values of x, p, q, x, v,

w, and s other than they being positive real numbers. The next theorem categorizes

the possible values of the parameters as defined in the above partition of the integer

triples.

Theorem 2.5. The Primitive Integer Triangle Theorem (PITT) :

Let (a, b, c) be a primitive integer triangle. Let x, v, w, p, and q ∈ R+ such that

v = x+p, w = x+q, a = x+v = 2x+p, b = x+w = 2x+q, and c = v+w = 2x+p+q.

Then x =
(a+ b− c)

2
, v =

(a+ c− b)
2

, w =
(b+ c− a)

2
,

p = v − x = c− b, q = w − x = c− a, and s = x+ v + w = 3x+ p+ q.

Moreover,

(1) If exactly one of a, b, or c is even, then p, q, x, v, w, and s are all in N.

(2) Otherwise x, v, w and s are positive half integers. However, p, q ∈ N.

Proof. Let (a, b, c) be a primitive integer triangle. Again, using arithmetic gives that

x =
(a+ b− c)

2
, v =

(a+ c− b)
2

, w =
(b+ c− a)

2
,

p = v − x = c− b, q = w − x = c− a, and s = x+ v + w = 3x+ p+ q.

Three cases emerge from consideration of parity possibilities:

1. If exactly one of a, b, or c is even, then x, v, w, and s are all natural numbers.
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2. If exactly one of a, b, or c is odd, then x, v, w, and s are positive half integers.

3. If a, b, and c are all odd, then x, v, w, and s are positive half integers.

The segments p and q are nonetheless always positive integers for all primitive integer

triangles.

7



CHAPTER 3

The Parametrization of the Primitive Pythagorean Triples

Definition 3.1. Primitive Pythagorean Triple (PPT)

Let (a, b, c) ∈ N3. When (a, b, c) is a primitive integer triangle and a2 + b2 = c2,

(a, b, c) is called a primitive Pythagorean triple .

Figure 3.1: The Integer Triangle Diagram 3

Starting in this chapter, attention is focused on the primitive Pythagorean
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triples. As ”right primitive integer triangles” or ”primitive Pythagorean triangles/triples”

are special cases of Theorem 2.5(1), it follows as a corollary that for all primitive

Pythagorean triangles we have positive integer segments a, b, c, x, v, w, p, q, and s.

Corollary 3.2. Let (a, b, c) be a primitive Pythagorean triple. Let x, p, q, v, w, and s

be as in Theorem 2.5. Then, x, p, q, v, w, and s are all natural numbers.

Proof. Let (a, b, c) be a primitive Pythagorean triple. Note that not all of a, b, or c

are even since gcd(a, b, c) = 1. Similarly, we cannot have two of a, b, or c be even

since the equation a2 + b2 = c2 implies that the third integer would have to be even

contradicting the condition gcd(a, b, c) = 1. Note also that we cannot have all three

of a, b, and c be odd since then a2 + b2 ≡ 12 + 12 ≡ 0 mod 2 and c2 ≡ 1 mod 2

which is a contradiction. Hence we are in case (1) of Theorem 2.5, and the result

follows.

Theorem 3.3. The PPT condition

Let (a, b, c) be a primitive integer triangle. Let x, p,and q be as in Theorem 2.5. Then,

a2 + b2 = c2 if and only if 2x2 = pq.

Proof. (a, b, c) is a primitive Pythagorean triple if and only if a2 + b2 = c2, which is

true if and only if (2x + p)2 + (2x + q)2 = (2x + p + q)2, which is true if and only if

4x2 + 4xp + p2 + 4x2 + 4xq + q2 = 4x2 + 4x(p + q) + p2 + 2pq + q2, which is true iff

2x2 = pq.

Note this theorem is true for nonprimitive triples as well since the scalar k in

[k(2x+ p)]2 + [k(2x+ q)]2 = [k(2x+ p+ q)]2 would simply cancel.
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Theorem 3.4. Let (a, b, c) a primitive Pythagorean triple and x, p and q be as in

Theorem 3.3. Then, gcd(a, b) = 1 if and only if gcd(p, q) = 1.

Proof. By Theorem 3.3, 2x2 = pq. As we saw in the proof of Corollary 3.2, a and b

are not both even. Suppose 2|p and 2|q. Then 2|(2x + p) and 2|(2x + q). Hence 2|a

and 2|b. This is a contradiction. Hence p and q are not both even. Now let t be an

odd prime such that t|p. Then t|x, so t|a. Similarly, since b = 2x+ q, t|q implies t|b.

Conversely, let t be a prime such that t|a and t|b. Then t|c since a2 + b2 = c2. Hence

t|(c− b) and t|(c− a). Thus, t|p and t|q.

Experimental digging into the coprime parameters p and q (i.e. their prime

factorization) reveals the bedrock parameters α and β over which the primitive

Pythagorean triples are constructed. As will be apparent in the theorems to come, p

will be an odd square number of the form p = α2 and q will have the form q = 2β2

as shown in the diagram in Figure 3.2. These parameters α and β turn out to be

m− n and n in the classical Greek parametrization, as will be apparent.

10



Figure 3.2: The Pythagorean Triangle Diagram with the α and β parametrization

The goal now is to define a rigorous one-to-one map from defined feeder num-

bers to the primitive Pythagorean triples. In addition to the seminal formula for

producing the primitive integer triangle, only three primitive Pythagorean triples

producing functions with their feeder ordered pairs will be considered here and encap-

sulated in Theorem 3.8. These three formulas will later be used to find the primitive

Pythagorean triple trees and to discover the Pythagorean forest.

Below, the sets Do, DI , DII , and DIII are defined, as well as their correspond-

ing functions Fo, FI , FII , and FIII . Each of these sets can be used to enumerate the

primitive Pythagorean triples. This is done by plugging the set into its corresponding

function. This will be shown in Theorem 3.8.

Definition 3.5. Consider the following sets with their corresponding functions:

(1) Let Do = {(x, p, q) | x, p, q ∈ N, 2x2 = pq, gcd(p, q) = 1} and

Fo :N3→N3 where Fo(x, p, q) = (2x+ p, 2x+ q, 2x+ p+ q).

11



(2) Let DI = {(α, β) | α, β ∈ N, 26 | α, gcd(α, β) = 1} and

FI : N2→N3 where FI(α, β) = (2αβ + α2, 2αβ + 2β2, 2αβ + α2 + 2β2).

(3) Let DII = {(m,n) | n,m ∈ N, 2|nm, gcd(m,n) = 1, m > n} and

FII : N2→N3 where FII(m,n) = (m2 − n2, 2mn, m2 + n2).

(4) Let DIII = {(d, e) | d, e ∈ N, 26 |de, gcd(d, e) = 1, d > e} and

FIII : N2→N3 where FIII(d, e) = (de,
d− e

2
,
d+ e

2
).

It is a well known fact that exactly one of the Pythagorean triples a or b in the

formula a2 + b2 = c2 is even. This propery will henceforth be part of the definition of

primitive Pythagorean triples. We are concerned with the distinct triples. That is,

for example, (3, 4, 5) = (4, 3, 5), so it is necessary to fix either the a or the b even. It

is customary to have the second number b be the even one.

Definition 3.6. Let T be the set of primitive Pythagorean triples. That is, let

T = {(a, b, c) | a, b, c ∈ N, a2 + b2 = c2, 2|b, gcd(a, b) = 1}.

The above functions are viewed as formulas for producing T whenever their

domains Do, DI , DII , and DIII are either given or themselves generated. The feeder

domains can be given. The classic set DII , for instance, is usually represented in a

two dimensional table. Otherwise they can be generated as branch systems readied

for formulation into trees, as in Hall [18]. The latter one is the general approach in

this thesis.

Another note, before proceeding, is that even though the homeland of our

12



parameters p and q, or α and β, is the Integer Triangle Diagram 2 in Figure 2.2

and they are natural numbers, they and their ”consecutive parameters” n and m can

easily be redefined to include all integer values: positive, zero, and negative. With

the inclusion of opposites and zero, this approach provides the advantage of group

theoretical treatment of the Pythagorean triples, although not much insight has been

demonstrated in this direction. This is to say that the parity and size restrictions

that partially define the parameters in the ordered pairs (α, β), (m,n), and (d, e) are

preserved even when allowing their definitions to include all integer entries. However,

if we respect the right of these pairs and so the primitive Pythagorean triples to

remain within their natural habitat, the land of Geometry, a more vivid and telling

reflection of their many connections with the rest of mathematics (number theory) is

observed. This is the preferred approach for truly understanding the essence of the

primitive Pythagorean triples.

The following lemma is needed in Theorem 3.8 to show that the function FI is

a one-to-one map from the set DI to the set T . This shows that a triple in T cannot

be generated from two different ordered pairs in DI .

Lemma 3.7. Let (a1, b1, c1) and (a2, b2, c2) be primitive Pythagorean triples. Let

x1, p1, q1 and x2, p2, q2 correspond to (a1, b1, c1) and (a2, b2, c2) as in Theorem 2.5.

If (a1, b1, c1) = (a2, b2, c2), then we have that x1 = x2.

Proof. x1 =
a1 + b1 − c1

2
=
a2 + b2 − c2

2
= x2

Note the converse of this lemma is false. The following is a counterexample.

13



Let x1 = x2 = 6, p1 = 1, q1 = 72, and p2 = 9, q2 = 8. Then (a1, b1, c1) = (13, 84, 85)

and (a2, b2, c2) = (21, 20, 29). Here, α1 = 1 and β1 = 6 whereas α2 = 3 and β2 = 2.

Theorem 3.8. Primitive Pythagorean Triple Parametrization (PPTP)

Consider DI , DII , DIII , Fo, FI , FII , FIII , and T as in Definition 3.5.

Then, Fo(Do) = FI(DI) = FII(DII) = FIII(DIII) = T .

Moreover, Fo, FI , FII , and FIII are one-to-one functions.

(i.e. FJ is a bijection between DJ and T for J = o, I, II, III).

Proof. This can be shown many ways. Figure 3.3 shows the alignment of the pa-

rameters of the ordered pairs in each set. This means that the proof of only one

bijection is necessary, and the rest are equivalent through the parametric shifs shown

in Figure 3.3. That is, with consistency in parity and size restrictions, setting

1 ≤ α = m− n = e, β = n =
d− e

2
, α + β = m =

d+ e

2
, and α + 2β = m+ n = d.

To show that FI is a bijection between DI and T , we must first show that

FI is onto. Let (a, b, c) ∈ T . Thus, a2 + b2 = c2 with 2|b and gcd(a, b) = 1. Let

x, p, q correspond to (a, b, c) as in Theorem 2.5. By Theorem 3.3, 2x2 = pq. Let

2|q. Let q = 2z where z ∈ N. Then x2 = pz. By Theorem 3.4 gcd(a, b) = 1 if and

only if gcd(p, q) = 1. Thus 26 |p. Since p and z are also relatively prime and pz is a

square, we must have that both p and q are squares. That is, p = α2 and z = β2 for

some α, β ∈ N with gcd(α, β) = 1. Hence x2 = α2β2, which gives x = αβ. Observe

that gcd(α, β) = 1 if and only if gcd(p, q) = gcd(α2, 2β2) = 1. Thus (a, b, c) =

(2x+ p, 2x+ q, 2x+ p+ q) = (2αβ +α2, 2αβ + 2β2, 2αβ +α2 + 2β2) where 2 6 | α and

14



gcd(α, β) = 1 Therefore, (α, β) ∈ DI and FI(α, β) = (a, b, c). This proves that FI is

onto.

Now, the plan is to show that FI is one-to-one. Let (α1, β1) and (α2, β2) ∈ DI .

We show that if (α1, β1) 6= (α2, β2), then FI(α1, β1) 6= FI(α2, β2). We have three cases

for this claim.

Case 1: Suppose that α1 6= α2 and β1 6= β2. Suppose the negation of the

conclusion: FI(α1, β1) = FI(α2, β2); that is, (a1, b1, c1) = (a2, b2, c2). Thus a1 = a2

and 2α1β1 + α2
1 = 2α2β2 + α2

2. By Lemma 3.7 we have x1 = x2 which gives α1β1 =

α2β2. The equations α1β1 = α2β2 and 2α1β1 + α2
1 = 2α2β2 + α2

2 give that α1 = α2,

which is a contradiciton.

Case 2: Suppose α1 6= α2 and β1 = β2. It follows that α1β1 6= α2β2. Suppose

FI(α1, β1) = FI(α2, β2); that is, (a1, b1, c1) = (a2, b2, c2). Again, since Lemma 3.7

deduces α1β1 = α2β2, we have a contradiction.

Case 3: Suppose α1 = α2 and β1 6= β2. This is similar to case 2 where the

negation of the conclusion draws a contradiction.

The following chart is useful in picturing the alignment of the parameters of

these functions.

Note, by the restrictions in their definition, the smallest possible values of the

parameters in the ordered pairs of DI , DII , and DIII are (1, 1), (1, 2), and (1, 3),

organized in the following table:

15



odd odd / even even / odd odd
I α β α + β α + 2β
II m− n n m m+ n

III e d−e
2

d+e
2

d

Figure 3.3: The parametric alignment of DI , DII , and DIII

odd odd / even even / odd odd
I α β
II n m
III e d

example 1 1 2 3

Figure 3.4: The smallest values of the parameteric pairs
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CHAPTER 4

Examples and Other Pythagorean Formulas

The following is a selection of examples each with parametric value entries for (α, β),

(m,n), and (d, e) followed by the primitive pythagorean triples they generate.

Notice how in this chart the Fibonacci sequential order for n and m is the

reverse of the conventional ordered pair representation (m,n). Each has its virtues.

The (m,n) convention allows for easy substitution into the classic formula FII , but

for the Fibonacci perspective, a left to right reading and a size increase, an n, m

ordering is necessitated. This has apparently been a source of confusion in the past

and an obstacle in the synthesis of the Pythagorean literature. It is critical to observe

that there is no size restriction imposed on the α/β relation.
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(o) (o/e) (e/o) (o) a b c

I α β α + β α + 2β 2αβ + α2 2αβ + 2β2 2αβ + α2 + 2β2

II m− n n m m+ n m2 − n2 2mn m2 + n2

III e d−e
2

d+e
2

d de d2−e2
2

d2+e2

2

ex1 1 1 2 3 3 4 5
ex2 1 2 3 5 5 12 13
ex3 1 3 4 7 7 24 25
ex4 3 1 4 5 15 8 17
ex5 3 2 5 7 21 20 29
ex6 5 1 6 7 35 12 37
ex7 5 2 7 9 45 28 53
ex8 5 3 8 11 55 48 73
ex9 5 6 11 17 85 132 157
ex10 7 1 8 9 63 16 65
ex11 7 2 9 11 77 36 85
ex12 7 3 10 13 91 60 109
ex13 7 6 13 19 133 156 205
ex14 9 7 16 23 207 224 305
ex15 11 1 12 13 143 24 145
ex16 11 4 15 19 209 120 241
ex17 13 4 17 21 273 136 305
ex18 15 8 23 31 465 368 593
ex19 17 6 23 29 493 276 565
ex20 17 13 30 43 731 780 1069
ex21 19 3 22 25 475 132 493
ex22 21 23 44 67 1407 2024 2465
ex23 23 6 29 35 805 348 877
ex24 25 1 26 27 675 52 677

Figure 4.1: Examples
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4.1 Other Formulas

DI , DII , and DIII are not the only three distinct branch systems. There exist two

more sets each with its corresponding PPT converting formula.

odd odd / even even / odd odd

I α β α + β α + 2β
II m− n n m m+ n

III e d−e
2

d+e
2

d
IV i− 2j j i− j i
V z y − z y 2y − z

Figure 4.2: The alignment of five distinct parametric pairs

a b c

I: factored form (α)(α + 2β) 2(β)(α + β) (β)2 + (α + β)2

FI(DI) 2αβ + α2 2αβ + 2β2 2αβ + α2 + 2β2

II: factored form (m− n)(m+ n) 2(m)(n) (m)2 + (n)2

FII(DII) m2 − n2 2mn m2 + n2

III: factored form (d)(e) 2(d−e
2

)(d+e
2

) (u+v
2

)2 + (d−e
2

)2

FIII(DIII) de d2 − e2 d2 + e2

IV: factored form (i− 2j)(i) 2(j)(i− j) (j)2 + (i− j)2
FIV (DIV ) i2 − 2ij 2ij − 2j2 i2 + j2 − 2ij

V: factored form (z)(2y − z) 2(y − z)(y) (y − z)2 + (y)2

FV (DV ) 2yz − z2 2y2 − 2yz y2 + z2 − 2yz

Figure 4.3: The alignment of five distinct Pythagorean formulas
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These tables show the alignment of five parametric pairs and their Pythagorean

formulas. As a consequence of the view these alignments afford, it is easy to see that

all formulas are simple parametric shifts of one another, with the preservation of the

respective parity and size conditions. The proof of these formulas is the same as that

in Theorem 3.8. To the best of our knowledge, these five foundational parameteric

pairs are thus far the only known distinct variable pairs that serve as feeders into their

formulas to produce the set of primitive Pythagorean triples T . On close inspection,

most of the Pythagorean literature on the generation of T can be reflected on these

two charts.

Observe, for instance, that (2αβ + α2, 2αβ + 2β2 2αβ + α2 + 2β2) = [α(α +

2β), 2β(α+ β), (α+ β)2 + (β)2]. Substituting α = m− n and β = n gives the classic

formula (m2 − n2, 2mn, m2 + n2). This is allowed because of the parity and size

conditions for these parameters.
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CHAPTER 5

A rigorous proof of Hall and a new binary tree

5.1 Hall’s proof

In 1970, Hall gave a way to enumerate the primitive Pythagorean triples, the set T , in

the form of a tree. The foundation of this tree of triples is what we call DII . We now

give a way to generate the setDII in the form of a tree. We then apply the function FII

to the vertices of the tree to get the primitive Pythagorean triples. Additionally, Hall

(and recently Price) found a direct way of generating the triples by using matrices,

which is a combination of the tree algorithm and the classic formula FII [18] [31]. Some

of the trees in this article do not have this one-step-generating advantage because all

the given or generated branch systems have to undergo a transformation step (e.g.

sorted, trimmed ) to obtain a feeder set DJ before being mapped to T .

Hall’s algorithm works as follows. See Figure 5.1 for a picture of this construc-

tion.The base of the tree is the vertex (2, 1). At each vertex (m,n) one applies the

three formulas (2m − n,m), (2m + n,m), and (m + 2n, n) to get the next layer of

vertices. Note that given a vertex (M,N) in the tree, to go backwards in the tree one

applies the formula (N, 2N −M) if N < M < 2N , (N,M − 2N) if 2N < M < 3M ,

and (M − 2N,N) if 3N < M .

We now prove that the tree enumerates the elements of DII . The following

sequence is a rigorous and detailed version of Hall’s proof for the existence of DII as
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a branch system, after which FII can simply be applied to create the set of primitive

Pythagorean triples T .

Lemma 5.1. Let M,N ∈ N such that gcd(M,N) = 1, M and N are of opposite

parity, and M > N . Then M = 2N if and only if (M,N) = (2, 1).

Proof. (→) Assume M = 2N . If N = 1, then M = 2. If, however N 6= 1, then there

exists a prime t that divides N , thus t|M , which contradicts the fact that M and N

are coprime. (←) If (M,N) = (2, 1), then (2) = 2(1).

The idea in the following lemma provides a major technique for tree (branch)

formation. It positions any given coprime pair (M,N) with opposite parity in one of

three cases, which shows how to move to the parent of(M,N) in the Hall tree.

Lemma 5.2. Let M,N ∈ N such that gcd(M,N) = 1, M and N are of opposite

parity, and M > N . Suppose M 6= 2N . Let m,n ∈ N be constructed as follows:

• If N < M < 2N , then m = N and n = 2N −M .

• If 2N < M < 3N , then m = N and n = M − 2N .

• If 3N < M , then m = M − 2N and n = N .

Then the following facts are deduced:

(1) m > n

(2) gcd(m,n) = 1

(3) m+ n < M +N

(4) M 6= N and M 6= 3N

Proof. We break each part of this proof into cases. The cases (a), (b), and (c)

correspond to the three bullet points above, respectively. In each case we make the
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assumptions of the respective bullet point without writing them down. We now begin

the proof.

(1) (a) If m = N and n = 2N − M , then M = 2m − n and N = m. As

N < M < 2N , with substitution 0 < m− n < m, so m > n.

(b) If m = N and n = M − 2N , then M = 2m + n and N = m. As

2N < M < 3N , substitution yields 0 < n < m, so m > n.

(c) If m = M − 2N and n = N , then M = m+ 2n and N = n. As 3N < M ,

after substitution 3(n) < (m+ 2n), so m > n.

(2) (a) Let t be a prime such that t|m. Then t|N . We have gcd(M,N) = 1 so

t6 |M . Since m = N and n = 2N−M , we have t 6 |n, so here gcd(m,n) = 1.

(b) Let t be a prime such that t|m. Then t|N . Again with gcd(M,N) = 1,

t6 |M . For m = N and n = M − 2N , this gives t6 |n. Here too we have that

gcd(m,n) = 1.

(c) Here, let t be a prime such that t|n. Then t|N . As gcd(M,N) = 1, t6 |M .

In this case, where m = M − 2N and n = N , it follows that t6 |m.

(3) (a) In this case, we have m+ n = (N) + (2N −M) = 3N −M . As 2N < 2M ,

3N −M < M +N . Transitively, m+ n < M +N .

(b) In this case, we have m + n = (N) + (M − 2N) = M − N . By adding

2m = 2N this becomes 3m+ n = M +N , which is greater than m+ n.

(c) In this case, we have m + n = (M − 2N) + (N) = M − N . By adding

2n = 2N this becomes m+ 3n = M +N , which is greater than m+ n.

(4) Clearly, M 6= N . Suppose M = 3N . For any prime t dividing N , t|M but
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gcd(M,N) = 1. The only natural number choice for N is 1, giving M = 3,

which contradicts their opposite parity condition.

Theorem 5.3. Let (M,N) ∈ N2 with gcd(M,N) = 1, M and N of unlike parity, and

M > N (i.e. (M,N) ∈ DII). (M,N) appears exactly once in the Hall branch system.

Proof. Every (M,N) in DII will fit in one of the three cases of Lemma 5.1 and Lemma

5.2. It will accordingly transform a step backwards to its generating (m,n), which

seen as the new (M,N) can also be transformed in reverse, again guided by the case

formula in which it fits which in turn always depends on the relation between M and

N . Forwards steps are similarly guided by the corresponding case of an (m,n). A

sequence of steps backwards or forwards is called a path. There is no stopping going

forwards. By Lemma 5.2(3) every step backwards means a smaller coordinate sum.

Any path backwards leads to a smaller endpoint. By Lemma 5.1, all backward paths

ultimately lead back to where M is no longer not equal to 2N , which is the initial

vertex (2, 1). Therefore, every (M,N) is on the tree as it will have a path backwards

to the starting vertex. Also every (M,N) has to have a unique path backwards to

(2, 1) so it must appear only once on the tree.
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Figure 5.1: Hall Tree
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5.2 A New Binary Branch System

Here we present a new mathematical tree termed binary 1 or B1 whose set of vertices

comprise of all the reduced positive rationals, represented as coprime pairs with the

first coordinate greater than the second. This set is later defined as E in Definition

6.1. The closest mathematical relative of this set is the Stern-Brocot tree, the right

wing of which also generates this same set but with a different arrangement. This

B1 tree can serve many other mathematical uses but we here only use it to produce

primitive Pythagorean triples, and so we refer to B1 as a branch system as it serves

this particular purpose. The proof that B1 contains all the elements of E is modeled

on the proof of Hall’s theorem/algorithm for generating a ternary tree. It turns out

that E = DII

⋃
DIII and DII

⋂
DIII = ∅. Once we know this, we will apply FII to

the section of B1 containing DII and FIII to the section of B1 containing DIII . This

will yield two copies of T . We apply similar techniques to find other trees in this

thesis.

As in the production of every tree in this thesis, we introduce certain functions

involving FI , FII , and FIII . As techniques applied to such branch system subsets of

N2 such as B1 the functions take as their domain from them only the necessary corre-

sponding DI , DII , and DIII proper subsets to then produce the primitive Pythagorean

triples on the branches in the form of trees.

The algorithm for B1, very similar to that of Hall’s, works as follows. The

base of the branch system is the vertex (2, 1). At each vertex (g, h), one applies the

two formulas (h, h + g) and (g, 2g − h) to get the next layer of the branch system

26



vertices. The tree is pictured in Figure 6.1. Note that given a vertex (G,H) in the

branch system, to go backwards in it one applies the formula (H,G−H) if 2H < G

and (2H −G,H) if 2H > G.

The B1 branch system can be generated with the following matrices:

(
1 1
0 1

)(
g
h

)
=

(
g + h
h

)

(
2 −1
1 0

)(
g
h

)
=

(
2g − h
g

)

Lemma 5.4. Let G,H ∈ N such that gcd(G,H) = 1, and G > H. Then G = 2H if

and only if (G,H) = (2, 1).

Proof. (→) Assume G = 2H. If H = 1, then G = 2. If, however H 6= 1, then there

exists a prime t that divides H, thus t|G, which contradicts the fact that G and H

are coprime. (←) If (G,H) = (2, 1), then (2) = 2(1).

Lemma 5.5. Let G,H ∈ N such that gcd(G,H) = 1 and G > H. Suppose G 6= 2H.

Let g, h ∈ N be constructed as follows:

• If G > 2H, then g = G−H and h = H.

• If G < 2H, then g = H and h = 2H −G.

Then the following facts are deduced:

(1) g > h

(2) gcd(g, h) = 1

(3) g + h < G+H
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(4) G 6= H

Proof. We break each part of this proof into cases. The cases (a), (b), and (c)

correspond to the three bullet points above, respectively. In each case we make the

assumptions of the respective bullet point without writing them down. We now begin

the proof.

(1) (a) If g = G − H and h = H, then G = g + h and H = h. As g + h = G >

2H = 2h, a subtraction of h gives g > h.

(b) If g = H and h = 2H −G, then G = 2g− h and H = g. As 2g− h = G >

H = g, arithmetic gives g > h. So g > h in both cases.

(2) (a) Let t be a prime such that t|h. Since h = H and gcd(G,H) = 1 then t6 |G.

For the case where g = G −H and h = H, we have that t6 |g. Therefore,

gcd(g, h) = 1.

(b) Since gcd(G,H) = 1, for an arbitrary prime t where t|g, as g = H, we

have t6 |G. For the case g = H and h = 2H −G, it follows that t6 |h. Thus,

gcd(g, h) = 1.

(3) (a) In this case, g + h = G < G+H.

(b) Since g > h, 2g > 2h, and by adding (g − h) to both sides 3g − h > g + h

is obtained. As G + H = (2g − h) + (g) = 3g − h, transitivity provides

G+H > g + h.

(4) G 6= H as G > H is given.
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Theorem 5.6. Let (G,H) ∈ N2 with gcd(G,H) = 1, and G > H. Then (G,H)

appears exactly once in this branch system.

Proof. The following reasoning is a near replica of Theorem 5.3.

Every (G,H) in E will fit in one of the two cases of Lemma 5.5. It will accordingly

transform a step backwards to its generating (g, h), which seen as the new (G,H)

can also be transformed in reverse, again guided by the case formula in which it fits

which in turn always depends on the relation between G and H. Forwards steps are

similarly guided by the corresponding case of an (g, h). A sequence of steps backwards

or forwards is called a path. There is no stopping going forwards. By Lemma 5.5(3)

every step backwards means a smaller coordinate sum. By Lemma 5.4, all backward

paths ultimately lead back to where G is no longer not equal to 2H, which is the initial

vertex (2, 1). Therefore, every (G,H) is on the tree as it will have a path backwards

to the starting vertex. Also every (G,H) has to have a unique path backwards to

(2, 1) so it must appear only once on the tree.
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CHAPTER 6

The Pythagorean Forest

6.1 The Reduced Proper Rationals E and The Λ Function

Definition 6.1. Let E = {(g, h)| g, h ∈ N, gcd(g, h) = 1, and g > h}.

Definition 6.2. Let Λ be a function where Λ : E → T and

Λ(g, h) =

{
FII(g, h) , if (g, h) ∈ DII

FIII(g, h) , if (g, h) ∈ DIII

Theorem 6.3. Let E and Λ be as in Definitions 6.1 and 6.2. Then Λ(E) = T and

Λ is a 2− 1 function.

Proof. Recall Theorem 3.8 and the pairsDII = {(m,n) | n,m ∈ N, 2|nm, gcd(m,n) =

1, m > n} with FII(m,n) = (m2 − n2, 2mn, m2 + n2) and DIII = {(d, e) | d, e ∈ N 26

|de gcd(d, e) = 1, d > e} with FIII = (de,
d− e

2
,
d+ e

2
). Observe that DII , DIII ⊂ E,

E = DII

⋃
DIII and DII

⋂
DIII = ∅. Each ”piece” of this piecewise-defined function,

FI(E) or FII(E), generates exactly the set T . Thus, Λ is two-to-one and onto.

The set E is equivalent to the set of proper rationals with denominator g

and numerator h. Λ as defined here is a function on each the (g,h) from E, and

when these pairs are plugged into their respective formula, the output is exactly two

sets of primitive Pythagorean triples. If the set E had the organizational form of

a mathematical tree, what here is called a branch system, then Λ(E) would be the
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fruit on that tree. Every fruit, say for instance the primitive pythagorean triple

(21, 20, 29), appears exactly twice. Let these types of trees be called twin trees.

An example of this type of a tree is Figure 6.1, where Λ maps the set E (organized

as B1) to a binary twin tree.

Figure 6.1: This a twin binary tree based on B1, which is an organized representation

of E = DII

⋃
DIII
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There is another way to organize the elements of E into a tree. This can be

done using the Stern-Brocot tree. The complete Stern-Brocot tree generates Q, all the

reduced rationals, and takes the form of a binary tree with coprime coordinate pairs.

Its ”left-wing” is symmetric to its ”right-wing.” The right-wing may be depicted as the

set of all proper fractions, whereas the left-wing is their inverted improper fractions.

Without discussing the details of how to generate this well known mathematical tree,

we give its right-wing in Figure 6.1.

Definition 6.4. Let the right wing of the Stern-Brocot tree be alternatively defined

as the set RSB ⊂ N2 where RSB = {(δ, ε) | δ, ε ∈ N, gcd(δ, ε) = 1, δ > ε}.

Theorem 6.5. Let Λ be as above. Then Λ(RSB) is a twin tree. That is, Λ(RSB)

gives a tree that contains exactly two copies of T.

Proof. The above definition of the set RSB is the same as Definition 6.1 for set E.

They both constitute (exactly) the set of reduced positive proper rationals, which

for our purposes is alternatively viewed as the positive coprime ordered pairs with a

larger ”abscissa.” Therefore, Λ(RSB) = Λ(E). By Theorem 6.3 Λ is a 2− 1 function

that generates the set T . The conclusion follows.

The chart in Figure 6.1 shows a sample of ordered pairs from RSB = E =

DII

⋃
DIII , just a portion of the right wing of the Stern-Brocot tree of all rationals,

along with their Λ-corresponding primitive Pythagorean triples. This tree looks like

the B1 tree as they both constitute the same set. However, close inspection shows

that it is a shffled variant.
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(2, 1)
(3, 4, 5)

(3, 2) (3, 1)
(5, 12, 13) (3, 4, 5)

(4, 3) (5, 3) (5, 2) (4, 1)
(7, 24, 25) (15, 8, 17) (21, 20, 29) (15, 8, 17)

Figure 6.2: The right wing of the Stern-Brocot tree as a PPT twin tree

6.2 The Set of Positive Rationals and the Ψ Function

Definition 6.6. Let Q+ be the set of positive reduced rationals for convenience written

in the form Q+ = {(g, h)| g, h ∈ N and gcd(g, h) = 1}.

The arrangements and representation of the elements within Q+ can take many

forms, of most interest are those that take the form of mathematical trees refered to

in this article as branch systems. The branch system, here in particular Q+ itself, or

elsewhere in this article some subset of N2, serves as a domain for its corresponding

function which maps it to T .

Definition 6.7. Let Ψ : Q+ 7→ T
⋃
{∅} such that ∀(g, h) ∈ Q+,

Ψ(g, h) =

{
FI(g, h) , if 26 |g
∅ , if 2|g

Theorem 6.8. If Q+ is given, then Ψ(Q+) = T
⋃
{∅}.

Proof. Let Q+ be as in Definition 6.6. If all the ordered pairs (g, h) with an even g

are mapped to ∅, then the rest of the domain will form DI . Since FI(DI) = T , the

theorem follows.

The complete Stern-Brocot tree generates Q+, so it may serve as a branch
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system for a T tree. We apply the function Ψ to the section of this branch system

where the first coordinate of each vertex is odd, that is the DI set, and map the rest

of the vertices to the empty set. We call this technique trimming.
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6.3 The Odd-Even Branch System U and the F ′ Function

Definition 6.9. Let U = {(g, h) | g, h ∈ N, gcd(g, h) = 1, 2|h}.

Definition 6.10. Let F ′I be a function where F ′I : U 7→ DI defined by F ′I(g, h) = (g, h
2
)

Theorem 6.11. Let (g, h) ∈ U . Then (FI ◦ F ′I)(U) = T .

Proof. Let (g, h) ∈ U . Then, 2|h. Since gcd(g, h) = 1, 2 6 |g. Let h = 2z for z ∈ N, so

z = h
2
. This says that g ∈ N is odd and h

2
∈ N, which means that (g, h

2
) ∈ DI . Thus

FI(g,
h
2
) ∈ T . Note that F ′I(U) = DI . Hence, (FI ◦ F ′I)(U) = T .

We now give an algorithm, call it ternary1, that generates a ternary branch

system for the set U , whereby we can generate T via the function composition in

Theorem 6.11. Again, this algorithm, as in the B1 tree can have various mathematical

uses. Here though, U serves only the role of a branch system for T .

We now state an algorithm to make U into a tree. We do not provide the

proof of how this algorithm yields U . The interested reader may complete the proof

as it is the same as the proofs given previously in Theorem 5.3 and Theorem 5.6. The

starting vertex of the tree is (2, 1) and the ternary branching formulas forward for a

vertex (g, h) are (g + h, h) if h < g, (h + g, h + 2g) if h < g < 2h, and (g, h + 2g) if

2h < g. The tree itself is pictured in Figure 6.3. After plugging the tree from Figure

6.3 into the function composition from Theorem 6.11, one gets Figure 6.4.
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Figure 6.3: Rotated Ternary 1 (odd,even) branch system with algorithm.
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Figure 6.4: Ternary 1 (even, odd) branch system with even/2. DI is made and FI

applied to generate T
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CHAPTER 7

Conclusion

Essentially this thesis provides a foundational perspective on Pythagorean

triples and their generation. This perspective was enabled by the Integer Triangle

Diagrams in chapter three and the consequent alignment of the Pythagorean formulas.

We now know the exact conditions under which primitive Pythagorean triples are

created. Additionally, we have two new N2 subsets generated as a binary tree (B1)

and a ternary tree (T1). With the knowledge of just the handful of functions discussed

here, it is possible to create many more trees. There exist other ways of obtaining and

organizing the sets E, Q+, or U , and other sets that may serve as branch systems.

The functions such as Λ and Ψ are not the only techniques with which the set T is

produced. In the capacity of this thesis we were able to represent this small yet varied

sample of trees, but the main information presented in part as Theorem 3.8 is what is

really necessary to further explore the forest. That is, the ability to obtain a set DJ ,

apply its corresponding function FJ , and produce the set of primitive Pythagorean

triples T .
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