Department of Mathematics
 California State University, Los Angeles Master's Degree Comprehensive Examination in

 NUMERICAL ANALYSIS

 NUMERICAL ANALYSIS
 Fall 2011

Do exactly 2 problems from part I AND exactly two problems from part II.

Part I: (Do two problems)

1. Let $\mathrm{A}=\left[\begin{array}{lll}4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4\end{array}\right]$.
a. [2 pts] Give the value of $\|A\|_{\infty}$.
b. [2 pts] Is A strictly diagonally dominant (yes or no)?
c. [8 pts] Determine the LU decomposition of A.
d. [5 pts] Show that A is positive definite.
e. [8 pts] Let B_{n} denote the $n \times n$ matrix whose form is illustrated by $B_{4}=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & -1 & 1\end{array}\right]$
i.e., 1 's on the diagonal, -1 in all below-diagonal positions, 1 's in the last column, and all other entries 0 . Show that if Gaussian elimination with partial pivoting is used, then B_{n} can be reduced to upper-triangular form without row exchanges, and the resulting matrix U has $u_{n n}=2^{n-1}$
2. Let A be a 2×2 matrix with eigenvalues $\lambda_{1}=2, \lambda_{2}=1$ and corresponding eigenvectors $e_{1}=\binom{1}{2}, e_{2}=\binom{1}{1}$.
a. $[5 \mathrm{pts}]$ Find the matrix A.
b. [8 pts] Show that the Power Method will converge when applied to the matrix A above with initial vector $x^{(0)}=\binom{0}{2}$. What does it converge to? How do you modify the Power Method so that it will converge to the other eigenvalue?
c. $[3 \mathrm{pts}]$ Apply two iterations of the Power Method to the matrix A.
d. [3 pts] Give an example of an initial vector for which the Power Method will not converge. Briefly explain your reasoning.
e. [6 pts] For any nxn matrix B and any induced matrix norm, show that $\rho(B) \leq\|B\|$.
3. Let $B=\left[\begin{array}{ccc}2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2\end{array}\right]$
a. [9 pts] By computing the spectral radius of the iteration matrix, determine whether or not Jacobi iteration converges in solving $B \boldsymbol{x}=\mathbf{c}$, where \mathbf{c} is an arbitrary 3-dimensional vector.
b. [9 pts$]$ By computing the spectral radius of the iteration matrix, determine whether or not Gauss-Seidel iteration converges in solving $B \boldsymbol{x}=\mathbf{c}$, where \mathbf{c} is an arbitrary 3-vdimensional ector.
c. [7 pts] Given the linear system $A \mathbf{x}=\mathbf{b}$ where A is an $n x n$ matrix and \mathbf{b} is an arbitrary n-dimensional vector, write $A=M-N$, where M is nonsingular, and consider the iterative method

$$
\mathbf{x}^{(k+1)}=M^{-1} N \mathbf{x}^{(k)}+M^{-1} b(k=0,1,2,3, \ldots)
$$

Show that the error in the above approximation satisfies:

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\| \leq\|G\|^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}\right\|,
$$

where $G=M^{-1} N$ and $\mathbf{x}^{(0)}$ is the initial approximation and \mathbf{x} is the actual solution.

Part II: (Do two problems)

1. The unidirectional wave equation

$$
\begin{gathered}
u_{t}+3 u_{x}=0 \\
u(x, 0)=f(x)
\end{gathered}
$$

can be solved by using an upwind scheme
$\frac{u_{i, j+1}-u_{i, j}}{k}+3 \frac{u_{i, j}-u_{i-1, j}}{h}=0$
$u_{i, 0}=f(i h)$
where $u_{i, j} \approx u(i h, j k)$ and $h=\Delta x, k=\Delta t$ are the given grid sizes.
a. [5 pts] Find the CFL condition for the above scheme.
b. [10 pts] Perform the von Neumann analysis to show that the scheme is stable under the same condition found in part (a).
c. [10pts] Prove that under the same CFL condition, the scheme satisfies a local maximumminimum principle, i.e.

$$
\min \left(u_{i-1, j}, u_{i, j}\right) \leq u_{i, j+1} \leq \max \left(u_{i-1, j}, u_{i, j}\right)
$$

2. Consider the PDE

$$
\begin{aligned}
& u_{t}=u_{x x}, 0 \leq x \leq 1, t>0 \\
& u(x, 0)=x, 0 \leq x \leq 1 \\
& u(0, t)=u(1, t)=0, t>0
\end{aligned}
$$

Suppose we approximate the above PDE by finite difference scheme
$\frac{u_{i, j+1}-u_{i, j}}{k}=\frac{u_{i+1, j+1}-2 u_{i, j+1}+u_{i-1, j+1}}{h^{2}}$
where $h=\Delta x, k=\Delta t$ are the given grid sizes.
a. $\quad[6 \mathrm{pts}]$ Find the matrices B and C such that $B \boldsymbol{u}_{j+1}=C \boldsymbol{u}_{j}$ where

$$
\boldsymbol{u}_{j}=\left[u_{1, j}, u_{2, j}, \ldots, u_{N-1, j}\right]
$$

b. [7 pts] Show that the scheme is consistent with the PDE. What is the order of accuracy of the scheme?
c. [8 pts] Does the scheme converge? Explain your answer.
d. [4 pts] Suppose we approximate the above PDE by a θ-method:

$$
\begin{aligned}
& -r \theta u_{i-1, j+1}+(1+2 r \theta) u_{i, j+1}-r \theta u_{i+1, j+1} \\
& \quad=r(1-\theta) u_{i-1, j}+(1-2 r(1-\theta)) u_{i, j}+r(1-\theta) u_{i+1, j}
\end{aligned}
$$

For what value(s) of θ is this scheme implicit?
3. Consider the following boundary value problem:

$$
\begin{aligned}
& 2 u_{x x}+u_{y y}=6 \quad 0<x<1,0<y<1, \\
& u(x, 0)=x^{2}, u(x, 1)=(x-1)^{2} \\
& u(0, y)=y^{2}, u(1, y)=(1-y)^{2}
\end{aligned}
$$

a. [5 pts] Show that $u(x, y)=(x-y)^{2}$ is a solution to the boundary value problem.
b. [10 pts] Using central differencing for the derivatives write down a finite difference scheme for the problem and simplify it. Show that your scheme is consistent.
c. [10 pts] Using $\Delta x=\Delta y=1 / 3$ obtain a system of linear equation for solving this problem. Express this in the form $\mathrm{Au}=\mathbf{b}$ where A is a 4 x 4 matrix.

