Department of Mathematics
 California State University Los Angeles

Master's Degree Comprehensive Examination in

NUMERICAL ANALYSIS
 SPRING 2014

Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No calculators and no cell phones.
- Closed books and closed notes.

PART A: Do only TWO problems

1. (a) [8 points] Let

$$
A=\left(\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
6 & 9 & 8
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{c}
0 \\
0 \\
5
\end{array}\right)
$$

Solve $A \mathbf{x}=\mathbf{b}$ using Gaussian elimination (without partial pivoting).
(b) [2 points] If partial pivoting were used in part (a), what would be the first row operation performed on the augmented matrix for the system $A \mathbf{x}=\mathbf{b}$?
(c) Given a matrix B with the LU factorization

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right) \text { and a vector } \mathbf{c}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

i. [2 points] In the LDU factorization of B, where L and U are unit lower and unit upper triangular matrices, respectively, what is the diagonal matrix D ?
ii. [8 points] Solve $B \mathbf{x}=\mathbf{c}$ using the LU factorization (forward/backward substitution) method.
(d) [5 points] Let P be an arbitrary $p \times n$ matrix and let Q be an arbitrary $n \times q$ matrix. Determine how many multiplications are needed to compute the product $P Q$. (Show your work)
2. The matrix

$$
A=\left(\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right)
$$

has eigenvalues $\lambda_{1}=-1, \lambda_{2}=3$ with corresponding eigenvectors $\mathbf{x}_{1}=(3,-1)^{T}$ and $\mathrm{x}_{2}=(1,1)^{T}$.
(a) [5 points] Perform two iterations of the Power Method with scaling on $\mathbf{u}_{0}=(4,1)^{T}$ to find an approximation \mathbf{u}_{2} to the eigenvector \mathbf{x}_{2} of A.
(b) [3 points] Give a nonzero initial vector for which the Power Method applied to the matrix A fails to converge to \mathbf{x}_{2}. Explain, in one sentence, why you believe that convergence fails in this case.
(c) [4 points] Use the vector \mathbf{u}_{2} found in part (a) to approximate the eigenvalue λ_{2}.
(d) [6 points] Prove the theorem: If B and C are $n \times n$ matrices and there exists an invertible $n \times n$ matrix P such that $C=P^{-1} B P$, then B and C have the same eigenvalues.
(e) Let M be an invertible symmetric $n \times n$ matrix.
i. [4 points] Outline the QR method for finding the eigenvalues of M.
ii. [3 points] Explain why the success of the QR method depends on the theorem stated in part (d).
3. Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Note that A is symmetric and nonsingular $(\operatorname{det}(A)=-1)$.
(a) In one sentence each, give a reason for your answer to the following questions: [3 points each]
i. Is A diagonalizable?
ii. Is A positive definite?
iii. Is A an orthogonal matrix?
(b) [10 points] By funding the spectral radius of its iteration matrix, determine whether or not Gauss-Seidel iteration converges for the linear system $A \mathbf{x}=\mathbf{b}$, where A is given above and \mathbf{b} is arbitraty.
(c) [6 points] Show that if an arbitrary 3×3 matrix B with positive entries is strictly diagonally dominant, then Jacobi iteration converges for the linear system $B \mathbf{x}=$ \mathbf{c}, for all vectors c. (Hint: Use Gershgorin's circle theorem on the Jacobi iteration matrix).

PART B: Do only TWO problems

1. Consider

$$
\begin{cases}U_{t}=U_{x x}, & 0 \leq x \leq 1, t>0 \\ U(x, 0)=x, & 0 \leq x \leq 1 \\ U(0, t)=U(1, t)=0, & t>0\end{cases}
$$

Suppose we approximate the above PDE by the finite difference scheme

$$
\frac{u_{i, j+1}-u_{i, j}}{k}=\frac{u_{i+1, j+1}-2 u_{i, j+1}+u_{i-1, j+1}}{h^{2}}
$$

where $h=\Delta x, k=\Delta t$ are the given grid sizes.
(a) [3 points] Is the above scheme explicit or implicit? Explain your answer in one sentence.
(b) [10 points] Show that the scheme is consistent.
(c) [2 points] Based on your answer to part (b), what is the order of accuracy of the scheme?
(d) [10 points] Using the matrix of Von Neumann (Fourier) method, determine the values of $r=k / h^{2}$ for which the scheme converges.
2. Consider the PDE

$$
\begin{cases}U_{x}+2 x U_{y}=x U & 0<x<\infty, y>0 \\ U(x, 0)=x^{2}, & 0<x<\infty\end{cases}
$$

(a) $[15$ points $]$ Find the characteristic curves and the solution U along the characteristic curve through the point $P\left(x_{p}, 0\right)$ for any $x_{p} \in(0, \infty)$.
(b) [10 points] Find the first approximation to the solution and to the value of y at the point $(2, y)$ for $y>0$ on the numerical characteristic curve through $(1,0)$.
3. Consider the PDE

$$
\begin{cases}U_{x x}+U_{y y}=3, & 0<x<1,0<y<1 \\ U(x, 0)=x, \quad U(x, 1)=2, & 0 \leq x \leq 1 \\ U(0, y)=1, \quad U_{x}(1, y)=0, & 0<y<1\end{cases}
$$

(a) [5 points] Write down the 5 -point scheme to approximate the PDE. $(h=\Delta x=$ Δy.
(b) [5 points] Use the central difference scheme to approximate the boundary condition at $x=1$.

(c) [15 points] Use the schemes in (a) and (b) with $h=1 / 3$ to write the equations for the nodes in the form of $A \mathbf{u}=\mathbf{b}$, where the vector $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{6}\right)$ consists of the unknown nodal values shown in the figure above.

