```
(*********************)
(* Helper functions *)
(*********************)
```

(* returns a list of all the
Gaussian Integers with norm equal to n *)
normSolver[n_] := Module[\{a, b, sqrtn, answerlist\},
sqrtn = Sqrt[n];
answerlist = \{\};
For [a = Floor[-sqrtn], $\mathrm{a} \leq \mathrm{sqrtn}, \mathrm{a++}$,
For [b = Floor[-sqrtn], b sqrtn, b++,
If[Equal[n, $a * a+b * b]$,
answerlist = Append[answerlist, $a+b$ * I] ;
];
];
];
Return[answerlist];
];
(* If z and w are Gaussian integers,
this module returns True if z divides w, otherwise
it returns False *)
gaussianDivides[z_, w_] := Module[\{quotient\},
quotient = Simplify[w/z];
If[IntegerQ[Re[quotient]] \&\& IntegerQ[Im[quotient]],
Return[True];
];
Return[False];
];
(* Main program *)

bound = 20;

$$
\text { divisorList = \{\}; }
$$

$$
\text { For }[\mathrm{n}=1, \mathrm{n} \leq \text { bound, } \mathrm{n}++ \text {, }
$$

$$
\text { (* Try to find } z \text { and } w \text { where } N(z)=d \text { divides } N(w)=n \text {, }
$$

$$
\text { but } z \text { does NOT divide w. *) }
$$

divisorListForN = Divisors[n];
possibleWs = normSolver[n];
(* TESTING
Print["n = ", n];
Print["divisorList = ", divisorList];
Print["possibleWs = ", possibleWs];*)
(* Go through the possible w's, then the possible d's, then the possible z's *)
For $[\mathbf{i}=1, \mathbf{i} \leq$ Length[possibleWs], $\mathbf{i + +}$,
w = possibleWs[[i]];

For $[\mathrm{j}=1, \mathrm{j} \leq$ Length[divisorListForN], $\mathrm{j}++$, d = divisorListForN[[j]]; possibleZs = normSolver[d];

$$
\begin{aligned}
\text { For }[k & =1, k \leq \text { Length [possibleZs], } k++, \\
z & =\text { possibleZs[[k]]; }
\end{aligned}
$$

If[(! Equal[d, 1]) \&\&
(! Equal[d, n]) \&\& (! gaussianDivides[z, w]),

$$
\begin{array}{r}
\text { Print }[" z=", z, " \text { and ", } \\
\text { "w }=\text { ", w, " satisfy } N(z)=", \\
d, " \text { and } N(w)=", n,
\end{array}
$$

" but, z does not divide w since w/z = ", Simplify[w/z]];
];
];
];
];
];
$z=-2-i$ and $w=-3-i$ satisfy $N(z)=5$ and $N(w)=$ 10 but, z does not divide w since $w / z=\frac{7}{5}-\frac{\dot{1}}{5}$
$z=-1+2 i$ and $w=-3-i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \text { ii }}{5}$
$z=1-2$ i and $w=-3-i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 i}{5}$
$z=2+i$ and $w=-3-i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\mathbb{i}}{5}$
$z=-2+i$ and $w=-3+i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{7}{5}+\frac{\dot{i}}{5}$
$z=-1-2$ ii and $w=-3+\mathbb{i}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 \text { i }}{5}$
$z=1+2$ i and $w=-3+i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \text { i }}{5}$
$z=2-\dot{1}$ and $w=-3+\dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{\mathbb{i}}}{5}$
$z=-2+i$ and $w=-1-3$ i satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 i}{5}$
$z=-1-2 \dot{i}$ and $w=-1-3 \dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=10$ but, z does not divide w since $w / z=\frac{7}{5}+\frac{i}{5}$
$z=1+2 \dot{i}$ and $w=-1-3 \dot{i}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{1}}{5}$
$z=2-i$ and $w=-1-3 i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 \dot{i}}{5}$
$z=-2-i$ and $w=-1+3 i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 \dot{i}}{5}$
$z=-1+2 \dot{i}$ and $w=-1+3 \dot{i}$ satisfy $N(z)=5$ and $N(w)=10$ but, z does not divide w since $w / z=\frac{7}{5}-\frac{\dot{i}}{5}$
$z=1-2$ ii and $w=-1+3$ ii satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{1}}{5}$
$z=2+i$ and $w=-1+3 i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \dot{i}}{5}$
$z=-2-i$ and $w=1-3 i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \dot{i}}{5}$
$z=-1+2$ i and $w=1-3$ i satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{i}{5}$
$z=1-2 \dot{i}$ and $w=1-3 \dot{i}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{7}{5}-\frac{i}{5}$
$z=2+\dot{\mathbb{i}}$ and $w=1-3 \dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 \dot{i}}{5}$
$z=-2+i$ and $w=1+3 i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 \dot{i}}{5}$
$z=-1-2 \dot{\mathbb{i}}$ and $w=1+3 \dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=$ 10 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{1}}{5}$
$z=1+2$ ii and $w=1+3$ ii satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{7}{5}+\frac{i}{5}$
$z=2-\dot{i}$ and $w=1+3 \dot{i}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \dot{i}}{5}$
$z=-2+\dot{i}$ and $w=3-i$ satisfy $N(z)=5$ and $N(w)=$ 10 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{i}{5}$
$z=-1-2$ i and $w=3-i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \dot{\mathbb{i}}}{5}$
$z=1+2 \dot{i}$ and $w=3-\dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=$ 10 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 i}{5}$
$z=2-i$ and $w=3-i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{7}{5}+\frac{i}{5}$
$z=-2-i$ and $w=3+i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{1}}{5}$
$z=-1+2 \dot{i}$ and $w=3+i$ satisfy $N(z)=5$ and $N(w)=$ 10 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 i}{5}$
$z=1-2$ i and $w=3+i$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \dot{i}}{5}$
$z=2+\dot{\mathbb{i}}$ and $w=3+\dot{\mathbb{i}}$ satisfy $N(z)=5$ and $N(w)=$
10 but, z does not divide w since $w / z=\frac{7}{5}-\frac{i}{5}$
$z=-2+i$ and $w=-4-2 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{6}{5}+\frac{8 i}{5}$
$z=-1-2$ i and $w=-4-2$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{8}{5}-\frac{6 \text { i }}{5}$
$z=1+2$ i and $w=-4-2$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{8}{5}+\frac{6 \dot{1}}{5}$
$z=2-i$ and $w=-4-2 i$ satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=-3-i$ and $w=-4-2$ i satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}+\frac{\dot{i}}{5}$
$z=-1+3$ i and $w=-4-2 i$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \text { i }}{5}$
$z=1-3$ ii and $w=-4-2$ ii satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 i}{5}$
$z=3+i$ and $w=-4-2$ i satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{i}}{5}$
$z=-2-i$ and $w=-4+2 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=-1+2$ ii and $w=-4+2$ ii satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{8}{5}+\frac{6 i}{5}$
$z=1-2$ i and $w=-4+2$ i satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}-\frac{6 \text { i }}{5}$
$z=2+i$ and $w=-4+2 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{6}{5}+\frac{8 \text { i }}{5}$
$z=-3+i$ and $w=-4+2 i$ satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}-\frac{\dot{i}}{5}$
$z=-1-3 i$ and $w=-4+2 i$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 i}{5}$
$z=1+3 \dot{1}$ and $w=-4+2$ ii satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \text { i }}{5}$
$z=3-i$ and $w=-4+2$ ii satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{i}}{5}$
$z=-2-i$ and $w=-2-4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{8}{5}+\frac{6 i}{5}$
$z=-1+2$ ii and $w=-2-4$ ii satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{6}{5}+\frac{8 i}{5}$
$z=1-2$ i and $w=-2-4$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=2+i$ and $w=-2-4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}-\frac{6 i}{5}$
$z=-3+i$ and $w=-2-4 i$ satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 i}{5}$
$z=-1-3 i$ and $w=-2-4 i$ satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}-\frac{\dot{1}}{5}$
$z=1+3$ ii and $w=-2-4$ ii satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{\mathbb{i}}}{5}$
$z=3-i$ and $w=-2-4 i$ satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 \dot{1}}{5}$
$z=-2+i$ and $w=-2+4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{8}{5}-\frac{6 i}{5}$
$z=-1-2$ i and $w=-2+4$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=1+2$ ii and $w=-2+4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{6}{5}+\frac{8 \text { i }}{5}$
$z=2-\dot{i}$ and $w=-2+4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}+\frac{6 i}{5}$
$z=-3-\dot{i}$ and $w=-2+4 \dot{i}$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 i}{5}$
$z=-1+3 i$ and $w=-2+4 i$ satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}+\frac{\dot{i}}{5}$
$z=1-3 i$ and $w=-2+4 i$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{1}}{5}$
$z=3+\dot{i}$ and $w=-2+4 i$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \dot{\mathbb{1}}}{5}$
$z=-2+i$ and $w=2-4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}+\frac{6 \dot{1}}{5}$
$z=-1-2 \dot{i}$ and $w=2-4 \dot{i}$ satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{6}{5}+\frac{8 \dot{i}}{5}$
$z=1+2 i$ and $w=2-4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{6}{5}-\frac{8 i}{5}$
$z=2-\dot{i}$ and $w=2-4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{8}{5}-\frac{6 i}{5}$
$z=-3-i$ and $w=2-4 \dot{i}$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \dot{i}}{5}$
$z=-1+3$ i and $w=2-4 i$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\dot{1}}{5}$
$z=1-3 i$ and $w=2-4 i$ satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}+\frac{i}{5}$
$z=3+\dot{i}$ and $w=2-4 \dot{i}$ satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 \dot{1}}{5}$
$z=-2-\dot{i}$ and $w=2+4 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}-\frac{6 i}{5}$
$z=-1+2$ il and $w=2+4$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=1-2$ ii and $w=2+4$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{6}{5}+\frac{8 \text { i }}{5}$ $z=2+i$ and $w=2+4$ ii satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{8}{5}+\frac{6 i}{5}$ $z=-3+i$ and $w=2+4$ ii satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 i}{5}$
$z=-1-3 i$ and $w=2+4 i$ satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{i}}{5}$
$z=1+3$ i and $w=2+4$ i satisfy $N(z)=10$ and $N(w)=20$ but, z does not divide w since $w / z=\frac{7}{5}-\frac{\dot{i}}{5}$
$z=3-i$ and $w=2+4$ i satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 \text { i }}{5}$
$z=-2-i$ and $w=4-2 i$ satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{6}{5}+\frac{8 \text { i }}{5}$
$z=-1+2$ ii and $w=4-2$ i satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{8}{5}-\frac{6 \text { i }}{5}$
$z=1-2$ i and $w=4-2$ i satisfy $N(z)=5$ and $N(w)=$
20 but, z does not divide w since $w / z=\frac{8}{5}+\frac{6 \text { i }}{5}$
$z=2+i$ and $w=4-2$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{6}{5}-\frac{8 \text { i }}{5}$
$z=-3+i$ and $w=4-2$ i satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{7}{5}+\frac{\dot{i}}{5}$
$z=-1-3$ ii and $w=4-2$ ii satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{1}{5}+\frac{7 i}{5}$
$z=1+3$ i and $w=4-2$ i satisfy $N(z)=10$ and $N(w)=$
20 but, z does not divide w since $w / z=-\frac{1}{5}-\frac{7 \text { i }}{5}$
$z=3-i$ and $w=4-2 i$ satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{7}{5}-\frac{\mathbb{1}}{5}$
$z=-2+i$ and $w=4+2$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{6}{5}-\frac{8 i}{5}$
z = - 1 - 2 i and $w=4+2$ i satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{8}{5}+\frac{6 \text { i }}{5}$
$z=1+2$ ii and $w=4+2$ ii satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{8}{5}-\frac{6 \text { i }}{5}$
$z=2$-ii and $w=4+2$ ii satisfy $N(z)=5$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{6}{5}+\frac{8 \text { i }}{5}$
$z=-3-i$ and $w=4+2$ i satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{7}{5}-\frac{\mathbb{1}}{5}$
$z=-1+3$ ii and $w=4+2$ ii satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{1}{5}-\frac{7 \text { i }}{5}$
$z=1-3$ i and $w=4+2$ i satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=-\frac{1}{5}+\frac{7 \text { i }}{5}$
$z=3+i$ and $w=4+2$ i satisfy $N(z)=10$ and $N(w)=$ 20 but, z does not divide w since $w / z=\frac{7}{5}+\frac{\dot{i}}{5}$

