Department of Mathematics California State University Los Angeles
 Master's Degree Comprehensive Examination in
 NUMERICAL ANALYSIS
 SPRING 2023

Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No notes, books, calculators, internet or cell phones are allowed.

PART A: Do only TWO problems

1. Given a 3×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & k \\
0 & 2 & k \\
k & k & 2
\end{array}\right) \quad \text { with } k \in \mathbb{R}
$$

(a) Determine all values k for which A is
i. [4 pts] strictly diagonally dominant.
ii. [4 pts] orthogonal.
iii. [4 pts] positive definite.
(b) [7 pts] Find the spectral radius of the Gauss-Seidel iteration matrix for solving $A \mathbf{x}=\mathbf{b}$. Then determine all values k for which the Gauss-Seidel iteration converges.
(c) [6 pts] Perform one step of the Gauss-Seidel iteration for solving $A \mathbf{x}=\mathbf{b}$ with $k=1$, and $\mathbf{b}=(1,2,3)^{T}$. Use the initial guess $\mathbf{x}_{0}=(0,0,0)^{T}$.
2. Given $A \in \mathbb{C}^{n \times n}$. Assume that the eigenvalues of A satisfy $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$.
(a) [6 pts] Describe the power method to find λ_{1} and its corresponding eigenvector. Does the power method always converge for any initial vector \mathbf{q}_{0} ? Explain your answer.
(b) $[6 \mathrm{pts}]$ Show that the convergence is linear.
(c) [4 pts] Give one advantage and one disadvantage of the power method, in comparison to the QR method.
(d) [3 pts] Describe briefly how Rayleigh Quotient Iteration improves rate of convergence for power method.
(e) $[6 \mathrm{pts}]$ Perform one steps of Rayleigh Quotient Iteration on matrix $\left(\begin{array}{cc}2 & -2 \\ -3 & 1\end{array}\right)$ with initial vector $\mathbf{q}_{0}=(1,0)^{T}$.
3. Consider the linear system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{lll}
4 & 0 & 3 \\
4 & 1 & 2 \\
8 & 3 & 5
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
6 \\
14
\end{array}\right)
$$

(a) [8 pts] Use Gaussian elimination with partial pivoting to write the matrix A in the form $P A=L U$, where P is a permutation matrix, L is a unit lower triangular matrix and U is an upper triangular matrix.
(b) $[6 \mathrm{pts}]$ Use the result from (a) to solve the linear system $A \mathbf{x}=\mathbf{b}$.
(c) [5 pts] Can the above system be solved using Gaussian elimination without pivoting? Explain your answer.
(d) [3 pts] Given one reason why Gaussian elimination with partial pivoting is preferred in practice over Gaussian elimination without pivoting.
(e) [3 pts] Briefly describe the complete pivoting strategy and its performance in comparison to the partial pivoting.

PART B: Do only TWO problems

1. Consider the PDE $u_{x x}+3 u_{y y}=6$ with boundary values $u(x, y)=2 x^{2}+y^{2}$ defined on the region R shown below:

(a) [5 pts] Find the maximum value of u attained within the region R. At what point(s) is this maximum value attained?
(b) [8 pts] Suppose that we approximate this PDE by the usual 5-point scheme on a square mesh with $\Delta x=\Delta y=h=1$. Write down the resulting system of linear equations in matrix form $A \mathbf{u}=\mathbf{b}$.
(c) [5 pts] Derive the local truncation error for the 5-point scheme that you used in part (b).
(d) [7 pts] Now suppose that the boundary condition along $y=0$ is replaced by $u_{y}(x, 0)=1$ for $0<x<3$. Write a second order accurate finite difference equation to approximate the solution at the point $(2,0)$ in terms of $u(1,0)$ and $u(2,1)$.
2. Consider the PDE

$$
\begin{aligned}
& u_{x x}+x u_{x y}-2 x^{2} u_{y y}=0 \\
& u(x, 0)=x^{2},-\infty<x<\infty \\
& u_{y}(x, 0)=0,-\infty<x<\infty
\end{aligned}
$$

(a) [3 pts] Determine all values of x for which the given PDE is hyperbolic.
(b) [4 pts] Determine the slope of the characteristic curves for the PDE at a point (x, y).
(c) $[6 \mathrm{pts}]$ Find the exact values of the coordinates of the point of intersection $R\left(x_{R}, y_{R}\right)$, where $y_{R}>0$, of the characteristic curves through the points $P(2,0)$ and $Q(4,0)$.
(d) $[3 \mathrm{pts}]$ State the CFL condition that gives the stability condition for the numerical scheme used to approximate the above PDE.
(e) [4 pts] Suppose we approximate the given PDE by a consistent explicit finite difference scheme with $h=k=1$. Does the scheme converge at the point R you found in part (c)? Explain your reasoning.
(f) $[5 \mathrm{pts}]$ Derive a consistent finite difference approximation for the term $x u_{x y}$ that is $O\left(h, k^{2}\right)$. You need not prove that your approximation is consistent.
3. Consider the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}, 0 \leq x \leq 1, t>0 \\
u(x, 0) & =x(1-x), 0 \leq x \leq 1 \\
u(0, t) & =1, u(1, t)=t, t>0
\end{aligned}
$$

Suppose we approximate the above PDE by a finite difference scheme

$$
-r(1-\theta) u_{i-1, j+1}+(1+2 r \theta) u_{i, j+1}-r(1-\theta) u_{i+1, j+1}=r \theta u_{i-1, j}+(1-2 r(1-\theta)) u_{i, j}+r \theta u_{i+1, j},
$$

where $r=k / h^{2}, k=\Delta t, h=\Delta x, u_{i, j}$ approximates $U(i h, j k)$, and θ is a parameter with $0 \leq \theta \leq 1$.
(a) $[3 \mathrm{pts}]$ Find all value(s) of θ for which the scheme is implicit.
(b) $[10 \mathrm{pts}]$ Let $h=1 / 4, k=1 / 16$ (that is, $r=1$) and $\theta=1 / 2$. Find the matrices A, B and vector \mathbf{f}_{j} such that

$$
A \mathbf{u}_{j+1}=B \mathbf{u}_{j}+\mathbf{f}_{j}
$$

where $\mathbf{u}_{j}=\left(u_{1, j}, u_{2, j}, \ldots, u_{N-1, j}\right)^{T}$.
(c) $[6 \mathrm{pts}]$ Now let $\theta=1$. Perform von Neumann analysis to find the value(s) of r for which the scheme is stable.
(d) [3 pts] Give an example of a stable scheme that is consistent with the above PDE but not convergent, if any. If there is none, explain why.
(e) [3 pts] Give an example of a consistent scheme that is second order accurate in both x and t, if any. If there is none, explain why.

