Department of Mathematics California State University Los Angeles
 Master's Degree Comprehensive Examination in
 NUMERICAL ANALYSIS
 FALL 2020

Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No notes, books, calculators, internet or cell phones are allowed.

PART A: Do only TWO problems

1. (a) Let $A=\left(\begin{array}{ll}\alpha & \gamma \\ \gamma & \beta\end{array}\right)$, where α, β and γ are real numbers with $\alpha>0$ and $\beta>0$.
i. Give the conditions on α, β and γ under which A is strictly diagonally dominant. [2 points]
ii. Find the eigenvalues (in terms of α, β and γ) of the Jacobi iteration matrix when applied to solve the system $A \mathbf{x}=\mathbf{b}$ for some vector \mathbf{b}. [6 points]
iii. Under what conditions on α, β and γ will the Jacobi iteration converge? [3 points]
(b) Given the system of linear equations $B \mathbf{x}=\mathbf{b}$, where B is a strictly diagonally dominant $n \times n$ matrix and \mathbf{b} is an arbitrary n-vector. Prove that the Jacobi iteration matrix G_{J} for this system satisfies $\left\|G_{J}\right\|_{\infty}<1$. [9 points]
(c) Determine whether the following statement is true or false:

If a square matrix C is positive definite, then it is diagonally dominant.
If it is true, prove the statement. If it is false, give a counter example. [5 points]
2. (a) The Power Method and the QR Method are techniques for finding approximations to the eigenvalues of a square matrix A.
i. State the sufficient conditions for the convergence of the Power Method. [4 points]
ii. Briefly describe the QR algorithm for finding the eigenvalues of A. [5 points]
iii. Let $A=\left(\begin{array}{cc}1 & -3 \\ -2 & 2\end{array}\right)$. Perform one iteration of the QR Method to approximate the eigenvalues of A by letting $A_{0}=A$. [8 points]
iv. Give one advantage of the Power Method over the QR Method. [2 points]
(b) Find the 3×3 matrix B that has eigenvalues $\lambda_{1}=4, \lambda_{2}=3, \lambda_{3}=2$ and the corresponding orthogonal eigenvectors $\mathbf{v}_{1}=(1 / \sqrt{2}, 0,1 / \sqrt{2})^{T}, \mathbf{v}_{2}=(0,1,0)^{T}, \mathbf{v}_{3}=$ $(-1 / \sqrt{2}, 0,1 / \sqrt{2})^{T}$. [6 points]
3. (a) Let $A=\left(\begin{array}{lll}2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8\end{array}\right)$.
i. Use the Gaussian elimination with partial pivoting to write A in the form $P A=L U$, where P is a permutation matrix, L is a unit lower triangular, and U is an upper triangular matrix. [6 points]
ii. Use the result from part (i) to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=(1,0,5)^{T}$. [6 points]
(b) Let B be an invertible $n \times n$ matrix. Show that if B can be factored as $B=$ $L U$, where L is a unit lower triangular and U is an upper-triangular, then this factorization is unique. [7 points]
(c) Compare (do not calculate) the flop-counts of Gaussian elimination with no pivoting, partial pivoting and complete pivoting for a general $n \times n$ system of linear equations. [6 points]

PART B: Do only TWO problems

1. Consider the elliptic partial differential equation (PDE)

$$
\begin{aligned}
U_{x x}+U_{x y}+U_{y y} & =f(x, y), & & \text { for }(x, y) \in(0,4 / 3) \times(0,1), \\
U(x, y) & =0, & & \text { for }(x, y) \in\{0,4 / 3\} \times[0,1] \cup[0,4 / 3] \times\{0,1\} .
\end{aligned}
$$

(a) On a regular grid with $\Delta x=\Delta y=h$, find a consistent finite difference approximation to $U_{x y}$ by applying central difference in the two coordinate directions. You need not prove that the approximation is consistent. [5 points]
(b) Use the standard 5-point stencil for $U_{x x}+U_{y y}$ and the approximation in (a) to discretize the elliptic PDE on the grid below with the given ordering. First, write 6 linear equations by discretizing the PDE at each interior grid point. Then, express the scheme in the form of a linear system $A \mathbf{u}=\mathbf{f}$. [9 points]
(c) Explain the process of finding the local truncation error of the finite difference scheme in (b). You need not find the expression of the local truncation error. [3 points]
(d) Use the scheme developed in (b) to explain the concepts of consistency and convergence. Does consistency imply convergence? Explain your answer. [8 points]

2. Given the parabolic PDE

$$
\begin{aligned}
U_{t}-U_{x x} & =0 & & \text { for } 0<x<1, t>0 \\
U(x, t) & =0 & & \text { for } x \in\{0,1\}, t>0 \\
U(x, 0) & =x(1-x) & & \text { for } 0 \leq x \leq 1
\end{aligned}
$$

(a) Write a consistent finite difference approximation to the above PDE including the initial and boundary conditions. No need to show that the scheme is consistent. [5 points]
(b) Use your scheme in (a) to explain the following concepts:
i. consistency [2 points]
ii. stability [2 points]
iii. convergence [2 points]
(c) Determine the stability of your scheme in (a). If your scheme is stable, determine whether it is conditionally stable or unconditionally stable. If your scheme is unstable, write a stable scheme. [8 points]
(d) Can a scheme be consistent but not stable? If so, give an example. If not, explain why not. [3 points]
(e) Can a consistent scheme be stable but not convergent? If so, give an example. If not, explain why not. [3 points]
3. (a) Consider the wave equation

$$
U_{t t}=4 U_{x x}, \quad x \in \mathbb{R}, t>0, a \in \mathbb{R}
$$

i. Determine the two characteristic directions. Calculate and sketch the two characteristic curves passing through the point $(2,2)$ in the $x t$-plane. [5 points]
ii. Suppose the following two schemes are derived for approximating the equation

$$
\begin{array}{ll}
\text { Scheme (A): } & u_{j}^{n+1}=a u_{j+1}^{n}+b u_{j}^{n}+c u_{j-1}^{n}+d u_{j}^{n-1} ; \\
\text { Scheme (B): } & u_{j}^{n+1}=\alpha u_{j+1}^{n+1}+\beta u_{j}^{n}+\gamma u_{j-1}^{n+1}+\delta u_{j}^{n-1},
\end{array}
$$

where u_{j}^{n} is the approximation to $U\left(x_{j}, t_{n}\right)$. Consider a fixed ratio $k / h=1$, where $h=\Delta x$ and $k=\Delta t$. Find the numerical domain of dependence of the grid point $\left(x_{j}, t_{n+1}\right)$ for both schemes. What can be said about the convergence of schemes (A) and (B)? Justify your answer. [8 points]
(b) Consider the PDE

$$
U_{t}=2 U_{x}, \quad 0<x<1, t>0
$$

with periodic boundary condition, that is, $U(0, t)=U(1, t)$.
i. Consider the finite difference scheme

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}=2 \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}
$$

for approximating the PDE. Here u_{j}^{n} approximates $U\left(x_{j}, t_{n}\right)$. Show that the scheme is unstable when k is chosen proportional to h. [7 points]
ii. Write a stable scheme when k is chosen proportional to h. No need to show that the scheme is stable. [5 points]

