Department of Mathematics
 California State University, Los Angeles Master's Degree Comprehensive Examination in
 NUMERICAL ANALYSIS
 SPRING 2019

Do exactly 2 problems from part I AND exactly two problems from part II.
No notes AND no calculators are allowed.

1. Answer the following questions:
a. [4 pts] Find the eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors v_{1}, v_{2} of $A=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & 0.9\end{array}\right)$.
b. [5 pts] Carry out the power iteration with initial guess $q_{0}=(1,1)^{T}$ and derive a general expression for the ith iteration q_{i}, the approximation to the eigenvector associated to the dominant eigenvalue.
c. [5 pts] Explain why the above method is convergent. Verify that it is linearly convergent and find the convergence ratio.
d. [5 pts] How many iterations are required to obtain $\frac{\left\|q_{i}-v\right\|_{\infty}}{\|v\|_{\infty}}<10^{-8}$? Here v is the eigenvector associated to the dominant eigenvalue.
e. [6 pts] Show that the power method fails for matrix $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with initial guess $q_{0}=(a, b)^{T}$, where $a \geq 0, b \geq 0, a \neq b$. Explain why.
2. Consider the matrix $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ 3 & 6 & -2 \\ -1 & 5 & 2\end{array}\right)$.
a. [4 pts] Does A have LU factorization of the form $A=L U$? Here L is a unit lower triangular matrix and U is an upper triangular matrix. Explain your answer.
b. [7 pts] Use Gaussian elimination with partial pivoting to write A in the form $P A=L U$, where P is a permutation matrix, L is unit lower triangular with $\left|l_{i j}\right|<1$ for $i>j$, and U is upper triangular.
c. [4 pts] Use part (b) above to solve $A x=b$, where $b=(17,9,15)^{T}$.
d. [3 pts] Give two pertinent reasons as to why partial pivoting is preferable in practice.
e. [7 pts] Show that if an $n \times n$ matrix M has Cholesky decomposition of the form $M=L L^{T}$ where L is lower triangular with $l_{i i}>0$ for $i=0, \ldots, n$, then M is positive definite.
3. Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & -1 & 1 \\
2 & 2 & 2 \\
-1 & -1 & 2
\end{array}\right) \text { and } b=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) .
$$

a. [7 pts] Determine if Jacobi iteration converges in solving the above system. If it converges, perform one step of Jacobi iteration with the initial guess $x^{(0)}=(1,1,1)^{T}$.
b. [7 pts] Determine if Gauss-Seidel iteration converges in solving the above system. If so, perform one step of Gauss-Seidel iteration with initial guess $x^{(0)}=(1,1,1)^{T}$.
c. [3 pts] Give one advantage of iterative methods (such as Jacobi and Gauss-Seidel) for solving $A x=b$ over direct methods (such as Gaussian elimination).
d. [8 pts] Consider a general iterative method for solving $A x=b$:

$$
x^{(k+1)}=M^{-1} N x^{(k)}+M^{-1} b
$$

where $N=M-A$ and M is nonsingular. Show that the approximation error from the above general iterative procedure satisfies

$$
\left\|x^{(k)}-x^{*}\right\| \leq\|G\|^{k}\left\|x^{(0)}-x^{*}\right\|
$$

where $G=M^{-1} N$ and $x^{(0)}$ is the initial guess.

Part II: (Do EXACTLY two problems)

1. Consider the following heat equation:

$$
\begin{aligned}
& U_{t}=U_{x x}, 0<x<1, t>0 \\
& U(0, t)=t, U_{x}(1, t)=1, t>0
\end{aligned}
$$

Suppose the following scheme is used to approximate the PDE $U_{t}=U_{x x}$:

$$
\begin{equation*}
\frac{u_{i, j+1}-u_{i, j}}{k}=\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}} \tag{1}
\end{equation*}
$$

where $h=\Delta x, k=\Delta t$.
a. [12 pts] Suppose we use the given scheme (1) to solve the PDE with $h=1 / 4$ and central difference approximation for the boundary condition at $x=1$. Construct the resulting system of equations $A \boldsymbol{u}_{j+1}=B \boldsymbol{u}_{j}+f_{j}$, where $\boldsymbol{u}_{j}=\left[u_{1, j}, u_{2, j}, \ldots, u_{N, j}\right]^{T}$. Identify the matrices A, B, and their dimensions, and the vector f_{j}.
b. [6 pts] Is the scheme (1) unconditionally stable? If not, what is the condition that guarantees its stability? Justify your answer.
c. [7 pts] If we change the right hand side of (1) to

$$
\frac{u_{i-2, j}+u_{i-1, j}-4 u_{i, j}+u_{i+1, j}+u_{i+2, j}}{2 h^{2}}
$$

will this still be consistent with $U_{x x}$? If yes, what is the order of accuracy? Explain your reasoning.
2. Consider the boundary value problem:

$$
\begin{array}{ll}
u_{x x}+2 u_{x y}+3 u_{y y}=0, & 0<x<1,0<y<1 \\
u(0, y)=u(1, y)=y, & 0 \leq y \leq 1 \\
u(x, 0)=x(x-1), & 0 \leq x \leq 1 \\
u(x, 1)=1, & 0 \leq x \leq 1
\end{array}
$$

a. [3 pts] Identify the type of PDE in this problem (i.e., hyperbolic, elliptic, or parabolic). Justify your answer.
b. [6 pts] By applying forward difference approximation twice, write a consistent finite difference approximation for $u_{x y}$. (You need not prove it is consistent).
c. [12 pts] Determine the system of equations that results from solving the above boundary value problem using the usual 5-point scheme for $u_{x x}+u_{y y}$ and using part (b) for $u_{x y}$ term. Take $\Delta x=\Delta y=1 / 3$, and use the following node labeling given below. Simplify your answer.

d. [4 pts] Does the system in part (c) have a unique solution? Explain your reasoning without actually solving the system.
3. a. Consider the first-order PDE

$$
\begin{gathered}
2 t \frac{\partial U}{\partial x}+\frac{\partial U}{\partial t}=2 t U,-\infty<x<\infty, t>0 \\
U(x, 0)=x^{2}
\end{gathered}
$$

i. [5 pts] Find and sketch the equation of the characteristic curve that passes through the point $Q(2,2)$.
ii. [5 pts] Compute the exact solution U at the point $Q(2,2)$ using the method of characteristics.
b. Given the second-order PDE

$$
U_{x x}-4 U_{y y}=0, \quad-\infty<x<\infty, t>0
$$

i. [5 pts] Find the two characteristic curves of the given PDE that pass through the origin and the point $P(2,0)$.
ii. [3 pts] Find the intersection point R of the characteristic curves you found in part b(i).
iii. [3 pts] Determine the interval of dependence for $U(x, y)$ at the point R of part b(ii).
iv. [4 pts] Suppose we approximate the given PDE by a consistent explicit finite difference scheme with $h=k=1$. Referring to the CFL condition, explain why or why not this scheme converges at the point R of part b (ii).

