Department of Mathematics California State University, Los Angeles

Master's Degree Comprehensive Examination

NUMERICAL ANALYSIS
FALL 2010

Instructions: Do $\mathbf{2}$ problems from Part A AND 2 problems from Part B

PART A (Do two problems)

A-1 Consider the following elliptic boundary-value problem in the region $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}:$
$u_{x x}+u_{y y}=0 \quad 0<x<1,0<y<1$
$u(0, y)=-y^{2}, u(1, y)=1-y^{2}, \quad 0 \leq y \leq 1$
$u(x, 0)=x^{2}, u(x, 1)=x^{2}-1, \quad 0 \leq x \leq 1$
a. Show that $u(x, y)=x^{2}-y^{2}$ is an exact solution of this boundary-value problem. [5\%]
b. What are the maximum and minimum values achieved by the solution, u, to the given boundary-value problem in the region D ? At what points (x, y) do they occur?
c. With $\Delta x=\Delta y=1 / 3$, use the usual five-point difference scheme for approximating the given PDE to obtain a system of linear equations for solving this problem. Express this system in the form $\mathrm{A} \mathbf{u}=\mathbf{b}$, where A is a 4×4 matrix. [12\%]
d. Explain why the solution to your difference approximation in part c is unique.

A-2 Consider the following difference approximation to

$$
\begin{array}{cl}
u_{t}=c u_{x x}(\text { where } c>0) & 0<x<1, t>0 \\
u(x, 0)=x(1-x) & 0<x<1 \\
u(0, t)=0, u(1, t)=0 & t>0 \\
\frac{u_{i, j+1}-u_{i, j}}{k}=c\left[\frac{u_{i-1, j+1}-2 u_{i, j+1}+u_{i+1, j+1}}{h^{2}}\right], \text { where } u_{i, j}=u(i h, j k)
\end{array}
$$

a. Is this an explicit or implicit scheme?
b. If this scheme is written as $B \mathbf{u}_{j+1}=C \mathbf{u}_{j}$, where $\mathbf{u}_{j}=\left(u_{1, j}, u_{2, j}, \ldots, u_{N-1, j}\right)$, taking $r=k / h^{2}$, determine the matrices B and C. [8\%]
c. Use the Neumann (Fourier) method to determine all values of $r=k / h^{2}$ for which this scheme is stable. [12\%]
d. Assume that this scheme is consistent with the given PDE. Is the scheme convergent? Why or why not? [3\%]

A-3 Given the hyperbolic initial value problem

$$
\left\{\begin{array}{l}
u_{t t}-9 u_{x x}=0, \quad(-\infty \leq x \leq \infty, t>0) \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad(-\infty \leq x \leq \infty)
\end{array}\right.
$$

where $f(x)$ and $g(x)$ are given continuous functions.
a. Derive an explicit finite difference scheme with $u_{i, j}=u(i h, j k)$ ($h=\Delta x, k=\Delta t$, and taking $r=k / h$), solved for $u_{i, j+1}$, for obtaining approximate solutions to this problem. Explain how to use this scheme to compute values along the "first row"; that is, when $t=k$. [12\%]
b. Find the characteristic curves of the given PDE through the point ($0,1 / 2$). [6\%]
c. State the Courant-Friedrichs-Levy (C.F.L) condition. What values of $r=k / h$ will ensure that the C.F.L condition will be satisfied for your scheme? If r is less than this value, what conclusion can you draw concerning your scheme?

PART B (Do two problems)

B-1 Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, where a, b, c are real numbers with $a>0, c>0$.
a. Find the spectral radius of the Jacobi iteration matrix for A. [8\%]
b. Using the results of part \mathbf{a}, give conditions on a, b, and c that ensure that Jacobi iteration will converge for the linear system $\mathbf{A} \mathbf{x}=\mathbf{b}$ (b arbitrary). [3\%]
c. Give necessary and sufficient conditions on a, b, and c that ensure that the matrix A is diagonally dominant. [3\%]
d. Show that A is positive definite if and only if $a c-b^{2}>0$. [5\%]
e. Is each statement true or false for this matrix A? [3\% each]
i. If A is diagonally dominant, then it is positive definite.
ii. If A is positive definite, then it is diagonally dominant.

B-2 a. Let $A=\left[\begin{array}{rrr}2 & 4 & 2 \\ 4 & 7 & 7 \\ -2 & -7 & 5\end{array}\right]$.
Find the $L U$ decomposition of $A, A=L U$, where L is unit lowertriangular and U is upper-triangular. [8\%]
b. Use your result from part a to find the LDU factorization of A , where L is unit lower-triangular, D is diagonal, and U is unit upper-triangular. [3\%]
c. Let B be an $n \times n$ matrix and suppose we have obtained the LU factorization of B. Determine the number of multiplications / divisions it takes to solve $U \mathbf{x}=\mathbf{c}$ by backward substitution, where \mathbf{c} is an arbitrary n-vector.
d. Let B be an $n \times n$ matrix. Show that if B can be factored as B $=L U$, where L is unit lower-triangular and U is upper-triangular, then this factorization is unique. [8\%]

B-3 The matrix $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ has eigenvalues 2 and 4 and corresponding
eigenvectors $[s-s]^{\top}$ and $[s s]^{\top}$, respectively, where $s \neq 0$.
a. Apply two iterations of the Power Method to the matrix A with initial vector $\mathbf{x}^{(0)}=[1,0]^{\top}$ to obtain $\mathbf{x}^{(2)}$, an approximation to the eigenvector of A corresponding to eigenvalue 4.
b. Will the Power Method converge in this case? Explain why or why not. [4\%]
c. Give an example of an initial vector for which the Power Method will not converge. [3\%]
d. Obtain the QR factorization of the matrix A. [6\%]
e. Obtain the first iterate in the QR method for A.

