Department of Mathematics
 California State University, Los Angeles Master's Degree Comprehensive Examination in

NUMERICAL ANALYSIS
 SPRING 2010

No Calculators

Do exactly 2 problems from part I AND 2 problems from part II.

Part I: (Do two problems)

1. a. [9 points] Let

$$
B=\left[\begin{array}{ccc}
2 & 4 & -4 \\
3 & 3 & 3 \\
10 & 10 & 5
\end{array}\right]
$$

By computing the eigenvalues of the iteration matrix, B_{J}, for Gauss-Seidel iteration for solving $A \mathbf{x}=\mathbf{b}$, show that the method converges.
b. [7 points] Prove that a matrix T is convergent (i.e. $\left(T^{k}\right)_{i j}$, for all i, j, or equivalently $\left\|T^{k}\right\| \rightarrow 0$, for some norm) if and only if $\rho(T)<1$.
c. [9 points] Use (b) to show that the iterative method $\mathbf{x}^{(k)}=B \mathbf{x}^{(k-1)}+\mathbf{c}$ converges to a solution of $\mathbf{x}=B \mathbf{x}+\mathbf{c}$ if and only if $\rho(B)<1$.
2. a. [9 points] Using the matrix

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad \text { and the initial vector } \mathbf{x}^{(0)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

prove that the power method converges. (You must do more than just compute $\mathbf{x}^{(n)}$.)
(b) $[9$ points $]$ Do one iteration of the QR method using the matrix A in (a).
(c) $[7$ points $]$ Do one iteration of the Rayleigh Quotient method using the matrix A and vector $\mathbf{x}^{(0)}$.

Numerical Analysis Spring 2010 page 2 of 3
3. Consider the matrix

$$
A=\left[\begin{array}{lll}
\xi & 2 & 0 \\
1 & \xi & 1 \\
0 & 1 & \xi
\end{array}\right]
$$

(a) [7 points] Determine all values of ξ for which A fails to have an $L U$ factorization.
(b) $[6$ points $]$ Suppose $\xi>3$, determine the $L U$ factors for A.
(c) [5 points] Use the $L U$ factors to determine A^{-1}
(d) [7 points] Suppose $\xi>3$, show that A is positive.

Part II: (Do two problems)

1. (a) [7 points] Consider the boundary value problem on the unit square $D=\{(x, y): 0 \leq$ $x \leq 1,0 \leq y \leq 1\}$

$$
\begin{aligned}
u_{x x}+u_{y y}=0 & \text { in } D \\
u=g & \text { on the boundary of } D
\end{aligned}
$$

Show that if there is a solution it is unique.
(b) [9 points] Write a consistent finite difference scheme for the differential equation in (a). Letting $\Delta x=\Delta y=h$ show the scheme is consistent.
(c) [9 points] Consider the boundary value problem

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \quad 0<x<1,0<y<1 \\
& u(0, y)=0 \quad 0 \leq y \leq 1 \\
& u(1, y)=1-3 y^{2} \quad 0 \leq y \leq 1 \\
& u(x, 0)=x^{3} \quad 0 \leq x \leq 1 \\
& u(x, 1)=x^{3}-3 x \quad 0 \leq x \leq 1 .
\end{aligned}
$$

Letting $\Delta x=\Delta y=1 / 3$ write out the equations you get for the values at the nodes using your scheme in (b). Put them in the form $A \mathbf{x}=\mathbf{c}$
2. (a) [9 points] Given $u(x, y)$ satisfies the initial value problem

$$
\begin{aligned}
& u_{x}+3 x u_{y}=x u, \quad 0<x<\infty, y>0 \\
& u(x, 0)=x^{2}, \quad 0<x<\infty
\end{aligned}
$$

(i) Find the characteristic curves.
(ii) Use the method of characteristics to find the first approximation to the solution and to the value of y at the point $(2, y)$, for $y>0$ on the numerical characteristic curve through $(1,0)$.
(b) [16 points] Given

$$
\begin{aligned}
& k u_{x x}=u_{t t}, \quad t>0, \quad k>0 \\
& u(x, 0)=f(x), \quad-\infty<x<\infty \\
& \frac{\partial u}{\partial t}(x, 0)=g(x), \quad-\infty<x<\infty
\end{aligned}
$$

(i) Find the characteristic curves and the interval of dependence for a point P in the domain.
(ii) Using the usual central difference approximation to approximate the partial derivatives, find the resulting finite-difference equation in terms of $r=\frac{\Delta t}{\Delta x}$. Simplify your answer solving for $U_{i, j+1}$, where U is the numerical solution (show your work).
(iii) State the Courant-Friedrichs-Lewy (C.F.L) condition for convergence of the numerical solution to the exact solution.
(iv) For $k=1$ and $r=1$, prove that if the forward-difference formula is used to approximate the initial conditions, then $\left|e_{i, 1}\right| \leq \frac{1}{2} h^{2} M$, where $e=u-U$, the $h=\Delta t=\Delta x$ and M is a constant. (Assume all partial derivatives are bounded in the domain.)
3. Consider the Schrodinger equation

$$
\begin{equation*}
u_{t}=i u_{x x}, \quad i=\sqrt{-1} \tag{1}
\end{equation*}
$$

on the interval $[0,1]$ with smooth data and periodic boundary conditions.
(a) [10 points] Using forward differencing in time and central differencing in space construct a scheme for this equation. Prove that it is consistent and that it is first order accurate in time.
(b) [10 points] Analyze the stability of the method in (a).
(c) [5 points] Construct a second order in time unconditionally stable method for the equation (1).

