$$
\frac{\text { Math } 4570}{8 / 24 / 20}
$$

(1) Class recordings will be put on canvas.
(2) Class lecture notes will be on the course website.
(3) I'm using yous calstatela email to send announcements to the class. If you want me to use a different email then let me know. You can just email me with 4570 and the email you want me to use,

Def: A field F is a set with
two binary operations denoted by + and - such that the following are true.
(F1) For all $a, b \in F$ there exist
unique elements $a+b$ and $a \cdot b$ in F.
(F2) For all $a, b, c \in F$ we have
(F3) There exist elements 0 and 1 in F where $a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$ for all $a \in F$
(F4) For each $a \in F$, there exists $d \in F$ with $a+d=d+a=0$
(F5) For each $a \in F$, where $a \neq 0$, then there exists $f \in F$ with

$$
a \cdot f=f \cdot a=1
$$

Ho: $0,1, d, f$ from (F3)/(E4)/(FS) are unique.
We call 0 the additive identity of F.
We call 1 the multiplicative identity of F.
We denote d in F4 as -a and call it the additive inverse of a.
We denote f in F5 as a^{-1} and call it the multiplicative inverse of a.

Ex:
The set of real numbers \mathbb{R} is a field.

Ex: The set of rational
numbers $Q=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$

$$
\begin{aligned}
& =\{\bar{b}, a, b \\
& =\left\{1,0,5, \frac{1}{2}, \frac{10}{3}, \frac{-7}{10}, \cdots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { is a field. } \\
& a=\frac{10}{3}, \underbrace{-a=\frac{-10}{3}}_{\begin{array}{c}
\text { additive } \\
\text { inverse }
\end{array}}, \underbrace{a^{-1}=\frac{3}{10}}_{\begin{array}{c}
\text { multiplicative } \\
\text { inverse }
\end{array}}
\end{aligned}
$$

Ex: The complex numbers

$$
\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}
$$

(where $i^{2}=-1$) is a field.

Ex: $\mathbb{Z}_{p}=\{\overline{0}, T, \overline{2}, \ldots, \overline{p-1}\}$ where p is prime is a field \mathbb{Z}_{p} is set of integers modulo p.

Def: Let F be a field.
A vector space over F is a set V with two operations. The first operation is addition which takes two elements $V_{1}, V_{2} \in V$ and produces a unique element $V_{1}+V_{2} \in V$.
The secund operation is scalar multiplication, which takes one element $a \in F$ and one element $v \in V$ and produces a unique element $a v \in V$.
The following properties must hold.
(vi) For all $v_{1}, v_{2} \in V$ we
V is
sometimes
called the set of "vectors"
have $V_{1}+v_{2}=V_{2}+V_{1}$.
(vi) For all $v_{1}, v_{2}, v_{3} \in V$ we have

$$
\text { For all } \left.v_{1}, v_{2}\right) \text {, } v_{1}+\left(v_{2}+v_{3}\right)=\left(v_{2}\right)+\overrightarrow{0}
$$

(vB) There exists an element \vec{O} in \mathbb{V} where $\overrightarrow{0}+v=v+\overrightarrow{0}=v$ for all $v \in V$.
(vi) For each $v \in V$ there exists $w \in V$ with $v+w=w+V=\overrightarrow{0}$.
(vS) For each $v \in V$, we have $1 V=V$. [Here 1 is from F]
(vG) For $a, b \in F$ and $v \in V$ we have $(a b) v=a(b v)$.
(v7) For all $a \in F$ and $v_{1}, v_{2} \in V$ we have $a\left(v_{1}+v_{2}\right)=a v_{1}+a v_{2}$
(v8) For $a l l a, b \in F$ and $v \in V$ we have $(a+b) v=a v+b v$
Later we will show that \vec{O} from (V3) and w from V4 are unique. \vec{O} is called the zero vector of V. w is called the additive inverse of v and is denoted by $-v$.

$$
\frac{\text { Math } 4570}{8 / 26 / 20}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Ex: $F=\mathbb{R}, V=\mathbb{R}^{2}$
then $V=\mathbb{R}^{2}$ is a vector space over $F=\mathbb{R}$ using the operations

$$
\begin{aligned}
& (x, y)+(a, b)=(x+a, y+b) \text { vector } \\
& \alpha(x, y)=(\alpha x, \alpha y) \text { scalition } \\
& \text { mut. }
\end{aligned}
$$

$$
\begin{aligned}
& (1,2)+(-1,5)=(0,7) \\
& -10(1,3)=(-10,-30)
\end{aligned}
$$

Ex: Let F be a field.
Let $V=F^{n}$ where n is an integer $n \geqslant 1$.
Then $V=F^{n}$ is a vector space oven F using the following operations.
Let $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
and $y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be in $V=F^{n}$.
and $\alpha \in F$.
Vector addition will be defined as

$$
x+y=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

and scalar multi, will be defined a s

$$
\begin{aligned}
& \left.\left.\alpha x \text { scalar multi, will be }\left(\alpha a_{1}\right) \alpha a_{2}\right) \ldots, \alpha a_{n}\right)
\end{aligned}
$$

proof:
Let $x, y, z \in V=F^{n}$ where

$$
\begin{aligned}
& \text { Let } \left.x, y, a_{1}, \ldots, a_{n}\right), y=\left(b_{1}, b_{2}, \ldots ., b_{n}\right)
\end{aligned}
$$

and $z=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$.
Let $a, b \in F$.

$$
\begin{aligned}
& \text { (V1) We have } \\
& x+y=\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& \text { \&ef }\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
& \begin{array}{l}
\text { def } \\
b+1
\end{array}=\left(b_{1}, a_{1}, b_{2}+a_{2}, \ldots, b_{n}+a_{n}\right) \\
& =\left(b_{1}, b_{2}, \ldots, b_{n}\right)+\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& \begin{array}{l}
\text { Fis } \\
a \text { field } \\
a+b=b+a \\
\forall a, b \in F
\end{array}=y+x .
\end{aligned}
$$

(V2) We have

$$
\begin{aligned}
& (x+y)+z \\
& =\left[\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right]+\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)+\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}, \ldots,\right. \\
& \left.\left(a_{n}+b_{n}\right)+c_{n}\right)
\end{aligned}
$$

Fis.
associantive

$$
\begin{array}{r}
=\left(a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right), \cdots\right) \\
\left.a_{n}+\left(b_{n}+c_{n}\right)\right)
\end{array}
$$

$$
\begin{aligned}
& \text { (ab } \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}+c_{1}, b_{2}+c_{2}, \ldots, b_{n}+c_{n}\right)+\left[\left(b_{1}, b_{2}, \ldots, b_{n}\right)+\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right]
\end{aligned}
$$

def 8

$$
=x+(y+z)
$$

(V3) Let $\vec{o}=(0,0, \ldots, 0)$ where O is the zero element of F.
Then

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
x+\overrightarrow{0} & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)+(0,0, \ldots, 0) \\
& =\left(a_{1}+0, a_{2}+0, \ldots, a_{n}+0\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =x
\end{aligned}
\end{aligned}
$$

Thus, $x+\overrightarrow{0}=\overrightarrow{0}+x=x$.
(v4) Given $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define ω to be $w=\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$ Note that w exists because given] $a \in F$ there exists $-a \in F$.
Then,

$$
\begin{aligned}
& \text { en, } \\
& \begin{aligned}
x+w & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(-a_{1},-a_{2}, \ldots,-a_{n}\right) \\
& =\left(a_{1}-a_{1}, a_{2}-a_{2}, \ldots, a_{n}-a_{n}\right) \\
& =(0,0, \ldots, 0)=\overrightarrow{0}
\end{aligned}
\end{aligned}
$$

Similarly,

$$
\text { imilably, } \begin{aligned}
w+x & =\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)+\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\left(-a_{1}+a_{1},-a_{2}+a_{2}, \ldots,-a_{n}+a_{n}\right) \\
& =(0,0, \ldots, 0)=\overrightarrow{0} .
\end{aligned}
$$

So given $x \in V$, there exists $w \in V$ where $x+w=w+x=\overrightarrow{0}$.
(v5) We have

$$
\begin{aligned}
& 1 x=1\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
&=\left(1 a_{1}, 1 a_{2}, \ldots, 1 a_{n}\right) \\
&=\left(a_{1}, a_{2}, \ldots, a_{n}\right)=x \\
& \text { deb } \begin{array}{l}
\text { Here } 1 \text { is the multiplicat } \\
\text { deb identis of } F \\
\text { scula } \\
\text { mul }
\end{array}
\end{aligned}
$$

[Here 1 is the multiplicative]
(v6) We have

$$
\left.\begin{array}{rl}
\text { (V6) We have } \\
(a b) x & =(a b)\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\left((a b) a_{1},(a b) a_{2}, \ldots,(a b) a_{n}\right) \\
& =\left(a\left(b a_{1}\right), a\left(b a_{2}\right), \ldots, a\left(b a_{n}\right)\right) \\
\text { sectabo } \\
\text { mult. }
\end{array}\right)=a\left(\left(b a_{1}\right),\left(b a_{2}\right), \ldots,\left(b a_{n}\right)\right)
$$

(v7) We have

$$
\begin{aligned}
& a(x+y)=a\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right] \\
& =a\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
& \overline{\overline{4}}\left(a\left(a_{1}+b_{1}\right), a\left(a_{2}+b_{2}\right), \ldots, a\left(a_{n}+b_{n}\right)\right) \\
& \overline{\bar{A}}\left(a a_{1}+a b_{1}, a a_{2}+a b_{2}, \ldots, a a_{n}+a b_{n}\right) \\
& \left(\begin{array}{l}
\text { F has } \\
\text { the thote } \\
\text { dimber } \\
\text { propery }
\end{array}\right)=\left(a a_{1}, a a_{2}, \ldots, a a_{n}\right)+\left(a b_{1}, a b_{2}, \ldots, a b_{n}\right) \\
& \begin{aligned}
& \text { def }=a\left(a_{1}, a_{2}, \ldots, a_{n}\right)+a\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& d+ \\
& d e b=a x
\end{aligned}
\end{aligned}
$$

(18) We have

$$
\begin{aligned}
& (a+b) \times=(a+b)\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\left((a+b) a_{1},(a+b) a_{2}, \ldots,(a+b) a_{n}\right) \\
& \left(\begin{array}{l}
\text { deb } \\
\text { scalar } \\
\text { amur }
\end{array}\right)=\left(a a_{1}+b a_{1}, a a_{2}+b a_{2}, \ldots, a a_{n}+b a_{n}\right) \\
& \text { has } \\
& \text { distrindive } \\
& \text { property }
\end{aligned}
$$

dee do molt

$$
\stackrel{d_{\text {boult }}}{=} a x+b x
$$

since VI -V8 are true per F $V=F^{n}$ is a vector space oven

Ex: \mathbb{R}^{3} ir a vector space oven $\mathbb{R}\left(\begin{array}{l}\mathrm{pg} \\ 10\end{array}\right.$ \mathbb{T}^{10} is a vector space oven \mathbb{C}

Ex: Let F be a field. Let $V=M_{m, n}(F)$ be the set of all $m \times n$ matrices with entries from F. Then V is a vector space ven F where vector addition is defined as

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{n n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{11}+b_{11}, & a_{12}+b_{12}, & \ldots, \\
a_{21}+b_{21}, b_{1 n} & a_{22}+b_{22}, & \ldots, \\
\vdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \\
a_{m 1}+b_{m 1}, & a_{m 2}+b_{m 2}, \ldots, & a_{m n}+b_{m n}
\end{array}\right)
\end{aligned}
$$

and scalar multiplication is defined as

$$
\begin{aligned}
& \text { defined as } \\
& \alpha\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \ldots & \alpha a_{1 n} \\
\alpha a_{21} & \alpha a_{22} & \ldots & \alpha a_{2 n} \\
\vdots & \vdots & & \vdots \\
\alpha a_{m 1} & \alpha a_{m 2} & \cdots & \alpha a_{m n}
\end{array}\right)
\end{aligned}
$$

Here $\overrightarrow{0}=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right)$.

$$
\begin{aligned}
& E x: F=\mathbb{R} \\
& V=M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
\end{aligned}
$$

$$
\frac{\text { Math } 4570}{8 / 31 / 20}
$$

$E X_{0}$ Let $F=\mathbb{R}$ or $F=\mathbb{C}$
Let $n \geqslant 0$ be an integer.
Define the set $P_{n}(F)$ to be the set of all polynomials with coefficents from F of degree less than or equal to n.

$$
\begin{aligned}
& \text { So, } \\
& P_{n}(F)=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid\right. \\
& \left.a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in F\right\}
\end{aligned}
$$

Then $V=P_{n}(F)$ is a vector space oven F where vector addition is given by

$$
\begin{aligned}
& \text { F where vector addition is given by } \\
& \left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$ and scalon multiplication is defined as

$$
\begin{aligned}
& \text { and scalar multiplication }=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x \\
& \alpha\left[a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right] \\
&+\ldots+\left(\alpha a_{n}\right) x^{n}
\end{aligned}
$$

Here the zero vector is

$$
\vec{o}=0+0 x+0 x^{2}+\cdots+0 x^{n}
$$

We define equality as follows:
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$
we define $f=g$ if f

$$
\begin{aligned}
& e \text { define } f=g, 1+t, a_{n}=b_{n} \\
& a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a^{2}
\end{aligned}
$$

Ex:

$$
\frac{E x:}{P_{3}(\mathbb{R})}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\left.a_{3} x^{3}\right|_{\text {zero vector }} \quad a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}
$$

$$
\begin{aligned}
& =\left\{0,1,1+x, \begin{array}{r}
1+x^{3}, \begin{array}{r}
\pi+e x^{2}+x^{3}, \\
10 x^{3}+1, \ldots
\end{array}
\end{array}\right. \\
& \begin{array}{l}
\left(1+x^{3}\right)+\left(10 x^{3}+1\right)=2+11 x^{3} \\
10\left(1+x^{3}\right)=10+10 x^{3}
\end{array}
\end{aligned}
$$

Theorem: Let V be a vector space over a field F.
(1) The element \vec{O} from $V 3$ is unique. [where $\overrightarrow{0}+x=x+\overrightarrow{0}=x \quad$ for all $x \in V]$
(2) Given $x \in V$, the element $w \in V$ from $V 4$ where $x+w=w+x=\overrightarrow{0}$ is unique. [From now on we will write $-x$ for $\omega]$.
proof:
(1) Suppose $\overrightarrow{0_{1}}, \overrightarrow{0_{2}} \in V$ where

$$
\begin{aligned}
& \text { (1) Suppose } O_{1}, O_{2} \in \overrightarrow{O_{2}}+x=x+\vec{O}_{2}=x \\
& \vec{O}_{1}+x=x+\overrightarrow{0}_{1}=x \text { and }
\end{aligned}
$$

for all $x \in V$. Then

$$
\begin{aligned}
& \text { for all } x \in V, \\
& \vec{O}_{1}=\overrightarrow{O_{1}}+\vec{O}_{2}=\overrightarrow{O_{2}} \\
& \begin{array}{l}
x=x+\overrightarrow{O_{2}} \\
x=\overrightarrow{O_{1}}
\end{array} \quad \begin{array}{l}
\overrightarrow{0_{1}+x=x} \\
x=\overrightarrow{O_{2}}
\end{array}
\end{aligned}
$$

(2) Let $x \in V$.

Suppose $w_{1}, w_{2} \in V$
where $w_{1}+x=x+w_{1}=\overrightarrow{0}$
and $w_{2}+x=x+w_{2}=\overrightarrow{0}$.
We have $x+w_{1}=\overrightarrow{0}$.
Adding w_{z} to both sides gives

$$
\underbrace{w_{2}+\left(x+w_{1}\right)}_{\substack{\text { regroup } \\ \text { associativity }}}=\underbrace{w_{2}+\overrightarrow{0}}_{w_{2}}
$$

So,

$$
\underbrace{\left(w_{2}+x\right)}_{\overrightarrow{0}}+w_{1}=w_{2}
$$

Thus, $\vec{o}+w_{1}=w_{2}$.
It follows that $\omega_{1}=\omega_{2}$.

Def: Let V be a vector space over a field F. Let W be a subset of V. We say that W is a subspace of V if W is a vector space oven F using the same vector addition and scalar multiplication as in V.

Theorem: Let V be a vector space over a field F. Let W be a subset of V.
W is a subspace of V iff the following conditions hold:
(1) $\vec{O} \in W$
(2) If $x, y \in W$,
W is closed then $x+y \in w$. under addition
(3) If $\alpha \in F$ and $x \in W$, W is closed under scalar molt. then $\alpha x \in \omega$.
proof: HW.

w

Ex: $V=\mathbb{R}^{3}$ over $F=\mathbb{R}$.
Let $W=\{(a, b, 0) \mid a, b \in \mathbb{R}\}$
Is W a subspace of V ?

$$
\begin{gathered}
W=\{(1,5,0),(\pi, 1,0),(3,2,0), \\
(1,2,0), \ldots\}
\end{gathered}
$$

(1) Set $a=0, b=0$ then we get $\overrightarrow{0}=(0,0,0) \in W$.
(2) Let $x=\left(a_{1}, b_{1}, 0\right)$ and $y=\left(a_{2}, b_{2}, 0\right)$ be in W.
Then $x+y=\left(a_{1}+a_{2}, b_{1}+b_{2}, 0\right) \in W$
(3) Let $\alpha \in \mathbb{R}$ and $x=\left(a_{1}, b_{1}, 0\right) \in \omega$. Then, $\alpha x=\left(\alpha a, \alpha b_{1}, 0\right) \in \omega$.
By (1)/(2)/(3), W is a subspace $o v$.

Ex: Let

$$
V=M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\,\right.
$$

$$
a, b, c, d \in \mathbb{R}\}
$$

and $F=\mathbb{R}$.
Let $W=\left\{\left.\left(\begin{array}{cc}a & 1 \\ 0 & b\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$
Is W a subspace of V ?

$$
W=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 5
\end{array}\right),\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \cdots\right\}
$$

not 1
(1) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \notin W$.

So, W is not a subspace.
(2)
$\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right) \in W$ but

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \notin \omega
$$

So, w is not closed under t.
(3) W isn't closed under scalar mull, since
$\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) \in \omega$ but $5\left(\begin{array}{l}0 \\ 0 \\ 0\end{array} 1\right)=\left(\begin{array}{ll}0 & 5 \\ 0 & 5\end{array}\right) \notin W$.

So, W is not a subspace
of V. You can use any
of (1) - (3) not holding to show this.

Note: Let V be a vector space over a field F. V has at least these subspaces:

$$
\begin{aligned}
& W=\{\overrightarrow{0}\} \\
& W=V
\end{aligned}
$$

Done with HW 1 stuff. Now starting HW 2 stuff.

Bases of vector spaces
Def: Let V be a vector space over a field F. Let

$$
V_{1}, V_{2}, \ldots, V_{n} \in V
$$

(1) The span of the vectors
$v_{1}, v_{2}, \ldots, v_{n}$ is defined to be the set

$$
\begin{aligned}
& \operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right) \\
& =\left\{c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} \mid c_{1}, c_{2}, \ldots, c_{n} \in F\right\}
\end{aligned}
$$

(2) If $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$ we say that $v_{1}, v_{2}, \ldots, v_{n}$ span $V_{\text {, }}$ or we say $v_{1}, v_{2}, \ldots, v_{n}$ form a spanning set for V.
(3) The expression $C_{1} v_{1}+C_{2} v_{2}+\ldots+C_{n} v_{n}$ is called a linear combination of $v_{1}, v_{2}, \cdots, v_{n}$
$E x: V=\mathbb{R}^{2}, \quad F=\mathbb{R}$
Let $v_{1}=(1,0)$.

$$
\begin{aligned}
\operatorname{span}\left(\left\{v_{1}\right\}\right) & =\left\{c_{1} v_{1} \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{c_{1}(1,0) \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{\left(c_{1}, 0\right) \mid c_{1} \in \mathbb{R}\right\}
\end{aligned}
$$

picture

$$
V=\mathbb{R}^{2}
$$

$$
\operatorname{span}(\{v,\})
$$

V_{1} does not span \mathbb{R}^{2}.
v spans the x-axis.

Ex: $V=\mathbb{R}^{2}, \quad F=\mathbb{R}$

$$
v_{1}=(1,0), \quad v_{2}=(0,1)
$$

$\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$

$$
\begin{aligned}
& \left.\operatorname{span}\left\{v_{1}, v_{2}\right\}\right) \\
& =\left\{c_{1}(1,0)+c_{2}(0,1) \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left(c_{1}, 0\right)+\left(0, c_{2}\right) \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left(c_{1}, c_{2}\right) \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\mathbb{R}^{2}
\end{aligned}
$$

So, v_{1}, v_{2} span \mathbb{R}^{2}.

$$
\frac{\text { Math } 4570}{9 / 2 / 20}
$$

Last time we showed that $V_{1}=(1,0)$ and $V_{2}=(0,1)$ span \mathbb{R}^{2}.
Let $v=(a, b)$,

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $V=(2,1)$ and $w=(-1,1)$.
Do v, w span \mathbb{R}^{2} ?
Let $(a, b) \in \mathbb{R}^{2}$.
The question is:
Can we always find $c_{1}, c_{2} \in \mathbb{R}^{2}$ where

$$
\begin{aligned}
& c_{1}, c_{2} \in \mathbb{R}^{2} \text { where } \\
& (a, b)=c_{1} V+c_{2} w
\end{aligned}
$$

That is we want to see if we can always solve

$$
\binom{a}{b}=c_{1} \underbrace{\binom{2}{1}}_{v}+c_{2} \underbrace{\binom{-1}{1}}_{w}
$$

We have

$$
\begin{aligned}
& \text { have } \\
& \binom{a}{b}=\binom{2 c_{1}-c_{2}}{c_{1}+c_{2}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& \begin{array}{l}
a=2 c_{1}-c_{2} \\
b=c_{1}+c_{2}
\end{array}
\end{aligned}
$$

3 operations in Gaussian Elimination
(1) interchange two rows
(2) multiply a row by a non-zero constant
(3) Add a constant multiple of one row to another row

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
2 & -1 & a \\
1 & 1 & b
\end{array}\right) \stackrel{R_{1} \leftrightarrow R_{2}}{\rightleftarrows}\left(\begin{array}{cc|c}
1 & 1 & b \\
2 & -1 & a
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
0 & -3 & a-2 b
\end{array}\right) \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ll|l}
1 & 1 & b \\
0 & 1 & \frac{a-2 b}{-3}
\end{array}\right) \\
& \begin{array}{l}
c_{1}+c_{2}=b \\
c_{2}=\frac{a-2 b}{-3}=-\frac{1}{3} a+\frac{2}{3} b
\end{array} \\
& c_{1}=b-c_{2}=b-\left(-\frac{1}{3} a+\frac{2}{3} b\right)=\frac{1}{3} a+\frac{1}{3} b \\
& c_{2}=-\frac{1}{3} a+\frac{2}{3} b
\end{aligned}
$$

So we can solve the system no matter what (a, b) is. We have

$$
\begin{aligned}
&(a, b)=c_{1} v+c_{2} w \\
&=\left(\frac{1}{3} a+\frac{1}{3} b\right) v+\left(-\frac{1}{3} a+\frac{2}{3} b\right) w \\
&2)-\mathbb{R}^{2}
\end{aligned}
$$

Thus, $\operatorname{span}(\{v, w\})=\mathbb{R}^{2}$
(HO 1 \# $4 a$)
Lemma: Let V be a vector space over a field F. Let \vec{O} be the zero vector of V and O be the zero element of F. Then $O \omega=\overrightarrow{0}$ for all $\omega \in V$.
proof: We have that

$$
\text { Proof: We }=(0+0) w=O w+0 w
$$

Add - (Ow) to beth sides to get

$$
\underbrace{-0 w+0 w}_{\overrightarrow{0}}=\underbrace{-0 w+0 w}_{\overrightarrow{0}}+0 w
$$

So, $\vec{O}=\vec{O}+O w$.
Thus, $\vec{O}=O w$.

Theorem: Let V be a vector space over a field F. Let $V_{1}, V_{2}, \ldots, V_{n} \in V_{0}$
Let $W=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$

$$
\begin{aligned}
& W=\operatorname{span}\left(\left\{v_{1}, v_{2}, \cdots, v_{n}\right.\right. \\
= & \left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \mid c_{1}, c_{2}, \ldots, c_{n} \in F\right\}
\end{aligned}
$$

Then:
(1) W is a subspace of V.
(2) If U is any subspace of V that contains $v_{1}, v_{2}, \ldots, v_{n}[$ that is, if $v_{1}, v_{2}, \ldots, v_{n} \in U$, then $W \subseteq U$.
proof:
(1) Let's show W is a subspace of V.

$$
\begin{aligned}
(i) \vec{O} & =\underbrace{\vec{O}+\overrightarrow{0}+\cdots+\overrightarrow{0}}_{n \text { times }} \\
& =O v_{1}+O v_{2}+\cdots+O v_{n} \in W
\end{aligned}
$$

(ii) Let $x, y \in W$.

Then $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$
and $y=d_{1} v_{1}+d_{2} v_{2}+\ldots+d_{n} v_{n}$
Where $c_{1}, c_{2}, \ldots, c_{n}, d_{1}, d_{2}, \ldots, d_{n} \in F$
Then,

$$
\begin{aligned}
x+y=\left(c_{1}+d_{1}\right) v_{1}+ & \left(c_{2}+d_{2}\right) v_{2}+\ldots \\
& \ldots+\left(c_{n}+d_{n}\right) v_{n} \in W
\end{aligned}
$$

(iii) Let $\alpha \in F$ and $z \in W$.

Then, $z=e_{1} v_{1}+e_{2} v_{2}+\cdots+e_{n} v_{n}$
where $e_{1}, e_{2}, \ldots, e_{n} \in F$.
So,

$$
\begin{aligned}
& \alpha z=\alpha\left[e_{1} v_{1}+e_{2} v_{2}+\cdots+e_{n} v_{n}\right] \\
& =\alpha\left(e_{1} v_{1}\right)+\alpha\left(e_{2} v_{2}\right)+\cdots+\alpha\left(e_{n} v_{n}\right) \\
& =\left(\alpha e_{1}\right) v_{1}+\left(\alpha e_{2}\right) v_{2}+\cdots+\left(\alpha e_{n}\right) v_{n} \in W
\end{aligned}
$$

So, by $(i),(\ddot{\mu}),(i \mu)$
W is a subspace of V.
(2) Suppose U is a subspace of V and $v_{1}, v_{2}, \ldots, v_{n} \in U$.
Let's show $W \subseteq U$.
Let $x \in W$.
Then $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ where $c_{1}, c_{2}, \ldots, c_{n} \in F$.
Since $V_{1}, v_{2}, \ldots, V_{n} \in U$ and U is a subspace we have that

$$
\begin{aligned}
& \text { a subspace we have that } \\
& c_{1} v_{1}, c_{2} v_{2}, \ldots, c_{n} v_{n} \in U, \begin{array}{l}
\text { under } \\
\text { scalar } \\
\text { mull, }
\end{array}
\end{aligned}
$$

Since $c_{1} v_{1}, c_{2} v_{2}, \ldots, c_{n} v_{n} \in U$ and U is a subspace,

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \in U
$$

Thus, $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} \in U$.

$$
\text { So, } w \subseteq u \text {. }
$$

Def: Let V be a vector space over a field F.
Let $v_{1}, V_{2}, \ldots, v_{n} \in V$.
We say that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent if there exist $c_{1}, c_{2}, \ldots, c_{n} \in F$ (not all equal to zero) such that

$$
\begin{aligned}
& \text { h that } \\
& c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=\overrightarrow{0}
\end{aligned}
$$

If $v_{1}, v_{2}, \ldots, v_{n}$ are not linearly dependent then we call them linearly independent.

Note: You can always write $O v_{1}+O v_{2}+\cdots+O v_{n}=\vec{O}$
To be lin, dep. means you can write $\overrightarrow{0}$ in more than one way in the form in more than one way $\frac{i n}{\hat{O}}=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$

Ex: Are these vectors lin, ind. or lin. dep, in \mathbb{R}^{3} ?

$$
v_{1}=(1,0,1), v_{2}=(-1,2,1), v_{3}=(0,2,2)
$$

Let's see if we can solve

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0}
$$

We have

$$
\begin{aligned}
& \text { have } \\
& c_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{c}
c_{1}-c_{2} \\
2 c_{2}+2 c_{3} \\
c_{1}+c_{2}+2 c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Finish next time.

$$
\frac{\text { Math } 4570}{9 / 9 / 20}
$$

(Continued from last week)
Ex: Are these vectors lin, ind. or lin, dep, in \mathbb{R}^{3} ?

$$
v_{1}=(1,0,1), v_{2}=(-1,2,1), v_{3}=(0,2,2)
$$

Let's see if we can solve

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \text { We have } \\
& \qquad c_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
c_{1}-c_{2} & \\
& 2 c_{2}+2 c_{3} \\
c_{1}+c_{2}+2 c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
1 & 1 & 2 & 0
\end{array}\right) \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0
\end{array}\right) \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
p g \\
2
\end{array}\right. \\
& \rightarrow\left[\begin{array}{cc}
c_{1}-c_{2} & =0 \\
2 c_{2}+2 c_{3} & =0
\end{array} \leftarrow c_{1}=c_{2}=-c_{3}\right.
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& c_{1}=-t \\
& c_{2}=-t \\
& c_{3}=t
\end{aligned} \quad t \in \mathbb{R}
$$

So, $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0}$
has solutions

$$
\begin{aligned}
& \text { solutions } \\
& -t v_{1}-t v_{2}+t v_{3}=\overrightarrow{0}
\end{aligned}
$$

for any $t \in \mathbb{R}$.
So, $t=1$ gives $-v_{1}-v_{2}+v_{3}=\overrightarrow{0}$
The vectors are linearly dependent.
you have

$$
V_{3}=V_{1}+V_{2} \leftarrow\binom{" 1 \text { dependency" }}{\text { equation }}
$$

ie you can write one of the vectors as a linear combo of the other vectors

Ex: Let

$$
\begin{aligned}
& \text { Ex: Let } \\
& V=P_{2}(\mathbb{C})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{C}\right\} \\
& F=\mathbb{C}
\end{aligned}
$$

Are the following vectors lineally independent or dependent?

$$
\begin{aligned}
& v_{1}=1+2 x \\
& v_{2}=-i \\
& v_{3}=x \\
& v_{4}=5+i x^{2}
\end{aligned}
$$

Find the solutions to

$$
\begin{aligned}
& \text { Find the solutuas to } \\
& C_{1} V_{1}+C_{2} V_{2}+C_{3} V_{3}+C_{4} V_{4}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { That is } \\
& c_{1}(1+2 x)+c_{2}(-i)+c_{3}(x)+c_{4}\left(5+i x^{2}\right)= \\
& 0+O x+O x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { which becomes } \\
& \begin{array}{l}
c_{1}+2 c_{1} x-i c_{2}+c_{3} x+5 c_{4}+i c_{4} x^{2}= \\
0+0 x+0 x^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Which is } \\
& \left(c_{1}-i c_{2}+5 c_{4}\right)+\left(2 c_{1}+c_{3}\right) x+i c_{4} x^{2}= \\
& 0+0 x+0 x^{2}
\end{aligned}
$$

So,

$$
\begin{aligned}
c_{1}-i c_{2}++5 c_{4} & =0 \\
2 c_{1}+c_{3} & =0 \\
i c_{4} & =0
\end{aligned}
$$

Which is

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
1 & -i & 0 & 5 & 0 \\
2 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & i & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & -i & 0 & 5 & 0 \\
0 & 2 i & 1 & -10 & 0 \\
0 & 0 & 0 & i & 0
\end{array}\right) \\
& \begin{array}{l}
i^{2}=-1 \\
(-i)(i)=-i^{2}=1
\end{array} \\
& \begin{array}{c}
-i * R_{2} \rightarrow R_{2} \\
-i R_{3} \rightarrow R_{3}
\end{array}\left(\begin{array}{cccc|c}
1 & -i & 0 & 5 & 0 \\
0 & 2 & -i & 10 i & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& \begin{array}{c}
C_{1}-i c_{2} \\
2 c_{2}-i c_{3}+10 i c_{4}=0 \\
c_{4}=0
\end{array} \\
& \hline 5 c_{4}=0
\end{aligned}
$$

So, $V_{1}, V_{2}, V_{3}, V_{4}$ are lin. dep. Lpg 7 in $P_{2}(\mathbb{C})$.
$E x: V=\mathbb{R}^{2}, \quad F=\mathbb{R}$
Are these vectors lin. dep. or lin. ind.?

$$
V_{1}=(1,0), \quad V_{2}=(0,1)
$$

Consider $\quad c_{1}\binom{1}{0}+c_{2}\binom{0}{1}=\binom{0}{0}$.
Then, $\binom{c_{1}}{c_{2}}=\binom{0}{0}$.
So, $c_{1}=0$ \& $c_{2}=0$.
Thus, v_{1} and v_{2} are lin. independent.

Def: Let V be a vector space oven a field F. Let $V_{1}, V_{2}, \ldots, V_{n} \in V$. We say that $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V if
(1) $\operatorname{span}(\beta)=V$ and
(2) β is a linearly independent set of vectors

Ex: $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$

$$
\begin{aligned}
& =\left\{c_{1} v_{1}+c_{2} v_{2} \mid c_{1}, c_{2}\right. \\
& =\left\{\left.c_{1}\binom{1}{0}+c_{2}\binom{0}{1} \right\rvert\, c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left.\binom{c_{1}}{c_{2}} \right\rvert\, c_{1}, c_{2} \in \mathbb{R}\right\}=\mathbb{R}^{2}
\end{aligned}
$$

So, β spans \mathbb{R}^{2}.
Ex: $\binom{2}{-1}=2\binom{1}{0}-1\binom{0}{1}=2 v_{1}-v_{2}$
We already checked that β is a lineally independent set,
So, $\beta=\left\{\binom{1}{0},\binom{0}{1}\right\}$ is
a basis for $V=\mathbb{R}^{2}$ over $F=\mathbb{R}$

$$
E X_{:}: V=M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

$$
F=\mathbb{R}
$$

$$
\begin{aligned}
& F=\mathbb{R} \\
& V_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), V_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), V_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), V_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Let $\beta=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

Does β spun $M_{2,2}(\mathbb{R})$?
Yes. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2,2}(\mathbb{R})$.
Then

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) \\
& =a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& =a v_{1}+b v_{2}+c v_{3}+d v_{4}
\end{aligned}
$$

Is β a lin, ind, set?

$$
\left.\begin{array}{l}
c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+c_{2}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+c_{4}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\binom{0}{0} \\
0
\end{array}\right)
$$

Then $\quad\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
So, $c_{1}=c_{2}=c_{3}=c_{4}=0$ is the only
So, β is a lin, ind. set.
Thus, β is a basis for $M_{2,2}(\mathbb{R})$ over \mathbb{R}.

Theorem Let V be a vector space over a field F. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of V. Then β is a basis for V iff every vector $x \in V$ can be expressed uniquely in the form

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$ where $c_{1}, c_{2}, \ldots, c_{n} \in F$.

proof:
\Leftrightarrow Suppose β is a basis for V. Let $x \in V$.
Since β is a basis, β spans V, So, there exist $c_{1}, c_{2}, \ldots, c_{n} \in F$ where $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$
We want to now show that $c_{1}, c_{2}, \ldots, c_{n}$ are unique.

Suppose we also have

$$
\begin{align*}
& c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime} \in F \text { with } \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{n}^{\prime} v_{n}
\end{align*}
$$

Then $(*)-(* *)$ gives

$$
\begin{array}{r}
\overrightarrow{0}=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\ldots+ \\
\left(c_{n}-c_{n}^{\prime}\right) v_{n}
\end{array}
$$

Since β is a lin. ind. set of vectors,

$$
\begin{gathered}
c_{1}-c_{1}^{\prime}=0 \\
c_{2}-c_{2}^{\prime}=0 \\
\vdots \\
c_{n}-c_{n}^{\prime}=0
\end{gathered}
$$

So, $c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, \ldots, c_{n}=c_{n}^{\prime}$.
So, the expression is unique. (\Longleftrightarrow) next time

$$
\frac{\text { Math } 4570}{9 / 14 / 20}
$$

Continued from last time)
Theorem: Let V be a vector space over a field F. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of V. Then β is a basis for V iff every vector $x \in V$ can be written uniquely in the form $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ where $c_{1}, c_{2}, \ldots, c_{n} \in F$.
proof: (\nRightarrow) last time.
(\Leftrightarrow) Suppose every vector $x \in V$ can be written uniquely as $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ where $c_{i} \in V$.
This tells us that every $x \in V$ is in the span of β, So β spans V.

Why is β are lin. ind. set? (p gr Suppose we want to solve

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}
$$

We definitely have this solution:

$$
O v_{1}+O v_{2}+\cdots+O v_{n}=\vec{O}
$$

But by assumption, there a unique solution. So the only solution to $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}$ is $c_{1}=c_{2}=\cdots=c_{n}=0$.
Thus, $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a lineally independent set.
So, β is a basis for V.

Notation for the next Thu
Consider the system

$$
\left.\begin{array}{rl}
10 x_{1}-3 x_{2}+\frac{1}{3} x_{3} & =0 \\
5 x_{2}-x_{3} & =0 \\
-x_{1}+x_{2} & =0
\end{array}\right\}(*)
$$

Let

$$
\begin{aligned}
& A_{1}=\left(10,-3, \frac{1}{3}\right) \\
& A_{2}=(0,5,-1) \\
& A_{3}=(-1,1,0) \\
& x=\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Then equations $(*)$ can be written

$$
\left.\begin{array}{l}
\text { equations } \\
A_{1} \cdot X=\overrightarrow{0} \\
A_{2} \cdot X=\overrightarrow{0} \\
A_{3} \cdot X=\overrightarrow{0}
\end{array}\right\} \begin{gathered}
\text { same } \\
\text { as } \\
(*)
\end{gathered}
$$

Adding $\frac{1}{10} *$ row 1 to row 3 gives $\operatorname{pg~Y}$

$$
\begin{aligned}
10 x_{1}-3 x_{2}+\frac{1}{3} x_{3} & =0 \\
5 x_{2}-x_{3} & =0 \\
\frac{7}{10} x_{2}+\frac{1}{30} x_{3} & =0
\end{aligned}
$$

which can be represented by

$$
\begin{gathered}
A_{1} \cdot X=\overrightarrow{0} \\
A_{2} \cdot X=\overrightarrow{0} \\
\left(\frac{1}{10} A_{1}+A_{3}\right) \cdot X=\overrightarrow{0}
\end{gathered}
$$

Theorem: Let

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{11} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{gathered}
$$

be a system of m equations and n unknowns where $a_{i j} \in F$ for some field F. If $n>m$, then (*) has a non-trivial solution. [That is, there is a solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F^{n}$ with $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq \overrightarrow{0}$. $]$
proof: [We follow the proof from Lang, Intro. to Lineman Algebra, and edition, pg 68-69]

We induct on m [the \# of of $\left.\begin{array}{l}\text { equs }\end{array}\right]$. 96
Suppose $m=1$.
So, $n>m=1$. [ie $n \geqslant 2($ at least 2 variables $)]$
So our system (*) becomes

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0
$$

If $a_{11}=a_{12}=\cdots=a_{1 n}=0$ then we get a non-trivial solution by setting $x_{1}=x_{2}=\ldots=x_{n}=1$.
Suppose one of the coefficients is nt 0 .
Without loss of generality, assume $a_{11} \neq 0$.
Then the eqn $(*)$ is equivalent to

$$
x_{1}=-a_{11}^{-1}\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)
$$

set $x_{2}=x_{3}=\cdots=x_{n}=1$ and

$$
\begin{aligned}
& x_{2}=x_{3}+a_{11}\left(a_{12}+\cdots+a_{1 n}\right) \\
& x_{1}=-a_{11}
\end{aligned}
$$

This gives a nontrivial solution.
So the base case $m=1$ is true.
Induction hypothesis
Now assume that the theorem is true for any system of $m-1$ equations with more than mo unknowns.
Suppose we have a system (*) with m equations and n unknowns with $n>m>1$.

If all the $a_{i j}=0$ then set $x_{1}=x_{2}=\ldots=x_{n}=1$
is a nontrivial solution.
Now suppose some coefficient $a_{i j} \neq 0$. By renumbering the equations and variables we may assume $a_{11} \neq 0$.

Set

$$
\begin{gathered}
A_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right) \\
A_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right) \\
\vdots \\
A_{m}=\left(a_{n 1}, a_{n 2}, \ldots, a_{n n}\right) \\
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

Then $(*)$ is

$$
\begin{gathered}
A_{1} \cdot x=0 \\
A_{2} \cdot x=0 \\
\vdots \\
A_{m} \cdot x=0
\end{gathered}
$$

By subtracting a multiple of the first row and adding it to the rows below we can eliminate X_{1} in row 2 through row m.

That is, $(x \neq)$ is equivalent to

$$
\begin{gathered}
A_{1} \cdot X=0 \\
\left(A_{2}-a_{21} a_{11}^{-1} A_{1}\right) \cdot X=0 \\
\vdots \\
\left(A_{m}-a_{n 1} a_{11}^{-1} A_{1}\right) \cdot X=0
\end{gathered}
$$

The system

$$
\left(\begin{array}{c}
\left(A_{2}-a_{21} a_{11}^{-1} A_{1}\right) \cdot X=0 \\
\vdots \\
\left(A_{m}-a_{m 1} a_{11}^{-1} A_{1}\right) \cdot X=0
\end{array}\right.
$$

(***)
is a system with $m-1$ equations and $n-1>m-1$ unknowns. Thus, by the induction hypothesis we can find a non-triual solution $\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ to $\left(x_{k+1}\right)$

Now v sing this solution $\left(x_{2}, \ldots, x_{n}\right)$ to $(* * *)$
we can also solve $A_{1} \cdot X=0$ by setting

$$
x_{1}=-a_{11}^{-1}\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)
$$

$\left[\begin{array}{l}\text { Because the first eqn } A_{1} \cdot x=0 \\ \text { is } a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0\end{array}\right]$
Set $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from above.

We have $A_{1} \cdot X=0$.
And also, if $i \geqslant 2$ then

$$
A_{i} \cdot X \underset{(* * *)}{=} a_{i 1} a_{11}^{-1} \underbrace{A \cdot X}_{0}=0 .
$$

So we have solved $\quad \begin{aligned} & A_{1} \cdot x=0 \\ & A_{2} \cdot x=0\end{aligned} \quad$ with
$A_{2} \cdot x=0$ nontrivial
$A_{m}^{\prime} \cdot X=0$
solution

Theorem: Let V be a vector space over a field F.
Let $v_{1}, v_{2}, \ldots, v_{m} \in V$ where $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)$. Let $w_{1}, w_{2}, \ldots, w_{n} \in V$. If $n>m$, then $w_{1}, w_{2}, \ldots, w_{n}$ are linearly dependent.
proof: Since $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)$ we have that

$$
\begin{aligned}
& \text { e have that } \\
& w_{1}=a_{11} v_{1}+a_{21} v_{2}+\ldots+a_{m 1} v_{m} \\
& w_{2}=a_{12} v_{1}+a_{22} v_{2}+\cdots+a_{m 2} v_{m} \\
& \vdots \\
& w_{n}=a_{1 n} v_{1}+a_{2 n} v_{2}+\cdots+a_{m n} v_{m}
\end{aligned}
$$

where $a_{i j} \in F$.

For any $c_{1}, c_{2}, \ldots, c_{n} \in F$ we have

$$
\begin{aligned}
c_{1} w_{1} & +c_{2} w_{2}+\ldots+c_{n} w_{n} \\
= & \left(c_{1} a_{11}+c_{2} a_{12}+\ldots+c_{n} a_{1 n}\right) v_{1} \\
& +\ldots+ \\
& +\left(c_{1} a_{m 1}+c_{2} a_{m 2}+\ldots+c_{n} a_{m n}\right) v_{m}
\end{aligned}
$$

By the previous theorem, since $n>m$,

$$
\begin{gathered}
c_{1} a_{11}+c_{2} a_{12}+\cdots+c_{n} a_{1 n}=0 \\
\vdots \\
c_{1} a_{n 1}+c_{2} a_{n 2}+\cdots+c_{n} a_{n n}=0
\end{gathered}
$$

has a non-trivial solution $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq \overrightarrow{0}$. This solution will yield $c_{1} w_{1}+c_{2} \cdot w_{2}+\cdots+c_{n} w_{n}=0$ making $w_{1}, w_{2}, \ldots, w_{n}$ linear li dependent.

$$
\frac{\text { Math } 4570}{9 / 16 / 20}
$$

\qquad
\qquad
\qquad
\qquad f
(Continuation of HW 2 topics) pg
Last time: If $V=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{m}\right\}\right)$ and $w_{1}, w_{2}, \ldots, w_{n} \in V$. If $n>m$ then $W_{1}, W_{2}, \ldots 0, W_{n}$ are linearly dependent.
Corollary: Let V be a vector space over a field F. Suppose $\beta_{1}=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ and
$\beta_{2}=\left\{w_{1}, w_{2}, \ldots, w_{b}\right\}$ are both bases for V. Then, $a=b$.
proof: Since β_{1} is a basis for V, $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}\right)$. Since β_{2} is a basis, $\beta_{2}=\left\{w_{1}, w_{2}, \ldots, w_{b}\right\}$ are linearly independent. If $b>a$ then β_{2} would be a linearly dependent set. Which isn't the case. so, $b \leq a$.

Since β_{2} is a basis for V,

$$
V=\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{b}\right\}\right)
$$

Since β_{1} is a basis, $\beta_{1}=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ is a linearly independent set.
If $a>b$, then from the previous the B_{1} would be linearly dependent.
So, $a \leq b$.
Thus since $b \leq a$ and $a \leq b$, we have $a=b$.
Def: Let V be a vector space over a field F. We say that V is finite dimensional if it has a basis consisting of a finite number of elements. If v has a basis with n elements then we say that V has dimension n and write $\operatorname{dim}(V)=n$.

A special case is the when $V=\{\overrightarrow{0}\}$. This vector space has no basis.
We define $V=\{\overrightarrow{0}\}$ to have dimension zero, ie $\operatorname{dim}(\{\overrightarrow{0}\})=0$

Ex: Let F be a field and $V=F^{n}$ where $n \geqslant 1 . \quad F^{n}$ is a vector Then $\operatorname{dim}\left(F^{n}\right)=n$
proof: Let V_{i} be the vector with 1 in the i th spot and O's elsewhere. That is,

$$
\begin{aligned}
& 15, \\
& v_{1}=(1,0, \ldots, 0) \\
& v_{2}=(0,1, \ldots, 0) \\
& \vdots \\
& v_{n}=(0,0, \ldots, 1)
\end{aligned}
$$

Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
If we show β is a basis for V oven F, then $\operatorname{dim}(V)=n$.
β spans $F^{n}:$
Then $x=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ where $f_{i} \in F$.
Let $x \in F^{n}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
x= & \left(f_{1}, 0, \ldots, 0\right)
\end{aligned}+\left(0, f_{2}, \ldots, 0\right) \\
&+\ldots+\left(0,0, \ldots, f_{n}\right) \\
&= f_{1}(1,0, \ldots, 0)+f_{2}(0,1, \ldots, 0) \\
&+\cdots+f_{n}(0,0, \ldots, 1) \\
&= f_{1} v_{1}+f_{2} v_{2}+\ldots+f_{n} v_{n}
\end{aligned}
$$

So, $x \in \operatorname{Span}(\beta)$.
β is a linearly independent set.
Suppose

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0}
$$

where $c_{1}, c_{2}, \ldots, c_{n} \in F$.

$$
\begin{aligned}
c_{1}(1,0, \ldots, 0) & +c_{2}(0,1, \ldots, 0)+\ldots \\
\ldots & +c_{n}(0,0, \ldots, 1)=(0,0, \ldots, 0)
\end{aligned}
$$

So,

$$
\left(c_{1}, c_{2}, \ldots, c_{n}\right)=(0,0, \ldots, 0)
$$

Hence, $c_{1}=0, c_{2}=0, \ldots, c_{n}=0$.
So, β is a linearly independent set.

Ex: \mathbb{R}^{n} is a vector space oven \mathbb{R} with $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Ex: Let $F=\mathbb{R}$ or $F=\mathbb{C} . \left\lvert\, \begin{gathered}\mathrm{pg} \\ 6\end{gathered}\right.$

$$
P_{n}(F)=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in F\right\}
$$

One can show that

$$
\begin{aligned}
& v_{0}=1 \\
& v_{1}=x \\
& v_{2}=x^{2} \\
& \vdots \\
& v_{n}=x^{n}
\end{aligned}
$$

is a basis for $P_{n}(F)$ oven F.

So,

$$
\operatorname{dim}\left(P_{n}(F)\right)=n+1
$$

Ex: Let F be a field and $1 P g$ $V=M_{m, n}(F)$ be the
set of $m \times n$ matrices with entries from F.

$$
\left.M_{3,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in \mathbb{R}\right\}\right\}
$$

basis for $M_{3,2}(\mathbb{R})$ over \mathbb{R} is:

$$
\begin{aligned}
& \text { basis for } M_{3,2}(\mathbb{R}) \text { over } \mathbb{R} \text { is : } \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

So, $\operatorname{dim}\left(M_{3,2}(\mathbb{R})\right)=6$

In general,

$$
\begin{aligned}
& \text { general, } \\
& \operatorname{dim}\left(M_{m, n}(F)\right)=m \cdot n
\end{aligned}
$$

Theorem: Let V be a vector space over a field F. Suppose $\operatorname{dim}(V)=n>0$. Then:
(1) Let $v_{1}, v_{2}, \ldots, V_{n} \in V$.
(a) If $m>n$, then $v_{1}, v_{2}, \ldots, v_{m}$ are linearly dependent.
(b) If $m<n$, then $v_{1}, v_{2}, \ldots, v_{m}$ do not span V.
(c) If $m=n$ and $v_{1}, v_{2}, \ldots, v_{m}$ span V, then $v_{1}, v_{2}, \ldots, v_{m}$ is a linemly independent set and hence is a basis for V.
(d) If $m=n$ and $V_{1}, v_{2}, \ldots, V_{m}$ are linearly inclependent, then $V_{1}, V_{2}, \ldots, V_{m}$ span V and hence are a basis for V.
(2) Let W be a subspace $\begin{gathered}p g \\ \end{gathered}$ of V. Then W is finite $\operatorname{dimensional}$ and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, $\operatorname{dim}(W)=\operatorname{dim}(V)$ iff $V=W$.

proof: Let V be an n dimensional vector space oven F. Let $V_{1}, V_{2}, \ldots, V_{n} \in V$.
(a) Suppose $m>n$.

Since V is spanned by n vectors, by the thm from monday $V_{1}, v_{2}, \ldots, V_{m}$ are lin, dep. since $m>n$.
(b) Suppose $m<n$,

Let's show $V_{1}, V_{2}, \ldots, V_{n}$ do not span V.
Suppose they did, that is suppose

$$
V=\operatorname{span}\left(\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}\right)
$$

Then any set of n vectors must be lineally dependent from Monday's theorem. [Since $m<n$].
But V has a basis of size n, which consists of n lin. ind. vectors.
Contradiction.
So, $V_{1}, V_{2}, \ldots, V_{m}$ do not span V.
(c) Suppose $m=n$ and

$$
\beta=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\} \text { spans } V \text {, }
$$

We want to show β is a lin. ind, set.
By a HW problem, there is? a subset β^{\prime} of β where β^{\prime} is a basis for V.

HF 2
\#7(b) Suppose $V \neq\left\{\begin{array}{l}+ \\ 0\end{array}\right\}$ is spanned by some finite set S. Prove that some subset of S is a basis for V.
But since $\operatorname{dim}(V)=n$, the size of β^{\prime} is n.
So, $\beta^{\prime}=\beta^{\prime}$.
Thus, β is a linearly independent set.
(d) Suppose $m=n$ and
$V_{1}, V_{2}, \ldots, V_{m}$ are linearly independent
We want to show $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$
Let $W=\operatorname{span}\left(\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}\right)$.
Let's show $W=V$.
We know $W \subseteq V$.
Let's show $V \subseteq W$.
Let $v \in V$.

Since $\operatorname{dim}(V)=n=m$ and $V_{1}, V_{2}, \ldots, V_{m}, V$ are $m+1=n+1$ vectors, by part (a) $V_{1}, V_{2}, \ldots, V_{n}, V$ are linearly dependent. So there exists $C_{1}, c_{2}, \ldots, c_{m}, c \in F_{\text {, }}$ not all zero, with

$$
\begin{aligned}
& \text { ot all zero, with } \\
& C_{1} v_{1}+C_{2} v_{2}+\ldots+C_{m} v_{m}+c v=\overrightarrow{0}
\end{aligned}
$$

If $c_{1}=0$, then $c_{1} v_{1}+\cdots+c_{m} v_{m}=\overrightarrow{0}$ with $c_{1}, c_{2}, \ldots, c_{m} n_{0}+$ all zero, th is cant happen because $V_{1}, v_{2}, \ldots, V_{m}$ win in

So, $c \neq 0$,
Thus,

$$
V=-C^{-1} C_{1} V_{1}-C^{-1} C_{2} V_{2}-\ldots-C^{-1} C_{m} V_{m}
$$

So,

$$
\begin{aligned}
& S_{0}, \\
& V \in \operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, V_{m}\right\}\right)=W . \\
& V=W .
\end{aligned}
$$

Thus, $V \leq W$ and $V=W$.
(2) Next time

$$
\frac{\text { Math } 4570}{9 / 21 / 20}
$$

Continuation of
Theorem from last time
Let V be a vector space oven a field F. Suppose $\operatorname{dim}(V)=n>0$.
(1) (with 4 parts that we proved)
(2) Let W be a subspace of V, Then W is finite-dimensional and $\operatorname{dim}(w) \leq \operatorname{dim}(v)$.
Moreover, $\operatorname{dim}(w)=\operatorname{dim}(V)$
iff $W=V$.
proof of (2):
Let's first show that W is finite dimensional and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$.
If $\omega=\{\overrightarrow{0}\}$, then ω is finitedimensional with

$$
\operatorname{dim}(W)=0<n=\operatorname{dim}(V)
$$

Suppose $\operatorname{dim}(\omega) \geqslant 1$.
Then there exists a non-zero vector $x_{1} \in W$ where $\left\{x_{1}\right\}$ is a linearly independent set.
Continue adding vectors from W to this set such that at each stage k, the vectors $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ are linearly indepen dent.
Since $W \subseteq V$ and $\operatorname{dim}(V)=n$, by pant (a) of this theorem there must reach a stage $k_{0} \leqslant n$ where $S_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k_{0}}\right\}$ is linearly independent but adding any new vector from W to So will yield a linearly dependent set.

HoW 2 Fa) Let s be a finite set of linearly independent vectors from V and let $x \in V$ where $x \notin S$. Then $S \cup\{x\}$ is linearly dependent inf $x \in \operatorname{span}(S)$.

Let $x \in W$.
If $x \in S_{0}$, then $x \in \operatorname{span}\left(S_{0}\right)$.
If $x \notin S_{0}$, then by the construction of S_{0}, we have $S_{0} \cup\{x\}$
is linearly dependent.
So, by HW $27(a)$, in this case $x \in \operatorname{span}\left(S_{0}\right)$.
Thus, $W=\operatorname{span}$ (So).
And S_{0} is a lin ind. set, so is a bor w.

$$
\begin{aligned}
& \text { And } S_{0} \text { is a lin nd. } \\
& \text { so, } \operatorname{dim}(W)=k_{0} \leq n=\operatorname{dim}(V) \text {. }
\end{aligned}
$$

Now for this part:

$$
\operatorname{dim}(w)=\operatorname{dim}(V) \text { iff } V=W \text {. }
$$

If $V=W$, then $\operatorname{dim}(W)=\operatorname{din}(V)$.
\Leftrightarrow Suppose now that

$$
\operatorname{dim}(w)=\operatorname{dim}(V)
$$

Then W has a basis with

$$
\begin{aligned}
& \text { bus is with } \\
& n=\operatorname{dim}(w)=\operatorname{dim}(v)
\end{aligned}
$$

elements, call

$$
\text { it } \beta=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\} \text {. }
$$

By pact $1(d)$ since β is a set of $n=\operatorname{dim}(V)$ lin, ind. vectors, β must span V and hence be a basis for V.
So, $W=\operatorname{span}(\beta)=V$.

Linear Transformations

Def: Let V and W be vector spaces $\overline{\text { over a field } F \text {. Let } T: V \rightarrow W}$ be a function between them. We say that that T is a linear transformation if for all $v_{1}, v_{2} \in V$ and $\alpha \in F$ we have that
(1) $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$
and
(2) $T\left(\alpha v_{1}\right)=\alpha T\left(v_{1}\right)$

Can combine (1) \& (2) into one formula

$$
\begin{aligned}
& \text { combine (1) \& (2) into one } T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right) \\
& T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} T\left(v_{\text {se }}\right. \text { for all }
\end{aligned}
$$

which must be true for all $V_{1}, V_{2} \in V$ and $\alpha_{1}, \alpha_{2} \in F$

(def continued)
We define the nullspace (or kernel) of T to be $N(T)=\left\{x \in V \mid T(x)=\overrightarrow{O_{\omega}}\right\}$ Where ${\overrightarrow{O_{D}}}_{w}$ is the zero vector of W.
We define the range (or image) of T to be $R(T)=\{T(x) \mid x \in V\}$

We will show later that $N(y)$ is a subspace of V and $R(T)$ is a subspace of ω.

If $N(T)$ is finite-dimensional then we call the dimension of $N(T)$ the nullity of T and write nullity $(T)=\operatorname{dim}(N(T))$.

If $R(T)$ is finite-dimensional then we call the dimension of $R(T)$ the rank of T and write $\operatorname{rank(T)}=\operatorname{dim}(R(T))$.

Ex: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
be defined by $T(x, y, z)=(x, y)$
Here $V=\mathbb{R}^{3}$ and $\omega=\mathbb{R}^{2}$
and $F=\mathbb{R}$
T is linear: Let $v_{1}, v_{2} \in \mathbb{R}^{3}$.
So, $v_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}, z_{2}\right)$.
Let $\alpha \in \mathbb{R}$. Then:
(1)

$$
\begin{aligned}
T\left(v_{1}+v_{2}\right) & =T\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \\
& =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& =\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) \\
& =T\left(x_{1}, y_{1}, z_{1}\right)+T\left(x_{2}, y_{2}, z_{2}\right) \\
& =T\left(v_{1}\right)+T\left(v_{2}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
T\left(\alpha v_{1}\right) & =T\left(\alpha x_{1}, \alpha y_{1}, \alpha z_{1}\right) \\
& =\left(\alpha x_{1}, \alpha y_{1}\right)=\alpha\left(x_{1}, y_{1}\right) \\
& =\alpha T\left(x_{1}, y_{1}, z_{1}\right)=\alpha T\left(v_{1}\right)
\end{aligned}
$$

So, b_{y} (1)\& (2) T is a linear transformer.

Nullspace of T :

$$
\begin{aligned}
N(T) & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid T(x, y, z)=(0,0)\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y)=(0,0)\right\} \\
& =\{(0,0, z) \mid z \in \mathbb{R}\} \\
& =\{z(0,0,1) \mid z \in \mathbb{R}\}=\operatorname{span}(\{(0,0,1)\})
\end{aligned}
$$

Let $\beta=\{(0,0,1)\}$. Then, $\operatorname{span}(\beta)=N(T)$,
Also, β is a lin. ind. set since it consists of one non-zen vector.
so, β is a basis for $N(T)$.

Range of T

$$
\begin{aligned}
R(T) & =\left\{T(x, y, z) \mid(x, y, z) \in \mathbb{R}^{3}\right\} \\
& =\left\{(x, y) \mid(x, y, z) \in \mathbb{R}^{3}\right\} \\
& =\{(x, y) \mid x, y \in \mathbb{R}\}=\mathbb{R}^{2} \\
& =\{x(1,0)+y(0,1) \mid x, y \in \mathbb{R}\} \text { side } \\
& =\operatorname{span}(\{(1,0),(0,1)\})
\end{aligned}
$$

\mathbb{R}^{2}

$$
\frac{\text { Math } 4570}{9 / 23 / 20}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Ex: Let
be defined by $T(f)=f^{\prime}$ where f^{\prime} is the usual derivative of f.

Let $f_{1}, f_{2} \in P_{n}(\mathbb{R})$ and $\alpha \in \mathbb{R}$.

$$
\begin{aligned}
& \text { Then } \\
& T\left(f_{1}+f_{2}\right)=\left(f_{1}+f_{2}\right)^{\prime}=f_{1}^{\prime}+f_{2}^{\prime}=T\left(f_{1}\right)+T\left(f_{2}\right) \\
& \text { derivative }
\end{aligned}
$$

derivative
property
and

So, T is a linear transformation.

Nullspace of T :

$$
\left.\begin{array}{rl}
& N(T)= \\
= & \left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in P_{n}(\mathbb{R}) \mid T\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)\right. \\
=0
\end{array}\right\}, \begin{gathered}
\\
=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in P_{n}(\mathbb{R}) \mid a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}=0\right\} \\
=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in P_{n}(\mathbb{R}) \mid a_{1}=a_{2}=\cdots=a_{n}=0\right\} \\
=\left\{a_{0} \mid a_{0} \in \mathbb{R}\right\} \quad \text { all the constant } \\
=\left\{a_{0} \cdot 1 \mid a_{0} \in \mathbb{R}\right\} \quad \text { polynomials } \\
=\operatorname{span}(\{1\})
\end{gathered}
$$

So, a basis for $N(T)$ is $\beta=\{1\}$.
So, nullity $(T)=\operatorname{dim}(N(T))=1$
Recall a basis for $P_{n}(\mathbb{R})$ is $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ so $\operatorname{dim}(\ln (\mathbb{R}))=n+1$

Range of T :

We claim that $R(T)=P_{n-1}(\mathbb{R})$.
That is T is onto $P_{n-1}(\mathbb{R})$.
Let $a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \in P_{n-1}(\mathbb{R})$.
Then $a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+\frac{a_{n-1}}{n} x^{n} \in P_{n}(\mathbb{R})$
and $T\left(a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+\frac{a_{n-1}}{n} x^{n}\right)$

$$
\begin{aligned}
& T\left(a_{0} x+\frac{1}{2} x+a_{n-1} x^{n-1}\right. \\
= & a_{0}+a_{1} x+\cdots \quad r a n k(T)=\operatorname{dim}(R
\end{aligned}
$$

So, T is onto. $\begin{aligned} & \operatorname{rank}(T)=\operatorname{dim}(R(T)) \\ & =\operatorname{dim}\left(P_{n-1}(\mathbb{R})\right)\end{aligned}$
$=\lim _{n-1)+1=n}^{n-1}$
$=n$

Notice that

$$
\begin{aligned}
& \underbrace{\operatorname{dim}\left(P_{n}(\mathbb{R})\right)}_{\begin{array}{c}
\text { dimension } \\
\text { of domain }
\end{array}}=1+n \\
&=\operatorname{dim}(N(T))+\operatorname{dim}(R(T)) \\
&
\end{aligned}
$$

Theorem: Let V and W be vector spaces over a field F. Let \vec{O}_{v} and \vec{O}_{w} be the zero vectors of V and W respectively. Let $T: V \rightarrow W$ be a function.
(1) If T is a linear transformation Then: then $T\left(\overrightarrow{0}_{v}\right)=\vec{O}_{w}$.
(2) T is a linear transformation iff $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in F$,
(3) T is a linear transformation $T\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right)=a_{1} T\left(x_{1}\right)+a_{2} T\left(x_{2}\right) T\left(a_{n} T\left(x_{n}\right)\right.$
$+\ldots, x_{n} \in V$ $x_{1}, x_{2}, \ldots, x_{n} \in v$
and $a_{1}, a_{2}, \ldots, a_{n} \in F$.

Matrix multiplication is a linear transformation. (Why?)

Def: Let F be a field.
Let A be an $m \times n$ matrix with
coefficients from F. $\left[i e, A \in M_{m, n}(F)\right]$
We can construct a linear transformation
$L_{A}: F^{n} \rightarrow F^{m}$ where $L_{A}(x)=A x$
for any $x \in F^{n}$. Here $A x$ is matrix multiplication.
L_{A} is called the left-multiplication by A transformation.
Note: L_{A} is a linear transformation because if $\alpha, \beta \in F$ and $x, y \in F^{n}$ then

$$
\begin{aligned}
& \text { because } \\
& L_{A}(\alpha x+\beta y)=A(\alpha x+\beta y) \\
&=A(\alpha x)+A(\beta y) \\
&=\alpha A x+\beta A y \\
&=\alpha L_{A}(x)+\beta L_{A}(y)
\end{aligned}
$$

Ex: $F=\mathbb{C}$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & i & 2 i \\
0 & -1 & -3 i
\end{array}\right) \in M_{2,3}(\mathbb{C}) \\
& L_{A}: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{2} \\
& L_{A}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{ccc}
1 & i & 2 i \\
0 & -1 & -3 i
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}
$$

for example

$$
\begin{aligned}
& \text { for example } \\
& \begin{aligned}
& L_{A}\left(\begin{array}{c}
i \\
0 \\
2 i
\end{array}\right)=\left(\begin{array}{cc}
1 & i \\
0 i \\
0 & -1 \\
-3 i
\end{array}\right)\left(\begin{array}{c}
i \\
0 \\
2 i
\end{array}\right) \quad 4 i^{2}=-4 \\
&=\binom{(1)(i)+(i)(0)+(2 i)(2 i)}{(0)(i)+(-1)(0)+(-3 i)(2 i)} \\
&-6 i^{2}=6
\end{aligned} \\
& i^{2}=-1
\end{aligned}=\binom{-4+i}{6} .
$$

Theorem: Let V and W be vector spaces oven a field F. Let $T: V \rightarrow W$ be a linear transformation.
Then
(1) $N(T)$ is subspace of V and
(2) $R(T)$ is a subspace of W

proof: Let \vec{O}_{V} and \vec{O}_{w} be the zero vectors of V and W.
(1) Recall $N(T)=\left\{x \in V \mid T(x)=\vec{O}_{w}\right\}$.
(a) From a previous theorem $(H W)$,

$$
\begin{aligned}
& \text { From a previous theorem }\left(\vec{O}_{w}\right) \\
& T\left(\vec{O}_{v}\right)=\vec{O}_{w} \text {. So, } \vec{O}_{v} \in N(T) \text {. }
\end{aligned}
$$

(b) Let $x, y \in N(T)$.

Then $T(x)=\vec{O}_{w}$ and $T(y)=\vec{O}_{w}$.
So,

$$
\begin{aligned}
& T(x)=O_{w} \text { and } \\
& T(x+y)=T(x)+T(y)=\vec{O}_{w}+\vec{O}_{w} \\
&=\vec{O}_{w} .
\end{aligned}
$$

Since $T(x+y)=\vec{O}_{\omega}$ we have $x+y \in N(T)$.
(c) Let $x \in N(T)$ and $\alpha \in F$,

Then $T(x)=\vec{O}_{w} \&$ since $x \in N(T)$
Then $T(\alpha x)=\alpha T(x)=\alpha \vec{O}_{\omega}=\vec{O}_{\omega}$.
T is linear.
So, $\alpha x \in N(T)$.

By $(a),(b),(c), N(t)$ is a subspace pg 9 ob V.
(2) Recall that

$$
\begin{aligned}
& \text { Recall that } \\
& R(T)=\{T(x) \mid x \in V\} .
\end{aligned}
$$

(a) We have that $\vec{O}_{w}=T\left(\vec{O}_{v}\right) \in R(T)$,

something in R(T)
(b) Let $x, y \in R(T)$.

So there exist $a, b \in V$ where
$T(a)=x$ and $T(b)=y$
Because T is linear

$$
\begin{aligned}
& \text { Because } \\
& x+y=T(a)+T(b) \\
&=T(a+b) \in R(T)
\end{aligned}
$$

So, $x+y \in R(T)$.

(c) Let $x \in R(T)$ and $\alpha \in F . \quad$ pg 10

Since $x \in R(T)$
there exists
$a \in V$ with

$$
T(a)=X \text {. }
$$

Since T is linear

$$
\begin{aligned}
\alpha x & =\alpha T(a) \\
& =T(\alpha a) \in R(T) .
\end{aligned}
$$

So, $\alpha x \in R(T)$.
By parts (a), (b), (c), $R(T)$
is a subspace of W.

$$
\frac{\text { Math } 4570}{9 / 28 / 20}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Today we will prove the rank/nullity theorem. First we need some tools.

Lemma: Let V and W be vector spaces oven a field F.
Let $T: V \rightarrow W$ be a linear transformation,
If $v_{1}, v_{2}, \ldots, v_{n} \in V$ and $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$
then $R(T)=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(V_{2}\right), \ldots, T\left(V_{n}\right)\right\}\right)$.

proof: (HW problem). Let $y \in R(T)$ By def of $R(T)$, there exists $x \in V$ with $T(x)=y$.

Since $V=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$ and $x \in V \left\lvert\, \begin{gathered}p g \\ 2\end{gathered}\right.$ we can write $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F_{1}$
Applying T we get

$$
\begin{aligned}
y=T(x) & =T\left(\alpha_{1} v_{1}+\alpha_{2} v_{1}+\cdots+\alpha_{n} v_{n}\right) \\
& =\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)+\ldots+ \\
& \alpha_{n} T\left(v_{1}\right) .
\end{aligned}
$$

So, $y \in \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right)$.
So, $R(T)=\operatorname{spun}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right)$.

Rank -Nullity Theorem
Let V and W be vector spaces oven a field F. Let $T: V \rightarrow W$ be a linear transformation.
If V is finite-dimensional, then

$$
\operatorname{dim}(V)=\underbrace{\operatorname{nullity}(T)}_{\operatorname{dim}(N(T))}+\underbrace{\operatorname{rank}(T)}_{\operatorname{dim}(R(T))}
$$

proof: Let $n=\operatorname{dim}(V)$.
Since $N(T)$ is a subspace of V, we must have that $N(T)$ is also finite dimensional.
Let $k=\operatorname{dim}(N(T))$,
Then $k \leq n$.
Let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a basis for $N(T)$.
Let \vec{O}_{v} and \vec{O}_{w} be the zero vectors of V and W.
Case 1: Suppose $\operatorname{din}(R(T))=0$
Then $R(T)=\left\{\vec{o}_{w}\right\}$.
Then every $x \in V \rightarrow$ satisfies $T(x)=\vec{O}_{\omega}$
So, $N(T)=V$.
So,

$$
\begin{aligned}
\operatorname{dim}(V)= & \operatorname{dim}(N(T))+0 \\
= & \operatorname{dim}(N(T)) \\
& +\operatorname{dim}(R(T))
\end{aligned}
$$

case 2: Suppose $\operatorname{dim}(R(T)) \geqslant 1$
So there exists some non-zero vector in $R(T)$ and thus $N(T) \neq V$.
By HW2 \#9 we can extend the basis from $N(T)$ to all of V,
That is there exist

$$
\begin{aligned}
& \text { hat is there exist } \\
& V_{k+1}, V_{k+2}, \ldots, V_{n} \in V-N(T)
\end{aligned}
$$

$$
\beta=\{\underbrace{V_{1}, V_{2}, \ldots, V_{k}}, \underbrace{\left.V_{k+1}, V_{k+2}, \ldots, V_{n}\right\}}_{\text {not in } N(T)}
$$

where
is a basis for V.

We will show that

$$
\beta^{\prime}=\left\{T\left(V_{k+1}\right), T\left(V_{k+2}\right), \ldots, T\left(V_{n}\right)\right\}
$$

is a basis for $R(T)$.
Once that's done we've proven the thm since then

$$
\begin{aligned}
\operatorname{dim}(V)=n & =k+(n-k) \\
& =\operatorname{dim}(N(T))+\operatorname{dim}(R(T))
\end{aligned}
$$

By the previous theorem, since β spans V, we know that

$$
\begin{array}{r}
\beta \text { spans } \quad \begin{array}{r}
R(\boldsymbol{T})= \\
=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(V_{k}\right),\right.\right. \\
\left.\left.T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots T\left(v_{n}\right)\right\}\right) \\
= \\
\operatorname{span}\left(\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots, T\left(v_{n}\right)\right\}\right)
\end{array}
\end{array}
$$

since $T\left(v_{1}\right)=T\left(v_{2}\right)=\cdots=T\left(v_{k}\right)=\vec{O}_{\omega}$
So, β^{\prime} spans $R(T)$,

We just need to show β^{\prime} is a linearly independent set.

Suppose

$$
\begin{aligned}
& \text { Suppose } \\
& \alpha_{k+1} T\left(V_{k+1}\right)+\alpha_{k+2} T\left(V_{k+2}\right)+\cdots+\alpha_{n} T\left(V_{1}\right)=\overrightarrow{0_{w}}
\end{aligned}
$$

where $\alpha_{k+1}, \alpha_{k+2}, \ldots, \alpha_{n} \in F$.
Since T is linear we get

$$
\begin{aligned}
& \text { Since } T \text { is linear we get } \\
& T\left(\alpha_{k+1} V_{k+1}+\alpha_{k+2} V_{k+2}+\cdots+\alpha_{n} V_{n}\right)=\overrightarrow{0}_{w}
\end{aligned}
$$

So, $\alpha_{k+1} V_{k+1}+\alpha_{k+2} V_{k+2}+\ldots+\alpha_{n} V_{n} \in N(T)$.
Since $N(T)=\operatorname{span}\left(\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}\right)$ we have

$$
\alpha_{k+1} V_{k+1}+\cdots+\alpha_{n} V_{n}=\alpha_{1} V_{1}+\alpha_{2} V_{2}+\cdots+\alpha_{k} V_{k}
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k} \in F$.

$$
\text { So, } v_{1} v_{1}-\alpha_{2} v_{2}-\ldots-\alpha_{k} v_{k}+\alpha_{k+1} v_{k+1}+\ldots+\alpha_{n} v_{n}=\overrightarrow{0}_{v}
$$

So,
But $\beta=\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is a
basis for V, so $O=\left(-\alpha_{1}\right)=\left(-\alpha_{2}\right)=\cdots=\left(-\alpha_{k}\right)$

$$
=\alpha_{k+1}=\alpha_{k+2}=\cdots=\alpha_{n}
$$

So, $\beta^{\prime}=\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots, T\left(v_{1}\right)\right\}$
is a lin. ind. set.
Thus, β^{\prime} is a basis for $R(T)$.
So, the the is proved.

Recall:
Suppose $f: A \rightarrow B$ is $1-1$ and onto where A and B are sets. Then $f^{-1}: B \rightarrow A$ is defined by $f^{-1}(b)=a \quad$ iff $f(a)=b$

Thm: Let V and W be vector spaces over a field F. Let
$T: V \rightarrow W$ be a $1-1$ and onto linear trans formation.
Then $T^{-1}: W \rightarrow V$ is also a linear trans formation.
proof: Let $\alpha_{1}, \alpha_{2} \in F$ and
$\omega_{1}, \omega_{2} \in W$. We will show

$$
\begin{aligned}
& J_{1}, \omega_{2} \in W \text {. We will show } \\
& T^{-1}\left(\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}\right)=\alpha_{1} T^{-1}\left(\omega_{1}\right)+\alpha_{2} T\left(\omega_{2}\right)
\end{aligned}
$$

This will show T^{-1} is linear.
Since T is onto there exists $V_{1}, V_{2} \in V$ where $T\left(v_{1}\right)=w_{1}$ and

$T\left(v_{2}\right)=w_{2}$, By def of T^{-1} this means $T^{-1}\left(w_{1}\right)=v_{1}$ and $T^{-1}\left(w_{2}\right)=v_{2}$

Thus,

$$
\begin{aligned}
& T^{-1}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) \\
& \quad=T^{-1}\left(\alpha_{1} T\left(v_{1}\right)+\alpha_{2} T\left(v_{2}\right)\right) \\
& \quad=T^{-1}\left(T\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)\right)
\end{aligned}
$$

T is
linear

$$
\begin{aligned}
& \overline{\bar{\uparrow}} \alpha_{1} v_{1}+\alpha_{2} v_{2} \\
& \left(T^{-1} \circ T\right)(x)=x
\end{aligned}=\alpha_{1} T^{-1}\left(w_{1}\right)+\alpha_{2} T^{-1}\left(w_{2}\right)
$$

for all $x \in V$
So, T^{-1} is linear.

Math 4570

$$
9 / 30 / 20
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Test 1 will cover
HW 1 and HW 2

Def: Let V and W be vector spaces oven a field F,
(1) An isomorphism between V and W is a linear transformation $T: V \rightarrow W$ that is $1-1$ and onto.

(2) We say that V and W are isomorphic, and write $V \cong W$, if there exists an isomorphism T between them.

This def is well-defined since if $T: V \rightarrow W$ is an isomorphism, then by Monday's thereon $T^{-1}: W \rightarrow V$ is also an isomorphism.
That is, if $V \cong W$ by $T: V \rightarrow W$ then $W \cong V$ by $T^{-1}: W \rightarrow V$.

Theorem: Let V and W be vector spaces over a field F. Suppose that V is finite-dimensional and $\beta=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ is a basis for V.
part 1 Let $w_{1}, w_{2}, \ldots, w_{n} \in W$.
(1) There exists a unique linear transformation
$T: V \rightarrow W$ where $T\left(V_{i}\right)=w_{i}$ for $\bar{i}=1,2, \ldots, n$

this unique lineman transformation is given by the formula

$$
\begin{aligned}
& \text { given by the form } \\
& T\left(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}\right) \\
& \left.=c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{n} w_{n}\right]
\end{aligned}
$$

(2) T giver above is an isomorphism inf $\beta^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a basis for W.
part 2
All linear transformations between V and W are constructed as in
(1) above. That is, if $L: V \rightarrow W$ is a linear transformation, set

$$
u_{i}=L\left(v_{i}\right) \text { for } i=1,2, \ldots, n
$$

and then the formula for L is

$$
\begin{aligned}
& L\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& =c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{n} u_{n}
\end{aligned}
$$

proof: part 1
(1) Let T be defined by $(*)$.

That is,

$$
T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=c_{1} w_{1}+\cdots+c_{n} w_{n}
$$

for any $c_{i} \in F_{\text {, }}$,
Let's show T is a linear transformation and $T\left(V_{i}\right)=w_{i}$ for all i.

Why is T linear?
Let $x, y \in V$ and $\alpha, \delta \in F$.
Since β is a basis for V, we can write $x=e_{1} v_{1}+\cdots+e_{n} v_{n}$ and $y=d_{1} v_{1}+\ldots+d_{n} v_{n}$ where $e_{i}, d_{i} \in F_{1}$ Then,

$$
\begin{aligned}
& T(\alpha x+\delta y) \\
= & T\left(\alpha\left(e_{1} v_{1}+\cdots+e_{n} v_{n}\right)+\delta\left(d_{1} v_{1}+\ldots+d_{n} v_{n}\right)\right) \\
= & T\left(\left(\alpha e_{1}+\delta d_{1}\right) v_{1}+\cdots+\left(\alpha e_{n}+\delta d_{n}\right) v_{n}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =T\left(\left(\alpha e_{1}+\delta d_{1}\right) v_{1}+\cdots+\left(\alpha e_{n}+\delta d_{n}\right) v_{n}\right) \\
& \stackrel{(*)}{=}\left(\alpha e_{1}+\delta d_{1}\right) w_{1}+\cdots+\left(\alpha e_{n}+\delta d_{n}\right) w_{n} \\
& =\alpha e_{1} w_{1}+\cdots+\alpha e_{n} w_{n} \\
& +\delta d_{1} w_{1}+\cdots+\delta d_{n} w_{n} \\
& =\alpha\left(e_{1} w_{1}+\cdots+e_{n} w_{n}\right) \\
& +\delta\left(d_{1} w_{1}+\cdots+d_{n} w_{n}\right) \\
& \stackrel{(*)}{=} \alpha T\left(e_{1} v_{1}+\cdots+e_{n} v_{n}\right) \\
& \\
& +\delta T\left(d_{1} v_{1}+\cdots+d_{n} v_{n}\right) \\
& = \\
& =\alpha T(x)+\delta T(y) .
\end{aligned}
$$

So, T is linear.

$$
\begin{aligned}
& A\left(s_{0},\right. \\
& T\left(v_{1}\right)=T\left(1 \cdot v_{1}+0 \cdot v_{2}+\cdots+0 \cdot v_{n}\right)=1 \cdot w_{1}=w_{1} \\
& \vdots \\
& T\left(v_{n}\right)=T\left(0 \cdot v_{1}+0 \cdot v_{2}+\cdots+1 \cdot v_{n}\right)=1 \cdot w_{n}=w_{n}
\end{aligned}
$$

So, $T\left(V_{i}\right)=w_{i}$ for all i.

Why is T unique?
Suppose $S: V \rightarrow W$ is another linear trans formation with $S\left(V_{i}\right)=w_{i}$ for $i=1,2, \ldots, n$.
Let $x \in V$.
Then, since β is a basis for V,

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { And, } \\
& S(x)=S\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& =c_{1} S\left(v_{1}\right)+c_{2} S\left(v_{2}\right)+\cdots+c_{n} S\left(v_{n}\right) \\
& S \text { sis }=c_{1} w_{1}+c_{2} v_{2}+\ldots+c_{n} w_{n} \\
& \text { linear } \\
& =T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& S\left(v_{n}\right)=w_{i}=T(x) \\
& \quad S=T \text { on } V_{1}
\end{aligned}
$$

And,

So, $S=T$ on V. So, T is the unique linear transf. with $T\left(v_{i}\right)=w_{i} \forall i$
(2) T defined by (x) is an isomorphism iff $\beta^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a basis for W.
(\Leftarrow) Suppose β^{\prime} is a basis for W, Let's show that T defined by $(*)$ is 1-1 and onto, and hence an isomorphism $1-1$: Suppose $T(x)=T(y)$ for some $x, y \in V$.
Since β is a basis for V,

$$
\begin{aligned}
& \text { ince } \beta \text { is a basis } \\
& x=c_{1} v_{1}+\cdots+c_{n} v_{n} \text { and } y=d_{1} v_{1}+\cdots+d_{n} v_{n}
\end{aligned}
$$

for $c_{i}, d_{i} \in F$.
Since $T(x)=T(y)$, by def of T, we have

$$
\begin{aligned}
& \underbrace{c_{1} w_{1}+\ldots+c_{n} w_{n}}_{T(x)}=\underbrace{d_{1} w_{1}+\cdots+d_{n} w_{n}}_{T(y)} \\
& \left(c_{1}-d_{1}\right) w+\cdots+\left(c_{n}-d_{n}\right) w_{n}=\overrightarrow{0}
\end{aligned}
$$

By assumption, β^{\prime} is a lin. ind. Set, so

$$
0=c_{1}-d_{1}=c_{2}-d_{2}=\cdots=c_{n}-d_{n}
$$

So, $c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{n}=d_{n}$ and hence

$$
x=c_{1} v_{1}+\ldots+c_{n} v_{n}=d_{1} v_{1}+\cdots+d_{n} v_{n}=y .
$$

onto: We need to show $R(T)=W$.
By a previous the, since $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans V, we know $R(T)=\operatorname{span}\left(\left\{T\left(v_{1}\right), \ldots T\left(v_{n}\right\}\right)\right.$.
So,

$$
\begin{aligned}
& \text { So, } \\
& R(T)=\operatorname{span}\left(\left\{T\left(v_{1}\right), \ldots T\left(v_{n}\right)\right\}\right) \\
&=\operatorname{span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right) \\
&=W .
\end{aligned}
$$

assuming
So, T is onto for w

Thus, T is an isomorphism.
(\Leftrightarrow) Now suppose T is an isomorphism, ie 1-1 and onto.
Let's show β^{\prime} is a basis for W.
Since T is onto, $R(T)=W$.

$$
\begin{aligned}
& \text { herefore, } \\
& \begin{aligned}
W=R(T) & =\operatorname{span}\left(\left\{T\left(V_{1}\right), \ldots, T\left(V_{n}\right)\right\}\right) \\
& =\operatorname{span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right)
\end{aligned}
\end{aligned}
$$

Therefore,

So, β^{\prime} spans W.
Is β^{\prime} a lin, ind, set?
Suppose

$$
\begin{aligned}
& \text { pose } \\
& d_{1} w_{1}+\ldots
\end{aligned} d_{n} w_{n}=\vec{O}_{w}
$$

where $d_{i} \in F$.
Since T is 1-1 and onto, T^{-1} exists and is linear (from Monday) and $T^{-1}\left(w_{i}\right)=V_{i}$ for $i=1, \ldots, n$,

Since T^{-1} is linear, $T^{-1}\left(\vec{O}_{w}\right)=\vec{O}_{V}$. \quad Pg
So,

$$
\begin{aligned}
\vec{o}_{v} & =T^{-1}\left(\vec{o}_{w}\right)=T^{-1}\left(d_{1} w_{1}+\cdots+d_{n} w_{n}\right) \\
& =d_{1} T^{-1}\left(w_{1}\right)+\cdots+d_{n} T^{-1}\left(w_{n}\right) \\
& =d_{1} v_{1}+\cdots+d_{n} v_{n}
\end{aligned}
$$

Since $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis and $\vec{O}_{v}=d_{1} v_{1}+\ldots+d_{n} v_{n}$
we get $d_{1}=d_{2}=\ldots=d_{n}=0$.
Thus, β^{\prime} is a lin. ind. set.
since if $d_{1} w_{1}+\ldots+d_{n} w_{n}=\vec{O}_{w}$
then $d_{1}=d_{2}=\cdots=d_{n}=0$.
So, β^{\prime} is a basis for W_{1}
part 2
Suppose L is a linear transformation and $u_{i}=L\left(V_{i}\right)$ for $i=1,2, \ldots, n$.

Then,

$$
\begin{aligned}
& L\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right) \\
& \overline{\bar{f}} c_{1} L\left(v_{1}\right)+\ldots+c_{n} L\left(v_{n}\right) \\
& =c_{1} u_{1}+\ldots+c_{n} u_{n}
\end{aligned}
$$

L is
lingo

$$
\frac{\text { Math 4570 }}{10 / 5 / 20}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Test 1 on 10/21
No class that day.
Test 1 coves HW 1 \& WW 2 material.

It will be something like where I email/give you the test on lol21 in the morning. You'll have ≈ 24 hours. You pick a 2 hr window in that 24 hrs to take the test.
$E X_{:} \quad V=\mathbb{R}^{3}$ and $W=\mathbb{R}^{2}$
Let's construct a linear transformation
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ using the method from the theorem from Weds.

Step 1: Pick a basis for \mathbb{R}^{3}.
Let's use the standard basis

$$
\beta=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}=\left\{\begin{array}{l}
\\
\end{array}\right.
$$

(in the tho)
Step 2: Decide where the basis elements,

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{0}=w_{1} \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{2}{4}=w_{2} \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{-1}{3}=w_{3}
\end{aligned}
$$

This will now determine a formula for T.
Let $x=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$.
Then, to make T linear we must define its formula

$$
\left.\begin{array}{rl}
T(x) & =T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& =T\left(\begin{array}{l}
\text { define as follows: } \\
\left.a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+b\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
\begin{array}{l}
\text { formula } \\
\text { from } \\
\text { thu } \\
\text { Need } \\
\text { so } \\
\text { will } \\
\text { be } \\
\text { linear }
\end{array}
\end{array}=a T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+b T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right. \\
& =\binom{1}{0}+b\binom{2}{4}+c\binom{-1}{3} \\
4 b+3 c
\end{array}\right) .
$$

So, $T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\binom{a+2 b-c}{4 b+3 c}$ is a linear transturnation.

This an isomorphism of

$$
\beta^{\prime}=\left\{\binom{1}{0},\binom{2}{4},\left(-\frac{1}{3}\right)\right\}
$$

from Them from weds is a basis for \mathbb{R}^{2}.
$\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$, so every basis of \mathbb{R}^{2} has 2 elements.
But β^{\prime} above has 3 elements, so β^{\prime} is not a busir for \mathbb{R}^{2}. so T is Not and

Another way to show T is not an isomorphism is to show that T is not $1-1$ using the formula for T

$$
T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a+2 b-c}{4 b+3 c}
$$

T is not $1-1$ because
isomorphism means
(i) linear transf.
(2) $1-1$

$$
T\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\binom{0}{0}=T\left(\begin{array}{c}
-5 / 6 \\
1 / 4 \\
-1 / 3
\end{array}\right)
$$

(3) onto

T is not 1-1

Ex:

$$
\begin{aligned}
& V=\mathbb{R}^{2} \\
& W=P_{1}(\mathbb{R})=\{a+b x \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Let $\beta=\left\{\binom{1}{0},\binom{0}{1}\right\} \quad \begin{aligned} & \text { be the standard } \\ & \text { basis for } \mathbb{R}^{2}\end{aligned}$
Let $\beta^{\prime}=\{1,1+x\} \subseteq P_{1}(\mathbb{R})$.
Define a linear transformation
$T: \mathbb{R}^{2} \rightarrow P_{1}(\mathbb{R})$ where
$T\binom{1}{0}=1$ and $T\binom{0}{1}=1+x$

Then to define T for all of \mathbb{R}^{2} to make it linear we must have:

$$
\begin{aligned}
T\binom{a}{b} & =T\left(a\binom{1}{0}+b\binom{0}{1}\right) \\
& =a \cdot 1+b \cdot(1+x) \\
& =(a+b)+b x
\end{aligned}
$$

So, $T\binom{a}{b}=(a+b)+b x$
is a linear transformation from \mathbb{R}^{2} to $P_{1}(\mathbb{R})$.

Is T an isomorphism? T is an isomorphism iff $\beta^{\prime}=\{1,1+x\}$ is a basis for \mathbb{R}^{2}.

Is β^{\prime} a linearly independent set?
Suppose

$$
\begin{aligned}
& \text { pose } \\
& c_{1} \cdot 1+c_{2} \cdot(1+x)=\overrightarrow{0}
\end{aligned}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
We have

$$
\underbrace{\left(c_{1}+c_{2}\right)}_{t} \cdot 1+\underbrace{c_{2}}_{2} \cdot x=\}_{\uparrow}^{0}+0 x .
$$

So, $c_{1}+c_{2}=0$ and $c_{2}=0$.
So, $c_{2}=0$ and $c_{1}=-c_{2}=0$.
Thus, β^{\prime} is a linn ind. set.

Since $\beta^{\prime}=\{1,1+x\}$ consists
of 2 linearly independent
vectors, $W=\operatorname{span}\left(\beta^{\prime}\right)$ has dimension 2 .
Since $W \subseteq P_{1}(\mathbb{R})$ and $\operatorname{dim}\left(P_{1}(\mathbb{R})\right)=2$ we have $W=P_{1}(\mathbb{R})$,
So, $W=\operatorname{span}\left(\beta^{\prime}\right)=P_{1}(\mathbb{R})$.
So, β^{\prime} is a basis for $P_{1}(\mathbb{R})$.

So, β^{\prime} is a basis for $P_{1}(\mathbb{R})$ and T is an isomorphism.

Theorem: Let V and W be finite-dimensional vector spaces oven a field F. We have that V and W are isomorphic iff $\operatorname{dim}(V)=\operatorname{dim}(W)$.
proof:
(∞) Suppose $\operatorname{dim}(v)=\operatorname{dim}(w)=n$.
Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis
for V and $\beta^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a basis for W.

Idea:

Then, the function $T: V \rightarrow W$ given by

$$
\begin{aligned}
& T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
&=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{n} w_{n}
\end{aligned}
$$

will be an isomorphism by ohm from Weds since $\beta^{\prime}=\left\{w_{1}, w_{2}, \ldots, \omega_{n}\right\}$ is a basis for ω.
\Leftrightarrow Suppose V and W are isomorphic. This means that there exists a linear trans formation $T: V \rightarrow W$ that is 1-1 and onto.

Since T is $1-1$, from $H W$, $N(T)=\left\{\vec{O}_{V}\right\}$.
Since T is onto, $R(T)=W$.

By the rank/nullity thm,

$$
\begin{aligned}
\operatorname{dim}(V) & =\operatorname{nullity}(T)+\operatorname{rank}(T) \\
& =\operatorname{dim}(N(T))+\operatorname{dim}(R(T)) \\
& =\underbrace{\operatorname{din}\left(\left\{\vec{O}_{V}\right\}\right)}+\operatorname{din}(W)
\end{aligned}
$$

$$
=\operatorname{dim}(W)
$$

So, $\operatorname{dim}(V)=\operatorname{dim}(W)$,

Corollary: Let V be a finite-dimensional vector space oven a field F. Let $\operatorname{dim}(V)=n$.
Then, $V \cong F^{n}$.
proof: $\operatorname{dim}(V)=n=\operatorname{dim}\left(F^{n}\right)$.
So, by the previous tho, $V \cong F^{n}$.

Recall:
A linear transformation
$T: V \rightarrow W$ is culled
an isomorphism if
T is $1-1$ and onto.
Some people use the term invertible instead of isomorphism.

$$
\frac{\text { Math } 4570}{10 / 7120}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Test 1 (HW 1, HW 2)
Good calculation type questions

- checking if a set is a subspace (proof)
- finding the dimension and basis of a subspace or vector space
- checking if a set is lin. ind.
- checking if a set spans a space
- checking if a set is a basis
- checking if a vector is in the span of a set.
- checking if V is a vector space

$$
\begin{aligned}
& \text { Span ot if } V \text { is a recur } \\
- & \text { checking if } \\
- & F^{n}, P_{n}(F), M_{m, n}(F)
\end{aligned}
$$

proofs - practice HW

The Matrix of a Linear Transformation
$\left(\begin{array}{ll}H W & 4 \\ \text { material }\end{array}\right)\left(\begin{array}{c}p q \\ 2\end{array}\right.$

Def: Let V be a finite-dimensioal vector space over a field F.
Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. We write $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ to mean that β is an ordered basis for V, that is the order of the vectors in β is given and fixed.
Def: Suppose V is a finite-dimensional vector space over a field F with an ordered basis $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. Let $x \in V$. Write $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$. We write

$E x_{0}: V=\mathbb{R}^{2}, F=\mathbb{R}$

$$
\beta=\left[\binom{1}{2},\binom{-1}{1}\right]
$$

Let $x=\binom{5}{4}$.
Let's find $[x]_{\beta}$.

You can check this is a basis for \mathbb{R}^{2} Show $\binom{1}{2},\binom{-1}{1}$ are lin. ind, and then Since there are 2 of them and $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ they must span \mathbb{R}^{2}

Solve: $\binom{5}{4}=\alpha_{1}\binom{1}{2}+\alpha_{2}\binom{-1}{1}$

$$
\begin{aligned}
& \begin{array}{l}
5=\alpha_{1}-\alpha_{2} \\
4=2 \alpha_{1}+\alpha_{2}
\end{array} \\
& \left(\begin{array}{cc|c}
1 & -1 & 5 \\
2 & 1 & 4
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -1 & 5 \\
0 & 3 & -6
\end{array}\right) \\
& 2550 \text { page } \\
& \text { has notes \& } \\
& \text { worked problems } \\
& \begin{array}{l}
\text { on solving linear } \\
\text { anstens }
\end{array} \\
& \text { systems }
\end{aligned}
$$

So,

$$
\binom{5}{4}=3\binom{1}{2}-2\binom{-1}{1}
$$

Thus, $[x]_{\beta}=\left[\binom{5}{4}\right]_{\beta}=\binom{3}{-2}$
Let $\beta^{\prime}=\left[\binom{1}{0},\binom{0}{1}\right]$. \leftarrow standard $\begin{aligned} & \text { basis for } \mathbb{R}^{2}\end{aligned}$
Then, $\binom{5}{4}=5\binom{1}{0}+4\binom{0}{1}$
So, $[x]_{\beta^{\prime}}=\binom{5}{4}$.

Ex:

$$
\begin{aligned}
& V=P_{2}(\mathbb{R})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \\
& F=\mathbb{R} \\
& B=\left[1,1+x, 1+x+x^{2}\right] \quad \begin{array}{l}
\text { you can } \\
\text { show this is } \\
\text { a basis. } \\
\text { show the } \\
\text { vectors are lin, } \\
\text { ind. Then } \\
\text { since are } 3 \\
\text { of them } \\
\text { and Pr }(\mathbb{R}) \\
\text { has dimension 3 } \\
\text { they must } \\
\text { span P2 (} \mathbb{R}) .
\end{array} \\
& \text { Let }
\end{aligned}
$$

$$
\begin{aligned}
& 2-x+3 x^{2}=\alpha_{1} \cdot 1+\alpha_{2}(1+x)+\alpha_{3}\left(1+x+x^{2}\right) \\
& 2-x+3 x^{2}=\frac{\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \cdot 1+\left(\alpha_{2}+\alpha_{3}\right) x+\alpha_{3} x^{2}}{}
\end{aligned}
$$

So need to solve:

$$
\left[\begin{array} { c }
{ 2 = \alpha _ { 1 } + \alpha _ { 2 } + \alpha _ { 3 } } \\
{ - 1 = } \\
{ \alpha _ { 2 } + \alpha _ { 3 } } \\
{ 3 = }
\end{array} \quad \alpha _ { 3 } \left[\begin{array}{l}
\alpha_{1}=3 \\
\alpha_{2}=-4 \\
\alpha_{3}=3
\end{array}\right.\right.
$$

So,

$$
[v]_{\beta}=\left[2-x+3 x^{2}\right]_{\beta}=\left(\begin{array}{c}
3 \\
-4 \\
3
\end{array}\right)
$$

Def: Let $L: V \rightarrow W$ be a linear transformation between two finite-dimensional vector spaces V and W both over a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordered basis for V and γ be an ordered basis for W. The matrix

$$
\begin{aligned}
& \text { basis tor } \begin{array}{l}
\text { basis for } W \text {. The matrix } \\
{[L]_{\beta}^{\gamma}=(\left.\underbrace{\left.L\left(v_{1}\right)\right]_{\gamma}}_{\substack{\text { column } \\
\text { vector }}}\right|_{\substack{\text { column } \\
\text { vector }}} ^{\left[L\left(v_{2}\right)\right]_{\gamma}}|\ldots| \underbrace{\left.L L\left(v_{n}\right)\right]_{\gamma}}_{\substack{\text { column } \\
\text { vector }}})} \\
\text { is called the matrix for } L \text { with }
\end{array}
\end{aligned}
$$

is called the matrix for L with respect to β and γ.
If $V=W$ and $\beta=\gamma$, then we write $[L]_{\beta}$ instead of $[L]_{\beta}^{\beta}$.
$E X_{0}^{0} L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& V=W=\mathbb{R}^{2}\left[\frac{p g}{7}\right. \\
&
\end{aligned}
$$

given by $L\binom{x}{y}=\binom{x+y}{2 x-y}$

you can
check that
L is a linear transformation

Let $\beta=\left[\binom{1}{0},\binom{0}{1}\right]$.
Let's compute $[L]_{\beta}=[L]_{\beta}^{\beta}$

$$
\begin{aligned}
& L\binom{1}{0}=\binom{1}{2}=1 \cdot\binom{1}{0}+2 \cdot\binom{0}{1} \\
& L\binom{0}{1}=\binom{1}{-1}=1 \cdot\binom{1}{0}-1 \cdot\binom{0}{1}
\end{aligned}
$$

\square plug β
terms of β

$$
\begin{aligned}
& \begin{array}{l}
\text { Write the result in } \\
\text { terms of } \beta \\
\text { into } L \\
\text { So, }[L]_{\beta}
\end{array}=\left(\left.\left[L\binom{1}{0}\right]_{\beta} \right\rvert\,\left[L\binom{0}{1}\right]_{\beta}\right)=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)
\end{aligned}
$$

$$
\text { Let } \beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right] \leftarrow\left[\begin{array} { l }
{ \text { you can } } \\
{ \text { show this } } \\
{ \text { is a basis } } \\
{ \text { For } \mathbb { R } ^ { 2 } }
\end{array} \quad \left[\begin{array}{c}
p g \\
8
\end{array}\right.\right.
$$

Let's find $[L]_{\beta}$.

$$
\beta^{V} \beta^{\prime} \beta^{\prime}{ }^{\omega}
$$

$$
\begin{aligned}
& \text { Recall: } \\
& L\binom{x}{y}=\binom{x+y}{2 x-y} \\
& L\binom{1}{1}=\binom{2}{1}=a\binom{1}{1}+c\binom{-1}{1} \\
& L\binom{-1}{1}=\binom{0}{-3}=b\binom{1}{1}+d\binom{-1}{1} \\
& \text { write answer in terms } \\
& \text { of } \beta^{\prime} \\
& \text { plug } \beta \\
& \text { into } L \\
& \text { Need to solve } \\
& \begin{array}{l}
2=a-c \\
1=a+c
\end{array} \\
& 0=b-d \\
& -3=b+d \\
& a=\frac{3}{2} \\
& \begin{array}{l}
c=-1 / 2 \\
b=-3 / 2
\end{array} \\
& \begin{array}{l}
d=-3 / 2
\end{array} \\
& \text { So, } \\
& \begin{array}{l}
\text { So, } \\
{[L]_{\beta^{\prime}}=\left(\left[L\binom{1}{1}\right]_{\beta^{\prime}} \left\lvert\,\left[L\binom{-1}{1}\right)_{\beta^{\prime}}\right.\right)}
\end{array} \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right)
\end{aligned}
$$

Let's now calculate $[L]_{\beta^{\prime}}^{\beta}$

$$
\begin{aligned}
& \beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right] \\
& \beta=\left[\binom{1}{0},\binom{0}{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L\binom{1}{1}=\binom{2}{1}=2 \cdot\binom{1}{0}+1 \cdot\binom{0}{1} \\
& L\binom{-1}{1}=\binom{0}{-3}=0 \cdot\binom{1}{0}-3 \cdot\binom{0}{1}
\end{aligned}
$$

\qquad write the answers
plug β^{\prime} in terms of β into L

$$
\begin{aligned}
& \text { So, } \\
& \begin{aligned}
{[L]_{\beta}^{\prime} } & =\left(\left[L\binom{1}{1}\right]_{\beta} \left\lvert\,\left[L\binom{-1}{1}\right]_{\beta}\right.\right) \\
& =\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Math } & 4570 \\
10 / 12 / 20
\end{array}
$$

$E X_{0}$ (Continued from last time)
Recap: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L\binom{x}{y}=\binom{x+y}{2 x-y}$

$$
\begin{aligned}
& \beta=\left[\binom{1}{0},\binom{0}{1}\right], \quad[L]_{\beta}=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& \beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right], \quad[L]_{\beta^{\prime}}=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right) \\
& {[L]_{\beta^{\prime}}^{\beta}=\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)}
\end{aligned}
$$

What do these matrices do $\mathbb{R}_{0} \left\lvert\, \begin{gathered}\mathrm{Pg} \\ 2\end{gathered}\right.$ $V=\binom{1}{2} \quad$ Recall: $L\binom{x}{y}=\binom{x+y}{2 x-y}$
We are using the standard basis here

$$
\begin{aligned}
& \beta=\left[\binom{1}{0},\binom{0}{1}\right] \text {. } \\
& {[L]_{\beta}[V]_{\beta}=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)\binom{1}{2}=\binom{1+2}{2-2}=\binom{3}{0}} \\
& \text { coordinates } \\
& \begin{array}{l}
\text { cons }() \\
\text { of } \\
\text { of epececto } \beta
\end{array} \\
& {[v]_{\beta}=\binom{1}{2} \xrightarrow{[L]_{\beta}}\binom{3}{0}=[L]_{\beta}[V]_{\beta}} \\
& V=1 \cdot\binom{1}{0}+2 \cdot\binom{0}{1} \\
& 3 \cdot\binom{1}{0}+0 \cdot\binom{0}{1}=\binom{3}{0}
\end{aligned}
$$

SO: $[L]_{\beta}[V]_{\beta}=[L(V)]_{\beta}$

Let's now use $\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]$.

$$
\begin{aligned}
& {[L]_{\beta^{\prime}}=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right) \sigma\left[\begin{array}{l}
\text { this matrix will } \\
\text { compute } L \text {, but } \\
\text { it takes } \beta^{\prime} \\
\text { coordinates as input } \\
\text { and it outputs } \\
\beta^{\prime} \text { cousdinates }
\end{array}\right.} \\
& V=\binom{1}{2} \\
& \text { Let's find }[V]_{\beta^{\prime}}^{\prime} \\
& \binom{1}{2}=v=\alpha_{1}\binom{1}{1}+\alpha_{2}\binom{-1}{1} \quad \begin{array}{l}
\text { That is, } \\
{[L]_{\beta^{\prime}}[V]_{\beta^{\prime}}=[L(v))_{\beta^{\prime}}}
\end{array}
\end{aligned}
$$

So need to solve

$$
\begin{aligned}
& 0 \text { need to solve } \\
& 1=\alpha_{1}-\alpha_{2} \\
& 2=\alpha_{1}+\alpha_{2}
\end{aligned} \leftarrow \begin{aligned}
& \alpha_{1}=\frac{3}{2} \\
& \alpha_{2}=1 / 2
\end{aligned}
$$

Thus, $v=\frac{3}{2}\binom{1}{1}+\frac{1}{2}\binom{-1}{1}$.
So, $[v]_{\beta^{\prime}}=\binom{3 / 2}{1 / 2}$

$$
\begin{aligned}
& \text { So, } \\
& {[L]_{\beta}[V]_{\beta}=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right)\binom{3 / 2}{1 / 2}=}
\end{aligned}
$$

$$
=\binom{9 / 4-3 / 4}{-3 / 4-3 / 4}=\binom{6 / 4}{-6 / 4}=\binom{3 / 2}{-3 / 2} \quad\left(\begin{array}{c}
p 9 \\
4
\end{array}\right.
$$

Supposedly then $[L(v)]_{\beta^{\prime}}=\binom{3 / 2}{-3 / 2}$.
Let's verify,

$$
\begin{aligned}
& \text { et's verity, } \\
& \frac{3}{2} \cdot\binom{1}{1}-\frac{3}{2}\binom{-1}{1}=\binom{3 / 2+3 / 2}{3 / 2-3 / 2}=\binom{3}{0} \\
&=L(V)
\end{aligned}
$$

So, $[L]_{\beta^{\prime}}[V]_{\beta^{\prime}}=[L(V)]_{\beta^{\prime}}$

What does $[L]_{\beta^{\prime}}^{\beta}$ do?
It turns out that

$$
[L]_{\beta^{\prime}}^{\beta}[V]_{\beta^{\prime}}=[L(V)]_{\beta}
$$

So, $[L]_{\beta^{\prime}}^{\beta}$, computes L but it takes as input β^{\prime}-coordinates and it outputs β-coordinates.

$$
\begin{aligned}
& \text { For example } \\
& {[V]_{\beta^{\prime}}=\binom{3 / 2}{1 / 2} \text { and }[L]_{\beta^{\prime}}^{\beta}=\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)} \\
& {[L]_{\beta^{\prime}}^{\beta}\left[\begin{array}{l}
V
\end{array}\right]_{\beta^{\prime}}=\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)\binom{3 / 2}{1 / 2}} \\
& =\binom{3+0}{\frac{3}{2}-\frac{3}{2}}=\binom{3}{0} \stackrel{\uparrow}{=}[L(v)]_{\beta} \\
& L(v)=\binom{3}{0}=3 \cdot\binom{1}{0}+0\binom{0}{1} \leftarrow[L(v)]_{\beta}=\binom{3}{0}
\end{aligned}
$$

Theorem: Let V and W be finite-dimensional vector spaces over a field F_{1} Let $\beta=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$ be an ordered basis for V and $\beta^{\prime}=\left[w_{1}, w_{2}, \ldots, w_{m}\right]$ be an ordered basis for W.
Let $L: V \rightarrow W$ be a linear transformation.
Then,

$$
\begin{aligned}
& \text { hen, } \\
& {[L]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[L(x)]_{\beta^{\prime}} \quad \begin{array}{l}
\text { for all } \\
x \in V .
\end{array}}
\end{aligned}
$$

proof: Since β is a basis we may write $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$, where $\alpha_{i} \in F$.
So,

$$
[x]_{\beta}=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

Since β^{\prime} is a basis we may write 1997

$$
\begin{gathered}
L\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2}+\ldots+a_{m 1} w_{m} \\
L\left(v_{2}\right)=a_{12} w_{1}+a_{22} w_{2}+\ldots+a_{m 2} w_{m} \\
\vdots \\
L\left(v_{n}\right)=a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots+a_{m n} w_{m}
\end{gathered}
$$

where $a_{i j} \in F$.

$$
\begin{aligned}
& \text { So, } \\
& {[L]_{\beta}^{\beta^{\prime}}=\left(\left[L\left(v_{1}\right)\right]_{\beta^{\prime}}\left|\left[L\left(v_{2}\right)\right]_{\beta^{\prime}}\right| \cdots \mid\left[L\left(v_{n}\right)\right]_{\beta^{\prime}}\right)} \\
& \\
& =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
\end{aligned}
$$

We have that

$$
\begin{aligned}
L(x)= & L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}\right) \\
= & \alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)+\cdots+\alpha_{n} L\left(v_{n}\right) \\
\underbrace{L\left(v_{1}\right)}_{\text {linear }}= & \alpha_{1}(\overbrace{\left.a_{11} \omega_{1}+a_{21} \omega_{2}+\cdots+a_{m 1} w_{n}\right)} \\
& +\alpha_{2}(\underbrace{\left.a_{12} \omega_{1}+a_{22} \omega_{2}+\cdots+a_{n 2} \omega_{n}\right)}_{2\left(v_{2}\right)} \\
& +\ldots+\underbrace{\left.a_{1 n} \omega_{1}+a_{2 n} \omega_{2}+\cdots+a_{m n} \omega_{m}\right)}_{L\left(v_{n}\right)} \\
& +\alpha_{n} \\
= & \left(\alpha_{1} a_{11}+\alpha_{2} a_{12}+\ldots+\alpha_{n} a_{1 n}\right) \omega_{1} \\
+ & \left(\alpha_{1} a_{21}+\alpha_{2} a_{22}+\ldots+\alpha_{n} a_{2 n}\right) \omega_{2} \\
& +\cdots+ \\
& +\left(\alpha_{1} a_{m 1}+\alpha_{2} a_{m 2}+\ldots+\alpha_{n} a_{m n}\right) \omega_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \\
& {[L(x)]_{\beta^{\prime}}=\left(\begin{array}{c}
\alpha_{1} a_{11}+\alpha_{2} a_{12}+\ldots+\alpha_{n} a_{1 n} \\
\alpha_{1} a_{21}+\alpha_{2} a_{22}+\ldots+\alpha_{n} a_{2 n} \\
\vdots \\
\alpha_{1} a_{m 1}+\alpha_{2} a_{m 2}+\ldots+\alpha_{n} a_{m n}
\end{array}\right)} \\
& =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
& =\left[\begin{array}{l}
]_{\beta}^{\prime}\left[\begin{array}{l}
\beta
\end{array}\right.
\end{array}{ }^{[}\right]
\end{aligned}
$$

Now we show how to make a matrix that changes one coordinate system into another.

Def: Let V be a finite dimensional vector space over a field F. Let β and β^{\prime} be ordered bases for V. Let I: $V \rightarrow V$ be the identity linear transformation where $I(x)=x$ for all $x \in V$. The matrix $[I]_{\beta}^{\beta^{\prime}}$ is called the change of basis matrix from β to β^{\prime}.
$E x_{0}^{0}$ Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\beta=\left[\binom{1}{0},\binom{0}{1}\right]$
and $\beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right]$ as earlier.
Let's calculate

$$
\begin{aligned}
& \text { Let's calculate } \\
& I\binom{1}{0}=\binom{1}{0} \stackrel{1}{2}\binom{1}{1}-\frac{1}{2}\binom{-1}{1} \\
& I\binom{0}{=}=\binom{1}{1}+\frac{1}{2}\binom{-1}{1}
\end{aligned}
$$

$$
\begin{gathered}
\text { you } \\
\text { could } \\
\text { solverstem } \\
\text { a so get } \\
\text { to get } \\
\text { thess } \\
\#+2
\end{gathered}
$$

$$
\begin{aligned}
& I\binom{1}{0}=\left(\begin{array}{l}
0 \\
0
\end{array}=\frac{2(1}{2}(1)\right. \\
& I\binom{0}{1}=\binom{0}{1}=\underbrace{\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{1}}_{\text {Write the answer }}
\end{aligned}
$$

$$
\begin{gathered}
\text { Math } 4570 \\
10 / 14 / 20
\end{gathered}
$$

Test 1 is on Weds
October $2 l s t$. notes for

There won't be class calculations to on the test day know

Instructions/info are on the next page

Structure
(1) Calculation type questions/subgroue (2) proofs

Math 4570 - Fall 2020 - Test 1

- You will receive the exam on Wednesday, October 21st at 8 am .
- I will email it to you and also post the test on the class website.
website: https://www.calstatela.edu/research/ashahee/
click on Math 4570
- Please send your solutions back to me by Thursday, October 22nd at 12 pm in the afternoon.
- Pick a consecutive 2-hour window to take this exam, such as $2 \mathrm{pm}-4 \mathrm{pm}$. You may only use 2 hours of consecutive time. Do not split the time (like $12-1 \mathrm{pm}$ and then $5-6 \mathrm{pm}$).
- You can only use your mind to take this exam. No help from any sources or people. No books, no notes, no online, etc.
- No calculators.
- Use blank paper (like printer paper) if you have it please.
- On the first page of your exam, before any of your solutions, put these three things:
(a) Your name.
(b) The time period that you chose (such as $2 \mathrm{pm}-4 \mathrm{pm}$ on Wednesday)
(c) Copy this statement and then sign your signature after it:
"Everything on this test is my own work. I did not use any sources or talk to anyone about this exam." your signature
- After your name and the above statement with signature, start putting your solutions to the problems. Please put them in order. That is, first problem 1, then problem 2, etc. You can put each one on its own page.
- Please scan your test using a scanner (such as a free one on your phone) and put it into one pdf document with your problems in order.
- To get a clean scan, make sure there is plenty of light, the phone is held flat directly above the paper, and the paper is placed on a flat object such as the floor or a table.
- When your 2 hour time period is done, please scan your test and email me a pdf to ashahee@calstatela.edu.

The problems are on the next page.

Ex: (Continued from last time)

$$
\begin{aligned}
& V=\mathbb{R}^{2}, F=\mathbb{R} \\
& \beta=\left[\binom{1}{0},\binom{0}{1}\right] \\
& \beta^{\prime}=\left[\binom{1}{1},\binom{-1}{1}\right] \\
& {[I]_{\beta}^{\beta^{\prime}}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)}
\end{aligned}
$$

What $[I]_{\beta}^{\beta^{\prime}}$ does is it turns β-coordinates into β^{\prime}-coordinates. For example, in a previous example we looked at $V=\binom{1}{2}$ and saw that

$$
\begin{aligned}
& \text { we looked at } V=\left(\begin{array}{l}
1 \\
V=\binom{1}{2}=1 \cdot\binom{1}{0}+2 \cdot\binom{0}{1} \text { so }[v]_{\beta}=\binom{1}{2} \\
V=\binom{1}{2}=\frac{3}{2}\binom{1}{1}+\frac{1}{2}\binom{-1}{1} \text { so }[v]_{\beta}^{\prime}=\binom{3 / 2}{1 / 2}
\end{array}, \$\right. \text {. }
\end{aligned}
$$

Note that

$$
\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)\binom{1}{2}=\binom{\frac{1}{2}+1}{-\frac{1}{2}+1}=\binom{3 / 2}{1 / 2}
$$

So, $[I]_{\beta}^{\beta^{\prime}}[V]_{\beta}=[V]_{\beta^{\prime}}, \begin{aligned} & \text { for this } \\ & \text { particular } \\ & V\end{aligned}$
The: Let V be a finite-dimensional vector space over a field F and let β and β^{\prime} be ordered bases for V.
Let $[I]_{\beta}^{\beta^{\prime}}$ be the change of basis matrix from β to β^{\prime}. Then $[I]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[x]_{\beta^{\prime}}$, for all $x \in V$.
proof: From the from last class

$$
\begin{aligned}
& \frac{\text { proof: From tho from }}{[I]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[I(x)]_{\beta^{\prime}}=[x]_{\beta^{\prime}}} \\
& {[L]_{\beta}^{\beta^{\prime}}[x]_{\beta}[L(x)]_{\beta^{\prime}}^{I(x)=x} \begin{array}{l}
\forall x \in V
\end{array}}
\end{aligned}
$$

Def: Let V be a finite-dimensional (PG 4 vector space over a field F. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be an ordered basis for V. Define $\Phi: V \rightarrow F^{n}$ by $\Phi(x)=[x]_{\beta}$.
Note that Φ depends on β, so sometimes we write Φ_{β} for Φ, or sometimes not when β is understood or given.
We call Φ a canonical isomorphism between V and F^{n}.

$$
\begin{align*}
& \text { Ex: } V=\mathbb{R}^{2}, F=\mathbb{R}, \beta=\left[\binom{1}{1},\binom{-1}{1}\right] \tag{良}\\
& \Phi\binom{1}{2}=\left[\binom{1}{2}\right]_{\beta} \overline{\bar{\gamma}}\binom{3 / 2}{1 / 2} \\
& \binom{1}{2}=\frac{3}{2}\binom{1}{1}+\frac{1}{2}\binom{-1}{1} \\
& \Phi\binom{2}{4}=\left[\binom{2}{4}\right]_{\beta}=\binom{3}{1} \\
& \Phi\binom{3}{6}=\left[\binom{3}{6}\right]_{\beta}=\binom{9 / 2}{3 / 2},\binom{3}{6}=\frac{9}{2}\binom{1}{1}+\frac{3}{2}\binom{-1}{1} \\
& V=R^{2} \\
& F^{2}=\mathbb{R}^{2} \\
& \text {. }\binom{3 / 2}{1 / 2}=\left[\binom{1}{2}\right]_{\beta} \\
& \text { - }\binom{3}{1}=\left[\binom{2}{4}\right)_{\beta} \\
& \left.\cdot\binom{9 / 2}{3 / 2}=\left[\left(\begin{array}{l}
1
\end{array}\right)\right]_{\beta}+[(\xi)]\right]_{\beta}
\end{align*}
$$

Φ is an isomorphism
This follows from the tho we proved about how linear transformations are constructed.

$$
\Phi: V \rightarrow F^{n}
$$

$\beta=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$ is an ordered basis for V

$$
\begin{aligned}
& \text { Pick }
\end{aligned}
$$

the standard basis for F^{n}.

$$
\begin{aligned}
& \Phi\left(v_{1}\right)=\Phi\left(1 \cdot v_{1}+0 v_{2}+\cdots+0 v_{n}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& \Phi\left(v_{2}\right)=\Phi\left(O v_{1}+1 v_{2}+\cdots+O V_{n}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right) \\
& \Phi\left(v_{n}\right)=\Phi\left(0 v_{1}+0 v_{2}+\cdots+\mid v_{n}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right) \\
& \text { Then, }
\end{aligned}
$$

Also, if $x=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n} \in V$
then

$$
\begin{aligned}
\Phi(x) & =\Phi\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right) \\
& =\alpha_{1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\ldots+\alpha_{n}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right) \\
& =\alpha_{1} \Phi\left(v_{1}\right)+\alpha_{2} \Phi\left(v_{2}\right)+\cdots+\alpha_{n} \Phi\left(v_{n}\right)
\end{aligned}
$$

We had a the that says this shows Φ is a linear transformation and since Φ maps β on to a basis β^{\prime}, this implies Φ is an isomorphism.
So, $V \cong F^{n}$ given by Φ.

Commutative diagram
$L: V \rightarrow W$ is a linear transformation $V \& W$ are finite dimensional vector spaces over F β and γ are ordered bases for V and W $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$ respectively

$$
\begin{aligned}
& x \longmapsto L(x) \\
& T V M
\end{aligned}
$$

$$
\begin{aligned}
& {[x]_{\beta} \longmapsto[L]_{\beta}^{\gamma}[x]_{\beta}=} \\
& =[L(x)]_{\gamma}
\end{aligned}
$$

Theorem: Let V and W be finite dimensional vector spaces over a field F, Let $T: V \rightarrow W$ be a linear transformation. Let β and γ be ordered bases for V and W, respectively.
T is an isomorphism iff $[T]_{\beta}^{\gamma}$ is invertible.
Furthermore, if this is so then

$$
\begin{aligned}
& \text { s so then } \\
& {\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1} .}
\end{aligned}
$$

proof:
\Leftrightarrow Suppose that T is an isomorphism.
So, T is $1-1$ and onto and

$$
\operatorname{dim}(V)=\operatorname{dim}(W)
$$

Let $n=\operatorname{dim}(V)=\operatorname{dim}(W)$.
So, $[T]_{\beta}^{\gamma}$ is an $n \times n$ matrix.
Let I_{n} be the $n \times n$ identity matrix and let $I_{V}: V \rightarrow V$ and
$I_{W}: W \rightarrow W$ be the identity linear trans formations. where $I_{V}(x)=x$ for all $x \in V$ and $I_{w}(x)=x$ for all $x \in W$.

Then,

$$
\begin{array}{r}
{\left[T^{-1}\right]_{\gamma}^{\beta}[T]_{\beta}^{\gamma} \frac{\overline{4}}{}\left[T^{-1} \circ T\right]_{\beta}^{\beta}=\left[I_{v}\right]_{\beta}^{\beta}=I_{n}} \\
H \omega 43(a)[u \cdot T]_{\alpha}^{\gamma}=[u]_{\beta}^{\gamma}[T]_{\alpha}^{\beta} \tag{1}
\end{array}
$$

$$
\begin{aligned}
& \text { and } \\
& {[T]_{\beta}^{\gamma}\left[T^{-1}\right]_{\gamma}^{\beta} \stackrel{\oplus}{=}\left[T 0 T^{-1}\right]_{\gamma}^{\gamma}=\left[I_{w}\right]_{\gamma}^{\gamma} \stackrel{\gamma}{=} I_{n} .}
\end{aligned}
$$

Thus,
$[T]_{\beta}^{\gamma}$ is an invertible matrix

$$
\text { and }\left([T]_{\beta}^{\gamma}\right)^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}
$$

$$
\frac{\text { math } 4570}{10 / 19 / 20}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

HO I
(7) Let V be a vector space over a field F. Let W, and ω_{2} be subspaces of V.
Define

$$
W_{1}+W_{2}=\left\{x+y \mid x \in W_{1}, y \in W_{2}\right\}
$$

(a) Show $W_{1} \subseteq W_{1}+W_{2}$ and $w_{2} \subseteq w_{1}+w_{2}$.
of of (a) :
Let $x \in \omega_{1}$.
Since W_{2} is a subspace, $\vec{O} \in W_{2}$.
Then $x=\underbrace{x}_{\text {in } w_{1}}+\underbrace{\overrightarrow{0}}_{\text {in }} \in w_{2}+w_{2}$
So, $w_{1} \subseteq w_{1}+w_{2}$.
Also let $y \in \omega_{2}$. Since w_{1} is a subspace, $\vec{o} \in W_{1}$. Thus,
$(b) W_{1}+W_{2}$ is a subspace of V.
proof:

- Since W_{1} and w_{2} are subspaces, $\vec{O} \in W_{1}$ and $\overrightarrow{0} \in W_{2}$.
Thus, $\overrightarrow{0}=\underbrace{\overrightarrow{0}}_{\text {in } \omega_{1}}+\underbrace{\overrightarrow{0} \in \omega_{1}+\omega_{2}}_{\text {in } \omega_{2}}$
- Let $a, b \in w_{1}+w_{2}$ and $\alpha \in F$.

Then $a=x_{1}+y_{1}$ and $b=x_{2}+y_{2}$
where $x_{1}, x_{2} \in W_{1}$ and $y_{1}+y_{2} \in W_{2}$
Since $x_{1}, x_{2} \in W_{1}$ and W_{1} is a subspace we have that $x_{1}+x_{2} \in \omega_{1}$.
Since $y_{1}, y_{2} \in W_{2}$ and w_{2} is a subspace we have that $y_{1}+y_{2} \in W_{2}$.

So,

$$
\begin{aligned}
& \text { So, } \\
& \begin{aligned}
a+b & =x_{1}+y_{1}+x_{2}
\end{aligned}+y_{2} \\
&=\underbrace{\left(x_{1}+x_{2}\right)}_{\text {in } w_{1}}+\underbrace{\left(y_{1}+y_{2}\right)}_{\text {in } w_{2}} \in w_{1}+w_{2}
\end{aligned}
$$

Since $x_{1} \in W_{1}$ and $y_{1} \in W_{2}$, and W_{1} \& W_{2} are subspaces we have $\alpha x_{1} \in W_{1}$ and $\alpha y_{1} \in W_{2}$.

So,

$$
\begin{aligned}
\alpha a & =\alpha\left(x_{1}+y_{1}\right) \\
& =\underbrace{\alpha x_{1}}_{\text {in } w_{1}}+\underbrace{\alpha y_{1}}_{\text {in } w_{2}} \in w_{1}+w_{2}
\end{aligned}
$$

By the above $w_{1}+w_{2}$ is a subspace of V.

HWy 4 \#3
Let V, W, and Z be finite dimensional vector spaces oven a field F. Let α, β, and γ be ordered bases for V, W, and Z respectively.
Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.
(a) $V \circ T: V \rightarrow Z$
is a linear transformation
(b) $[U \circ T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$

proof of (a)
Let $v_{1}, v_{2} \in V$ and $c_{1}, c_{2} \in F$.
Then,

$$
\begin{aligned}
&(U \circ T)\left(c_{1} V_{1}+c_{2} v_{2}\right) \\
&= U\left(T\left(c_{1} V_{1}+c_{2} v_{2}\right)\right) \\
&=U\left(c_{1} T\left(v_{1}\right)+c_{2} T\left(V_{2}\right)\right) \\
&=c_{1} U\left(T\left(V_{1}\right)\right)+c_{2} U\left(T\left(V_{2}\right)\right) \\
& \text { Sis is } \\
& \text { anear }=c_{1}(U \circ T)\left(V_{1}\right)+c_{2}(U \circ T)\left(V_{2}\right)
\end{aligned}
$$

So, $U \circ T$ is linear.
proof of (b): $[U \circ T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$
Let $\alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]$,

$$
\begin{aligned}
& \beta=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right] \\
& \gamma=\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right]
\end{aligned}
$$

Let's calculate $[T]_{\alpha}^{\beta}$.
Suppose

$$
\left.\begin{array}{l}
\text { uppore } \\
T\left(\alpha_{1}\right)=t_{11} \beta_{1}+t_{21} \beta_{2}+\ldots+t_{m 1} \beta_{m} \\
T\left(\alpha_{2}\right)=t_{12} \beta_{1}+t_{22} \beta_{2}+\cdots t_{m 2} \beta_{m} \\
\vdots \\
\vdots \\
T\left(\alpha_{n}\right)=t_{1 n} \beta_{1}+t_{2 n} \beta_{2}+\cdots+t_{m n} \beta_{m}
\end{array}\right]
$$

where $t_{i j} \in F$.
So, $[T]_{\alpha}^{\beta}=\left(\begin{array}{cccc}t_{11} & t_{12} & \cdots & t_{1 n} \\ t_{21} & t_{22} & \cdots & t_{2 n} \\ \vdots & \vdots & & \vdots \\ t_{m 1} & t_{m 2} & \cdots & t_{m n}\end{array}\right)$
$\begin{gathered}\text { More compact: } \\ \text { notation }\end{gathered} T\left(\alpha_{i}\right)=\sum_{j=1}^{m} t_{j i} \beta_{j}$

Similarly we have

$$
\left.\begin{array}{c}
U\left(\beta_{1}\right)=u_{11} \gamma_{1}+u_{21} \gamma_{2}+\ldots+U_{p 1} \gamma_{p} \\
U\left(\beta_{2}\right)=u_{12} \gamma_{1}+u_{22} \gamma_{2}+\ldots+U_{p 2} \gamma_{p} \\
\vdots \\
\vdots \\
U\left(\beta_{m}\right)=u_{1 m} \gamma_{1}+u_{2 m} \gamma_{2}+\ldots+U_{p m} \gamma_{p}
\end{array}\right\}-
$$

where $u_{i j} \in F$.
So,

$$
[U]_{\beta}^{\gamma}=\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 m} \\
u_{21} & u_{22} & \cdots & v_{2 m} \\
\vdots & \vdots & & \vdots \\
u_{p 1} & u_{p 2} & \cdots & u_{p m}
\end{array}\right)
$$

Compact: U($\left.\beta_{j}\right)=\sum_{k=1}^{p} U_{k j} \gamma_{k}$

Then,

$$
\begin{aligned}
& (U \circ T)\left(\alpha_{i}\right) \\
& =U\left(T\left(\alpha_{i}\right)\right) \\
& =U\left(\sum_{j=1}^{m} t_{j i} \beta_{j}\right) \\
& =\sum_{j=1}^{m} t_{j i} U\left(\beta_{j}\right)=\sum_{j=1}^{m} t_{j i} \sum_{k=1}^{p} u_{k j} \gamma_{k} \\
& =\sum_{k=1}^{p}\left(\sum_{j=1}^{m} t_{j i} u_{k j}\right) \gamma_{k} \\
& =\sum_{j=1}^{n}\left(\sum_{j=1}^{m} u_{k j} t_{j i}\right) \gamma_{k}
\end{aligned}
$$

The element in the k-th row and itch column of $\left[U_{0} T\right]_{\alpha}^{\gamma}$ is $\sum_{j=1}^{m} u_{k j} t_{j i}$

$$
\begin{aligned}
& \text { And, } \\
& {[u]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}=\underbrace{\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 m} \\
u_{21} & u_{22} & \cdots & u_{2 m} \\
\vdots & & & \vdots \\
u_{p 1} & u_{p 2} & \cdots & u_{p m}
\end{array}\right)}_{p \times m} \underbrace{\left(\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & & & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right)}_{m \times n}} \\
& =\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & & & \\
c_{p 1} & c_{p 2} & \cdots & c_{p n}
\end{array}\right) \\
& \begin{array}{l}
\text { dot } \\
\text { product }
\end{array} \\
& \text { Where } c_{k i}=\binom{k+h \text { row from }}{[U]_{\beta}^{\gamma}} \cdot\left(\begin{array}{c}
\text { ito column } \\
\text { from } \\
{[T]_{\alpha}^{\beta}}
\end{array}\right) \\
& =u_{k 1} t_{1 i}+u_{k 2} t_{2 i}+\ldots+u_{k m} t_{m i} \\
& =\sum_{j=1}^{m} u_{k j} t_{j i} \text {. } \\
& \text { Thus, }\left[V_{0} T\right]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}
\end{aligned}
$$

HeW 4 \# 4
Let V and W be vector spaces over a field F. Let α and β be ordered bases for V and W, respectively. Let $T_{1}: V \rightarrow W$ and $T_{2}: V \rightarrow W$,
If $\left[T_{1}\right]_{\alpha}^{\beta}=\left[T_{2}\right]_{\alpha 1}^{\beta}$ then $T_{1}=T_{2}$.
proof: Let $\alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]$
and $\beta=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right]$.

$$
\begin{aligned}
& \text { and } \beta=\left[\beta_{1}, \beta_{2}, \cdots \cdots\right) \\
& \text { Suppose } \\
& {\left[T_{1}\right]_{\alpha}^{\beta}=\left(\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & & & t_{m 2} \\
t_{m 1} & \cdots & t_{m n}
\end{array}\right)=\left[T_{2}\right]_{\alpha}^{\beta} .}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then, } \\
& T_{1}\left(\alpha_{1}\right)=t_{11} \beta_{1}+t_{21} \beta_{2}+\ldots+t_{m 1} \beta_{m}=T_{2}\left(\alpha_{1}\right) \\
& T_{1}\left(\alpha_{2}\right)=t_{12} \beta_{1}+t_{22} \beta_{2}+\ldots+t_{m 2} \beta_{m}=T_{2}\left(\alpha_{2}\right) \\
& \vdots \\
& \vdots \\
& T_{1}\left(\alpha_{n}\right)=t_{1 n} \beta_{1}+t_{2 n} \beta_{2}+\cdots+t_{m n} \beta_{m}=T_{2}\left(\alpha_{n}\right)
\end{aligned}
$$

Then,

So, $T_{1}\left(\alpha_{i}\right)=T_{2}\left(\alpha_{i}\right)$ for $i=1,2, \ldots, \ldots$
Let $x \in V$.
Write $x=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{n} \alpha_{n}$ for some $c_{i} \in F$.

Then,

$$
\begin{aligned}
& \text { Then, } \\
& T_{1}(x)=T_{1}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{n} \alpha_{n}\right) \\
& =c_{1} T_{1}\left(\alpha_{1}\right)+c_{2} T_{1}\left(\alpha_{2}\right)+\ldots+c_{n} T_{1}\left(\alpha_{n}\right) \\
& T_{1} \frac{c_{1} \text { incan }}{=T_{2}}\left(\alpha_{1}\right)+c_{2} T_{2}\left(\alpha_{2}\right)+\ldots+c_{n} T_{2}\left(\alpha_{n}\right) \\
& =\frac{T_{1}\left(\alpha_{i}\right)=T_{2}\left(\alpha_{n}\right)}{=} T_{2}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{n} \alpha_{n}\right)
\end{aligned}
$$

$$
\stackrel{1}{=} T_{2}(x)
$$

So, $T_{1}=T_{2}$.

Math 4570

$$
10 / 26 / 20
$$

Goal: Finish HW 4 material today.
Theorem: Let V and W be finite-dimensional vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Let β and γ be ordered bases for V and W, respectively.
T is an isomorphism/invertible
iff $[T]_{\beta}^{\gamma}$ is invertible.
Furthermore, if this is the case then $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$

We stated and proved one direction two weeks a go. Look in notes on Website if you want to see the proof

Corollary: Let V be a finite-
dimensional vector space oven a field F. Let β and β^{\prime} be ordered basis for V. Let $Q=[I]_{\beta}^{\beta^{\prime}}$ be the change of basis matrix from β to β '. Here $I: V \rightarrow V$ where $I(x)=x$ for all $x \in V$.

Then:
(1) Q is invertible and $Q^{-1}=[I]_{\beta^{\prime}}^{\beta}$
(2) If $T: V \rightarrow V$ is a linear transformation, then $[T]_{\beta}=Q^{-1}[T]_{\beta}, Q$

$$
[I]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}[I]_{\beta}^{\beta^{\prime}}
$$

proof of (1): I is invertible and $I^{-1}=I$,
Thus, $Q=[I]_{\beta}^{\beta^{\prime}}$ is invertible
and

$$
\begin{aligned}
& \text { and } \\
& Q^{-1}=\left[I^{-1}\right]_{\beta^{\prime}}^{\beta}=[I]_{\beta^{\prime}}^{\beta} .
\end{aligned}
$$

proof of (2):

$$
\begin{aligned}
& \text { We have that } \\
& Q^{-1}[T]_{\beta^{\prime}} Q=[I]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}[I]_{\beta}^{\beta^{\prime}} \\
& \overline{\bar{A}}[I]_{\beta^{\prime}}^{\beta}[\underbrace{T_{0} I}]_{\beta}^{\beta^{\prime}} \\
& T \circ I=T \\
& \text { ow: } \\
& {\left[U_{0} T\right]_{\alpha}^{\gamma}=[U]_{\delta}^{\gamma}[T]_{\alpha}^{\delta}} \\
& =[I]_{\beta^{\prime}}^{\beta}[T]_{\beta}^{\beta^{\prime}} \\
& \stackrel{\otimes}{=}[I \cdot T]_{\beta}^{\beta} \\
& =[T]_{\beta}^{\beta}=[T]_{\beta}
\end{aligned}
$$

Def: Let A and B be $n \times n$ matrices with entries from a field F. We say that A and B are similar if there exists an $n \times n$ invertible matrix Q with entries from F where

$$
B=Q^{-1} A Q
$$

In the previous the we saw that $[T]_{\beta}$ and $[T]_{\beta}$, are similar matrices

Theorem: Let V be a finitedimensional vectors space oven a field F. Let β be an ordered basil for V. Let $T: V \rightarrow V$ be a linear transformation. Suppose $\operatorname{dim}(V)=n$.
If A is an $n \times n$ matrix with entries from F that is similar to $[T]_{\beta}$, then $A=[T]_{\gamma}$ where γ is some ordered basis for V.
proof: Let $n=\operatorname{dim}(v)$. Then
$[T]_{\beta}$ is $n \times n$. Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$.
Since A is similar to $[T]_{\beta}$ there exists an invertible $n \times n$ matrix Q with entries from F where $A=Q^{-1}[T]_{\beta} Q$.

Let $Q_{i j}$ denote the ij-th entry $\quad \begin{array}{r}p 9 \\ 6\end{array}$ of the matrix Q.
That is, $Q=\left(\begin{array}{cccc}Q_{11} & Q_{12} & \cdots & Q_{1 n} \\ Q_{21} & Q_{22} & \cdots & Q_{2 n} \\ \vdots & & & \vdots \\ Q_{n 1} & Q_{n 2} & \cdots & Q_{n n}\end{array}\right)$.
Define the vectors $w_{1}, w_{2}, \ldots, w_{n}$ by the equations

$$
w_{j}=\sum_{i=1}^{n} Q_{i j} V_{j}
$$

this sum runs over the jth column of Q

Let $\gamma=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$.
We will now show γ is a basis for V. We do this by showing that γ is a lin, ind, set. Then since $\operatorname{dim}(v)=n$, and \dot{r} has n elements, it must be a v.

Suppose

$$
\alpha_{1} w_{1}+\alpha_{2} w_{2}+\cdots+\alpha_{n} w_{n}=\overrightarrow{0}
$$

where $\alpha_{i} \in F$. Then,

$$
\begin{aligned}
& \alpha_{1}\left(Q_{11} v_{1}+Q_{21} v_{2}+\cdots+Q_{n 1} v_{n}\right) \\
+ & \alpha_{2}\left(Q_{12} v_{1}+Q_{22} v_{2}+\cdots+Q_{n 2} v_{n}\right) \\
+ & \cdots \\
+ & \alpha_{n}\left(Q_{1 n} v_{1}+Q_{2 n} v_{2}+\cdots+Q_{n n} v_{n}\right)=\overrightarrow{0}
\end{aligned}
$$

Rearranging we get

$$
\begin{aligned}
& \text { Rearranging we } \\
& \left(\alpha_{1} Q_{11}+\alpha_{2} Q_{12}+\ldots+\alpha_{n} Q_{1 n}\right) V_{1} \\
& +\left(\alpha_{1} Q_{21}+\alpha_{2} Q_{22}+\cdots+\alpha_{n} Q_{2 n}\right) V_{2} \\
& +\ldots+\left(\alpha_{1} Q_{n 1}+\alpha_{2} Q_{n 2}+\cdots+\alpha_{n} Q_{n n}\right) v_{n}=\overrightarrow{0}
\end{aligned}
$$

Since $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a lin, ind. set we get

$$
\begin{gathered}
\alpha_{1} Q_{11}+\alpha_{2} Q_{12}+\ldots+\alpha_{n} Q_{1 n}=0 \\
\alpha_{1} Q_{21}+\alpha_{2} Q_{22}+\ldots+\alpha_{n} Q_{2 n}=0 \\
\vdots \\
\vdots \\
\alpha_{1} Q_{n 1}+\alpha_{2} Q_{n 2}+\cdots+\alpha_{n} Q_{n n}=0
\end{gathered}
$$

Thus,

$$
\left(\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 n} \\
Q_{21} & Q_{22} & \cdots & Q_{2 n} \\
\vdots & & & \vdots \\
Q_{n 1} & Q_{n 2} & \cdots & Q_{n n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

or

$$
Q\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Since Q^{-1} exists we get

$$
\begin{aligned}
& \text { Since } Q^{-1} \text { exists we get } \\
& \left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\underbrace{Q^{-1} Q}_{I}\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=Q^{-1}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

Thus, $\alpha_{1}=0, \alpha_{2}=0, \ldots, \alpha_{n}=0$.
Thus, γ is a lin, ind. set,
So, γ is a basis.

By the definition of w_{j}, Q is the change of basis matrix $[I]_{\gamma}^{\beta}$.

$$
\begin{aligned}
& w_{j}=\sum_{i=1}^{n} Q_{i j} v_{i} \\
& I\left(w_{j}\right)=I\left(\sum_{i=1}^{n} Q_{i j} v_{i}\right) \\
& =\sum_{i=1}^{n} Q_{i j} v_{i}
\end{aligned}
$$

So, the j th column of

$$
\begin{aligned}
& \text { So, the jth column of } \\
& {[I]_{\gamma}^{\beta} \text { is }\left(\begin{array}{c}
Q_{1 j} \\
Q_{2 j} \\
\vdots \\
Q_{n j}
\end{array}\right)=j \text { th column }} \\
& \text { of } Q
\end{aligned}
$$

Hence, $Q^{-1}=[I]_{\beta}^{\gamma}$. And,

$$
\begin{aligned}
& \text { Hence, } Q=L I]_{\beta} \\
& \begin{aligned}
A=Q^{-1}[T]_{\beta} Q & =[I]_{\beta}^{\gamma}[T]_{\beta}[I]_{\gamma}^{\beta} \\
& =[T]_{\gamma}
\end{aligned}
\end{aligned}
$$

Math 4570

$$
10 / 28 / 20
$$

Review of determinants $\left(\begin{array}{l} \pm n \\ \text { between } \\ H W\end{array} 4 / H \omega S\right.$
We will define determinants recursively.
Def: Let A be $a_{n} n \times n$ matrix with coefficients from a field F. Let $1 \leq i, j \leq n$. The matrix $A_{i j}$ is defined to be the $(n-1) \times(n-1)$ matrix obtained by removing the i th row and j th column of A

Ex:

$$
A=\left(\begin{array}{ccc}
\pi & -\frac{1}{10} & 1 \\
0 & 5 & -2 \\
i & \sqrt{2} & 3
\end{array}\right)
$$

$$
\begin{array}{|c|c}
A_{11}=\left(\begin{array}{cc}
5 & -2 \\
\sqrt{2} & 3
\end{array}\right) & A_{23}=\left(\begin{array}{cc}
\pi & -\frac{1}{10} \\
i & \sqrt{2}
\end{array}\right) \\
\left(\begin{array}{cc}
-\frac{1}{10} & 1 \\
5 & -2 \\
i & \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
\pi & -\frac{1}{10} & 1 \\
0 & 5 & \frac{2}{2} \\
i & \sqrt{2} & 3
\end{array}\right)
\end{array}
$$

Def: Let A be an $n \times n$ matrix with entries from a field F. Let $a_{i j}$ be the entry in the ith row and it column of A.
(1) If $n=1$ and $A=\left(a_{11}\right)$, then define $\operatorname{det}(A)=a_{11}$
(2) If $n=2$ and $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ then define $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$
(3) If $n \geqslant 3$, then define $\operatorname{det}(A)$ as follows. Pick a column $j \quad(1 \leqslant j \leqslant n)$ Define

This is called the expansion of the " determinant along the jth column

Note: One can also expand along a row in part (3). You pick
a row $i(1 \leq i \leq n)$ and replace step (3) with

$$
\operatorname{step}(A)=\underbrace{\sum_{j=1}^{n}}_{j=1}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

Sum over
the columns
row i is fixed

Fact: This def is well-defined.
One can show that the final result is the same no matter What row or column you expand on in each step
Notation: One also uses bars in the notation. For example,

$$
\operatorname{det}\left(\begin{array}{cc}
10 & 1 \\
-1 & 5
\end{array}\right)=\left|\begin{array}{cc}
10 & 1 \\
-1 & 5
\end{array}\right|
$$

$$
\begin{aligned}
& \text { Ex: } \operatorname{det}(-3)=-3 \\
& \text { Ex: } \operatorname{det}\left(\begin{array}{cc}
1 & 5 \\
-1 & 3
\end{array}\right)=(1)(3)-(5)(-1)=8 \\
& \text { Ex: } A=\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right) \\
& \text { Expand on row } i=1 \text { : }\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right) \\
& \operatorname{det}(A)=(-1)^{1+1} a_{11} \operatorname{det}\left(A_{11}\right)+(-1)^{1+2} a_{12} \operatorname{det}\left(A_{12}\right) \\
& +(-1)^{1+3} a_{13} \operatorname{det}\left(A_{13}\right) \\
& =\underbrace{(1)(3) \cdot\left|\begin{array}{cc}
-4 & 3 \\
4 & -2
\end{array}\right|}_{a_{11}}+\underbrace{(-1)(1)\left|\begin{array}{cc}
-2 & 3 \\
5 & -2
\end{array}\right|}_{a_{12}}+\underbrace{(1)(0)\left|\begin{array}{cc}
-2 & -4 \\
5 & 4
\end{array}\right|}_{a_{13}} \\
& { }^{\text {a. }} \\
& =3[8-12]-[4-15]+0=-1 \\
& \left|\begin{array}{ccc}
a_{13} \\
\mid 3 & 0 & \theta^{1} \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left((-1)^{i+j}\right)=\left(\begin{array}{ll}
(-1)^{1+1} & (-1)^{1+2} \\
(-1)^{1+3} \\
(-1)^{2+1} & (-1)^{2+2} \\
(-1)^{2+3} \\
(-1)^{3+1} & (-1)^{3+2} \\
(-1)^{3+3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right) \quad\left[\begin{array}{l}
\text { pg } \\
5
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)(1)\left|\begin{array}{rr}
-2 & 3 \\
5 & -2
\end{array}\right|+(1)(-4)\left|\begin{array}{cc}
3 & 0 \\
5 & -2
\end{array}\right|+(-1)(4)\left|\begin{array}{cc}
3 & 0 \\
-2 & 3
\end{array}\right| \\
& \left.\begin{array}{|ccc|}
\hline 3 & 4 & 4 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}|\quad| \begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array} \right\rvert\, \\
& =-[4-15]-4[-6-0]-4[9-0]=-1
\end{aligned}
$$

For 4×4, the +1 - matrix would be

$$
\left(\begin{array}{lll}
+ & - & - \\
- & + & - \\
+ & + & - \\
- & + & +
\end{array}\right)
$$

$$
\operatorname{det}\left(\left(\begin{array}{llcc}
1 & 2 & 0 & -1 \\
0 & 3 & -1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 3 & 2 & 1
\end{array}\right) \quad\left(\begin{array}{l}
+ \\
- \\
+ \\
+ \\
- \\
- \\
+ \\
+ \\
+
\end{array}\right)\right.
$$

$$
=(1)(1)\left|\begin{array}{ccc}
3 & -1 & 0 \\
2 & 1 & -1 \\
3 & 2 & 1
\end{array}\right|+\underbrace{(-1)(0)\left|\begin{array}{ccc}
2 & 0 & -1 \\
2 & 1 & -1 \\
3 & 2 & 1
\end{array}\right|}
$$

$$
\begin{aligned}
=\left|\begin{array}{ccc}
3 & -1 & 0 \\
2 & 1 & -1 \\
3 & 2 & 1
\end{array}\right| & =3\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right|-(-1)\left|\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right|+0 \\
& =3[1+2]+1[2+3] \\
& =9+5=14
\end{aligned}
$$

Properties of the determinant:
Let F be a field and A and B be $n \times n$ matrices with entries from F. Then:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) A is invertible iff $\operatorname{det}(A) \neq 0$.

If A is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}
$$

$$
\begin{gathered}
\text { Math } 4570 \\
11 / 2 / 20
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Test 1 solutions on canvas.
Your grade will the max of these two systems:
syllabus system: $\frac{1}{3}$ test $1, \frac{1}{3}$ test $2, \frac{1}{3}$ final other system: $\frac{1}{2}-\max \{$ test 1, test 2$\}$

$$
\frac{1}{2} \text {-final }
$$

Test 2 is on
Weds 11/18.
Test 2 covers
HW 3 and How 4.

Eigenvalues, Eigenvectors, and Diagonalization

Def: Let V be a vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation.
If $x \in V$ with $x \neq \overrightarrow{0}$ and $T(x)=\lambda x$ for some $\lambda \in F$, then we call x an eigenvector of T and λ the eigenvalue corresponding to x.

Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T\binom{a}{b}=\binom{a+3 b}{4 a+2 b} \triangleleft\left(\begin{array}{l}
\text { you can } \\
\text { check } \\
\text { this is linear }
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& T\binom{1}{-1}=\binom{1-3}{4-2}=\binom{-2}{2}=-2\binom{1}{-1}
\end{aligned}
$$

So, $x=\binom{1}{-1}$ is an eigenvector with eigenvalue $\lambda=-2$.

$$
T\binom{3}{4}=\binom{3+12}{12+8}=\binom{15}{20}=5\binom{3}{4}
$$

So, $x=\binom{3}{4}$ is an eigenvector with eigenvalue $\lambda=5$.
$E x: P_{2}(\mathbb{R})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})
$$

$\left.T\left(a+b x+c x^{2}\right)=b+2 c x\right\}$
can T is linear
$\left[T h a t ~ i s, T(f)=f^{\prime}\right]$
Then,

$$
T(1)=0=0 \cdot 1
$$

So, 1 is an eigenvector with eigenvalue 0 .

Def: Let V be a finite-dimensional vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation. We say that T is diagunalizable if there exists an ordered basis β of V such that $[T]_{\beta}$ is a diagonal matrix.

Ex: Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
given by $T\binom{a}{b}=\binom{a+3 b}{4 a+2 b}$ as on page 3 . We saw that $\binom{1}{-1}$ and $\binom{3}{4}$ are eigenvectors of T.
Let $\beta=\left[\binom{1}{-1},\binom{3}{4}\right]$.
You can check that these two vectors are linearly independent and since are two of them and $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$, they are a basis for \mathbb{R}^{2}.
Let's calculate $[T]_{\beta}$.

$$
\begin{aligned}
& \text { Let's calculate LTJ } \\
& T\binom{1}{-1}=\binom{-2}{2}=-2\binom{1}{-1}+O\binom{3}{4} \\
& T\binom{3}{4}
\end{aligned} \underbrace{\underbrace{0\binom{1}{2}}_{\text {then }}}_{\text {write the answer } \left.^{(15} \mathbf{2 0}\right)=\underbrace{0\binom{1}{-1}+5\binom{3}{4}}_{\text {terms of } \beta}}
$$

write the answer in terms of β $p \log \beta$
So, $[T]_{\beta}=\left(\begin{array}{cc}-2 & 0 \\ 0 & 5\end{array}\right), \quad \begin{aligned} & \text { So, } T \text { is } \\ & \text { diagonalizable. }\end{aligned}$

Let's take a closer look at why this is useful.
Let $v_{1}=\binom{1}{-1}$ and $v_{2}=\binom{3}{4}$.
Let x be any vector in \mathbb{R}^{2}.
Since $\beta=\left[v_{1}, v_{2}\right]$ is a basis for \mathbb{R}^{2} We can write $X=c_{1} v_{1}+c_{2} v_{2}$ where $c_{1}, c_{2} \in \mathbb{R}$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
T(x) & =T\left(c_{1} v_{1}+c_{2} v_{2}\right) \\
& =c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right) \\
& =c_{1}\left(-2 v_{1}\right)+c_{2}\left(5 v_{2}\right) \\
& =-2 c_{1} v_{1}+5 c_{2} v_{2}
\end{aligned}
\end{aligned}
$$

In matrix notation,

$$
\begin{aligned}
& \text { In matrix notation, } \\
& {[T(x)]_{\beta}=[T]_{\beta}[x]_{\beta} }=\left(\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right)\binom{c_{1}}{c_{2}} \\
&=\left(\begin{array}{c}
-2 c_{1} \\
5 \\
c_{2}
\end{array}\right)
\end{aligned}
$$

Theorem: Let V be a finite-dimensional $1 P 97$ vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation.
T is diagonalizable iff there exists an ordered basis $\beta=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$ of V
Consisting of eigenvectors of T. Moreover, if this is the care then

$$
[T]_{\beta}=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Where λ_{i} is the eigenvalue corresponding to V_{i}.
proof: T is diagonalizable
iff there exists an ordered basis $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of V such that

$$
[T]_{\beta}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & i_{n}
\end{array}\right)
$$

for some $\lambda_{i} \in F$
iff there exists an ordered basis

$$
\begin{aligned}
& \text { there exists an ordered basis } \\
& \text { B=[v, } \left.v_{1}, \ldots, v_{n}\right] \text { of } V \text { such that } \\
& T\left(v_{1}\right)=\lambda_{1} v_{1}+O v_{2}+\cdots+O v_{n} \\
& T\left(v_{2}\right)=O v_{1}+\lambda_{2} v_{2}+\cdots+O v_{n} \\
& \vdots \\
& T\left(v_{n}\right)=O v_{1}+O v_{2}+\cdots+\lambda_{n} v_{n}
\end{aligned}
$$

iff there exists an ordered basis $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of V consisting of eigenvectors with $T\left(V_{i}\right)=\lambda_{i} V_{i}$ So λ_{i} is the eigenvalue for v_{i}

Why is this useful?
Let $T: V \rightarrow V$ be diagonalizable with basis of eigenvectors $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Let $x \in V$.
Write $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$.

$$
\begin{aligned}
& \text { Write } \begin{aligned}
T(x) & =T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right) \\
& =c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{n} T\left(v_{n}\right) \\
& =c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\cdots+c_{n} \lambda_{n} v_{n}
\end{aligned}
\end{aligned}
$$

How do we find the eigenvalues and eigenvectors?
Let's work on this question.

Theorem: (HW5 \#4)
Let V be a finite-dimensional vector space oven a field F.
Let $T: V \rightarrow V$ be a linear transformation.
Let β and γ be ordered bases for V.
Then $\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left([T]_{\gamma}\right)$
pf: HWS \#4.

The previous theorem makes the next definition well-defined.
Def: Let V be a finite-dimensional vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation. The determinant of T is defined to be

$$
\begin{aligned}
& T \text { is defined to }\left([T]_{\beta}\right) \\
& \operatorname{det}(T)=\operatorname{det}([T
\end{aligned}
$$

Where β is any ordered basis for V.
$E x: \operatorname{Recall} P_{z}(\mathbb{R})=\left\{a+b x+c x^{2} / a, b, c \in \mathbb{R}\right\}$ Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined as $T(f)=f^{\prime}$ that is $T\left(a+b x+c x^{2}\right)=b+2 c x$.
Let $\beta=\left[1, x, x^{2}\right]$.
β is an ordered basis for $V=P_{2}(\mathbb{R})$.

$$
\left.\begin{array}{l}
\beta \text { is an ordered basis } \\
T(1)=0.1+0 \cdot x+0 x^{2} \\
T(x)=1=1 \cdot 1+0 \cdot x+0 x^{2} \\
T\left(x^{2}\right)=2 x=0.1+2 \cdot x+0 x^{2}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { So, } \\
& \operatorname{det}(T)=\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \\
&=0
\end{aligned}
$$

So,
expand on
lIst column of all zeros

Theorem: Let V be a finite-dimensioal/ pg_{13} vector space over a field F.
Let $T: V \rightarrow V$ be a linear transformation
Let $I: V \rightarrow V$ be the identity transformation, that is $I(x)=x \quad \forall x \in V$, If β is an ordered basis for V, then

$$
\operatorname{det}(T-\lambda I)=\operatorname{det}\left([T]_{\beta}-\lambda I_{n}\right)
$$

Where I_{n} is the $n \times n$ identity matrix where $\operatorname{dim}(V)=n$.

Theorem: Let V be a finite dimensional vector space over a field F.
Let $T: V \rightarrow V$ be a linear
trans formation.
Then the following are equivalent:
$\} \&\left[\begin{array}{l}\text { means: if one of } \\ \begin{array}{l}\text { (1),(2),(3) are tree } \\ \text { then they are } \\ \text { all true. }\end{array} \\ \hline\end{array}\right.$
(1) There exists an eigenvector $x \in V, x \neq \overrightarrow{0}$, of T with eigenvalue λ
(2) $\operatorname{det}(T-\lambda I)=0$
(3) $N(T-\lambda I) \neq\{\overrightarrow{0}\}$

Here $I: V \rightarrow V$ is the identity linear transformation $I(v)=v$ for $a l l v \in V$.
proof: We prove

(1) \Rightarrow (3)

Suppose there exists $x \in V, x \neq \overrightarrow{0}$,
with $T(x)=\lambda x$, where $\lambda \in F$.
Then, $T(x)=\lambda I(x)$.
So, $T(x)-\lambda I(x)=\overrightarrow{0}$.
Hence, $(T-\lambda I)(x)=\overrightarrow{0}$
Thus, $x \in N(T-\lambda I)$.
Since $x \neq \overrightarrow{0}, N(T-\lambda I) \neq\{\overrightarrow{0}\}$.

$((3) \stackrel{s}{ }(2))$
Suppose $N(T-\lambda I) \neq\{\overrightarrow{0}\}$.
Then there exists $x \in N(T-\lambda I)$ with $x \neq \overrightarrow{0}$.
Note: $\vec{O} \in N(T-\lambda I)$ because $T-\lambda I$ is a linear transformation and HW 3 \# $($ (a) tells us then that $(T-\lambda I)(\overrightarrow{0})=\overrightarrow{0}$.
So, $(T-\lambda I)(x)=\overrightarrow{0}=(T-\lambda I)(\overrightarrow{0})$
Thus, $T-\lambda I$ is not one-to-one.
Hence, $T-\lambda I$ is not invertible.
By HW $5 \# 5 a, \operatorname{det}(T-\lambda I)=0$.
$((2) \leadsto(1))$
Suppose $\operatorname{det}(T-\lambda I)=0$.
By HW 5 \#5a, $T-\lambda I$ is not invertible.

So, $T-\lambda I$ is not one-to-one.
By Hm 3 \#as, $N(T-\lambda I) \neq\{\overrightarrow{0}\}\}$
Why? Since $T-\lambda I$ is not $1-1$ we have $(T-\lambda I)\left(x_{1}\right)=(T-\lambda I)\left(x_{2}\right)$, where $x_{1} \neq x_{2}$.
Then, $(T-\lambda I)\left(X_{1}\right)-(T-\lambda I)\left(x_{2}\right)=\overrightarrow{0}$
So, $(T-\lambda I)\left(X_{1}-X_{2}\right)=\overrightarrow{0}$
So, $x_{1}-x_{2} \in N(T-\lambda I)$
Since $x_{1}-x_{2} \neq \overrightarrow{0} \quad\left(\right.$ because $\left.x_{1} \neq x_{2}\right)$,

$$
\begin{aligned}
& \text { we } \left.x_{1}-x_{2}\right) \neq\{\overrightarrow{0}\} \\
& N(T-\lambda I)
\end{aligned}
$$

So, there exists $x \in V, x \neq \overrightarrow{0}$, with $x \in N(T-\lambda I)$,
$S_{0}(T-\lambda I)(x)=\overrightarrow{0}$.
Thus, $T(x)-\lambda I(x)=\overrightarrow{0}$
So, $T(x)=\lambda I(x) \longrightarrow I(x)=x$
Ergo, $T(x)=\lambda x \leftarrow$
Thus, $x \neq \overrightarrow{0}$ is an eigenvector of T with eigenvalue λ.

Theorem: Let V be a finite dimensional vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation.
Let $I: V \rightarrow V$ be the identity transtumation, where $I(x)=x$ for all $x \in V$.
Let I_{n} be the $n \times n$ identity matrix where $n=\operatorname{dim}(V)$.
Let β be an ordered basis for V. Then,

$$
\begin{aligned}
& \text { Then, } \\
& \operatorname{det}(T-\lambda I)=\operatorname{det}\left([T]_{\beta}-\lambda I_{n}\right)
\end{aligned}
$$

proof: Let β be an ordered basis for V. Then,

$$
\left.\begin{array}{rl}
\text { for } V . \text { Then, } & \operatorname{det}(T-\lambda I)
\end{array}\right)=\operatorname{det}\left([T-\lambda I]_{\beta}\right)
$$

$$
=\operatorname{det}\left([T]_{\beta}-\lambda I_{n}\right)
$$

$$
[I]_{\beta}=I_{n}
$$

Def: Let V be a finite-dimensional vector space over a field F.
Let $T: V \rightarrow V$ be a linear transformation. Let λ be an eigenvalue of T.
Define
$E_{\lambda}(T)$ is called the eigenspace of T corresponding to λ.
The dimension of $E_{\lambda}(T)$ is called the geometric multiplicity of λ.

Note: In HW 5 you will show $E_{\lambda}(T)$ is a subspace of V. Also, $E_{\lambda}^{\lambda}(T)$ contains \vec{O} and all the eigenvectors corresponding to λ.

Def: Let V be a finite dimensional vector space over a field F. Let β be any ordered basis for V. Le+ $T: V \rightarrow V$ be a linear transformation. The function

$$
\begin{aligned}
& \text { The function } \\
& f_{T}(\lambda)=\operatorname{det}(T-\lambda I)=\operatorname{det}\left([T]_{\beta}-\lambda I_{n}\right)
\end{aligned}
$$

is called the characteristic polynomial of T. The roots of $f_{T}(\lambda)$ are the eigenvalues of T.
If λ_{0} is a root of $f_{T}(\lambda)$ then the algebraic multiplicity of λ_{0} is the largest positive integer k such that $\left(\lambda-\lambda_{0}\right)^{k}$ is a factor of $f_{T}(\lambda)$.

Ex: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $\left.\right|_{10} ^{p g}$

$$
T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-2 c \\
a+2 b+c \\
a+3 c
\end{array}\right) .
$$

T is a linear transformation. [you can $\left.\begin{array}{c}\text { check }\end{array}\right]$
Let's find the eigenvalues, the eigenspaces, and more...
Let $\beta=\left[v_{1}, v_{2}, v_{3}\right]$ where

$$
\begin{aligned}
& \text { Let } \beta=\left[v_{1}, v_{2}, v_{3}\right] \text { where } \\
& 0 \\
& v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), v_{3}=\binom{0}{1} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have } \\
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=0 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)=0 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+2 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0 \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+3 \cdot\left(\begin{array}{ll}
0 \\
0 \\
1
\end{array}\right) \\
& \text { Thus, }[T]_{\beta}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Thus, by the previous theorem,

$$
\begin{aligned}
& f_{T}(\lambda)=\operatorname{det}(T-\lambda I) \\
& =\operatorname{det}\left([T]_{\beta}-\lambda I_{3}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & -2 \\
1 & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{array}\right) \\
& V=\mathbb{R}^{3} \\
& \text { has } \\
& \operatorname{dim}\left(\mathbb{R}^{3}\right)=3 \\
& \frac{\left(\begin{array}{c}
\text { expand on } \\
\text { row }
\end{array}\right.}{\binom{\frac{+-+}{\square- \pm}}{+ \pm+}} \\
& =\underbrace{-\lambda\left|\begin{array}{cc}
2-\lambda & 1 \\
0 & 3-\lambda
\end{array}\right|-0 \underbrace{\left|\begin{array}{cc}
1 & 1 \\
1 & 3-\lambda
\end{array}\right|}+(-2)\left|\begin{array}{cc}
1 & 2-\lambda \\
1 & 0
\end{array}\right|} \\
& =-\lambda[(2-\lambda)(3-\lambda)-0]-0-2[0-(2-\lambda)] \\
& =-\lambda^{3}+5 \lambda^{2}-8 \lambda+4
\end{aligned}
$$

Math 4570
$11 / 9 / 20$

- No class this Weds

It's a holiday

- Test 2 is next week un Weds the 18 th
Covers $\underbrace{\text { HW } 3}_{\text {linear }}$ and $\underbrace{\text { HWy } 4}_{\text {Ha } 4 \text {. }}$. trans.
matrix of
a linear trans.
- Same method for test 2 as last time. I'll email it to you on Weds morning and you send it back to me by Thursday at noon. I'll also post it on canvas.
Send it back to me either as: lastuame. firstname. pdf lastrame - firstrame. pdf
underscore
or
space

From last time :

$$
\begin{array}{ll}
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} & \beta=\left[v_{1}, v_{2}, v_{3}\right) \\
T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-2 c \\
a+2 b+c \\
a+3 c
\end{array}\right) & v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
{[T]_{\beta}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)} & \\
f_{T}(\lambda)=\operatorname{det}(T-\lambda I)=-\lambda^{3}+5 \lambda^{2}-8 \lambda+4
\end{array}
$$

Rational roots the: Let

$$
\begin{aligned}
& \text { Rational roots } \\
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
&
\end{aligned}
$$

where a_{i} are integers, $a_{n} \neq 0, a_{0} \neq 0$.
If a rational number $\frac{p}{q}$ is a root of $f(x)$ then p divides a_{0} and q divides a_{n}.

The possible rational roots $\frac{p}{q}$ of $-\lambda^{3}+5 \lambda^{2}-8 \lambda+4$ must satisfy
p divides 4 and q must divide -1
So, $p= \pm 1, \pm 2, \pm 4$ and $q= \pm 1$.
Thus, the possible rational roots are

$$
\frac{p}{q}= \pm 1, \pm 2, \pm 4
$$

$$
\begin{aligned}
& \text { check: } \\
& f_{T}(1)=-(1)^{3}+5(1)-8(1)+4=0 \\
& f_{T}(-1)=-(-1)^{3}+5(-1)-8(-1)+4=8 \neq 0 \\
& f_{T}(2)=0 \\
& f_{T}(-2) \neq 0, f_{T}(\pm 4) \neq 0 \\
& \lambda=2 \text { are the }
\end{aligned}
$$

check:

So, $\lambda=1$ and $\lambda=2$ are the only rational roots of

$$
\begin{aligned}
& \text { only rational } \\
& \text { of }-\lambda^{3}+5 \lambda^{2}-8 \lambda+4
\end{aligned}
$$

Since $\lambda=2$ is a root, we know $\lambda-2$ divides $-\lambda^{3}+5 \lambda^{2}-8 \lambda+4$.

$$
\begin{aligned}
\begin{aligned}
\lambda-2 \sqrt{-\lambda^{3}+5 \lambda^{2}-8 \lambda+4} \\
\frac{-\left(-\lambda^{3}+2 \lambda^{2}\right)}{3 \lambda^{2}-8 \lambda+4} \\
\frac{-\left(3 \lambda^{2}-6 \lambda\right)}{-2 \lambda+4} \\
\frac{-(-2 \lambda+4)}{0}
\end{aligned} & \begin{array}{l}
a \lambda^{2}+b \lambda+c \\
a\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right) \\
r_{1}, r_{2} \text { are } \\
\text { the roots }
\end{array} \\
\lambda & =\frac{-3 \pm \sqrt{3^{2}-4(-1)(-2)}}{2(-1)} \\
& =2,1
\end{aligned}
$$

So,

$$
\begin{aligned}
& \text { So, } \\
& \begin{aligned}
-\lambda^{3}+5 \lambda^{2}-8 \lambda+4 & =(\lambda-2)\left(-\lambda^{2}+3 \lambda-2\right) \\
& =(\lambda-2)[-(\lambda-2)(\lambda-1)] \\
& =-(\lambda-1)(\lambda-2)^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { So, }-\lambda^{3}+5 \lambda^{2}-8 \lambda+4=-(\lambda-1)(\lambda-2)^{2}
$$

eigenvalue of T	$\lambda=1$	$\lambda=2$
algebraic multiplicity	1	2

$$
\text { Recall: } E_{\lambda}(T)=\{x \mid T(x)=\lambda x\}
$$

Let's calculate $E_{1}(T)$

$$
\begin{aligned}
& \frac{\text { Let's calculate } E_{1}}{\begin{aligned}
& E_{1}(T)=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\} \\
&=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{c}
-2 c \\
a+2 b+c \\
a+3 c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\} \\
&=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{c}
-a-2 c \\
a+b+c \\
a+2 c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\} \\
&-2 c=0
\end{aligned}} .\left\{\begin{array}{l}
-2 c=0
\end{array}\right.
\end{aligned}
$$

So we need: to solve

$$
\begin{aligned}
-a & -2 c
\end{aligned}=0
$$

Let's solve
-a

$$
\begin{array}{ll}
a & -c c \\
a+b+c & =0 \\
a & +2 c
\end{array}
$$

$$
\begin{align*}
& a \\
& \left(\begin{array}{ccc|c}
-1 & 0 & -2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \tag{2}\\
& \underset{\substack{-R_{1}+R_{3} \rightarrow R_{3}}}{-R_{1}+R_{2} \rightarrow R_{2}}(\underbrace{\left(\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right.}_{\substack{1 \\
\text { in reduced } \\
\text { form }}} \begin{array}{l}
0
\end{array})
\end{align*}
$$

a $+2 c=0$
(b) $-c=0$
\longleftarrow leading variables: $a \& b$ free variables:

$$
0=0
$$

(3) c

Let $c=t$. Eq (2) gives $b=c=t$.
Eqn (1) gives $a=-2 c=-2 t$.
$a=-2 t$
$b=t$ where t can be any real number.

$$
\begin{aligned}
E_{1}(T) & \left.=\left\{\left(\begin{array}{c}
-2 t \\
t \\
t
\end{array}\right)\right) t \in \mathbb{R}\right\} \\
& \left.=\left\{t\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)\right) t \in \mathbb{R}\right\} \\
& =\operatorname{span}\left(\left\{\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)\right\}\right)
\end{aligned}
$$

So, a basis for $E_{1}(T)$
is $\beta_{1}=\left[\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)\right]$
So, $\operatorname{dim}\left(E_{1}(T)\right)=1$
Thus, the geometric multiplicity of

$$
\begin{aligned}
& \text { nus, the geometric } \\
& \lambda=1 \text { is } \operatorname{dim}\left(E_{1}(T)\right)=1 \text {. }
\end{aligned}
$$

Let's calculate

$$
\begin{aligned}
& E_{2}(T)=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\} \\
& T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { is }\left(\begin{array}{c}
-2 c \\
a+2 \\
a+3 \\
a+c
\end{array}\right)=\left(\begin{array}{ll}
2 & a \\
2 & b \\
2 & c
\end{array}\right)
\end{aligned}
$$

This reduces to solving:

$$
\left.\begin{array}{l}
\begin{array}{ccc}
-2 a & -2 c & =0 \\
a & +c & =0 \\
a & +c & =0
\end{array} \\
\left.\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \xrightarrow{-\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
\begin{array}{l}
-R_{1}+R_{2} \rightarrow R_{2} \\
-R_{1}+R_{3} \rightarrow R_{3}
\end{array}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\begin{array}{l}
a+c=0 \\
0 \\
0 \\
0
\end{array}
\end{array} \qquad \begin{array}{l}
\text { leading } \\
\text { variable : a } \\
\text { free variables: } \\
b, c
\end{array} \quad \begin{array}{l}
a=-c=-t \\
b=s \\
c=t \\
s, t \in \mathbb{R}
\end{array}\right]
$$

$$
\begin{aligned}
E_{2}(T) & =\left\{\left.\left(\begin{array}{c}
-t \\
s \\
t
\end{array}\right) \right\rvert\, s, t \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{c}
-t \\
0 \\
t
\end{array}\right)+\left(\begin{array}{l}
0 \\
s \\
0
\end{array}\right) \right\rvert\, s, t \in \mathbb{R}\right\} \\
& =\left\{\left.t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \right\rvert\, s, t \in \mathbb{R}\right\} \\
& =\operatorname{span}\left(\left\{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}\right)
\end{aligned}
$$

You can show, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are linearly independent.
So, $\beta_{2}=\left[\left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right]$ is a basis for $E_{2}(T)$. Thus, the geometric multiplicity of $\lambda=2$ is $\operatorname{dim}\left(E_{2}(T)\right)=2$

Eigenvalues	$\lambda=1$	$\lambda=2$
algebraic mult.	1	2
geometric mult.	1	2
basis for $E_{\lambda}$$(T)$	$\left.\beta_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)\right]$	$\beta_{2}=\left[\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right]$

Let $\beta=\beta_{1} \cup \beta_{2}=\left[\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right]$
You car show that β is a linearly independent set. So, β is a basil for \mathbb{R}^{3} since β has 3 vectors. And,

So, This diasunalizable.

Ex: $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$

$$
\begin{aligned}
& T(f)=f^{\prime} \\
& T\left(a+b x+c x^{2}\right)=b+2 c x
\end{aligned}
$$

Let $\beta=\left[1, x, x^{2}\right]$.
We saw before that

$$
\begin{aligned}
& \text { We saw before } \\
& \begin{aligned}
& {[T]_{\beta} }=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \\
& \begin{aligned}
f_{T}(\lambda) & =\operatorname{det}(T-\lambda I) \\
& =\operatorname{det}\left([T]_{\beta}-\lambda I_{3}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 2 \\
0 & 0 & -\lambda
\end{array}\right)
\end{aligned}
\end{aligned} .\left\{\begin{array}{l}
\text { (}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & 1 \\
0 \\
0 & -\lambda \\
0 & 2 \\
0 & -\lambda
\end{array}\right)\right. \\
& \left(\begin{array}{l}
+- \pm \\
- \pm \\
+-+
\end{array}\right) \\
& =-\lambda\left|\begin{array}{cc}
-\lambda & 2 \\
0 & -\lambda
\end{array}\right|-0+0 \\
& =-\lambda[-\lambda(-\lambda)-2(0)]=-\lambda^{3}
\end{aligned}
$$

So, $f_{T}(\lambda)=-\lambda^{3}$
The eigenvalue is $\lambda=0$.
$\left[\right.$ ie when $\left.-\lambda^{3}=0\right]$
Algebraic multiplicity of $\lambda=0$ is 3

$$
E_{0}(T)=\{a+b x+c x^{2} \mid \underbrace{T\left(a+b x+c x^{2}\right)}_{b+2 c x}=0(a+b+b 13
$$

So we need to solve

$$
\begin{aligned}
& \text { we need to solve } \\
& b+2 c x=\overrightarrow{0}=0+0 x+0 x^{2}
\end{aligned}
$$

or $\left.\begin{array}{rl}b & =0 \\ 2 c & =0\end{array}\right\}$ a can be any real

So,

$$
\begin{aligned}
& \text { So, } \\
& \begin{aligned}
E_{0}(T) & =\{a \mid a \in \mathbb{R}\} \\
& =\{a \cdot 1 \mid a \in \mathbb{R}\} \\
& =\text { span }(\{1\})
\end{aligned}
\end{aligned}
$$

I_{n} this case, a basis for $E_{0}(T)$ is $\beta=[1]$. So, $\lambda=0$ is geometric multiplicity $\operatorname{dim}\left(E_{0}(T)\right)=1$

Eigenvalue	$\lambda=0$
algebraic multiplicity	3
geometric multiplicity	1
basis for $E_{\lambda}(T)$	$[1]$

There aren't enough linearly
note: independent eigenvectors to make a basis for $V=P_{2}(\mathbb{R})$
So, T isn't diagonalizable, We need 3 lin. ind. eigenvectors, we only have 1.

$$
\begin{array}{|c|}
\hline \text { Math } 4570 \\
\hline 11 / 16 / 20 \\
\hline
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Test 2 on Weds

Today we finish HW 5 topic

Lemma: Let $T: V \rightarrow V$ be a linear transformation where V is a vector space over a field F. Let $v_{1}, v_{2}, \ldots, v_{r}$ be eigenvectors of T with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Then $v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent.
$\frac{\text { proof: We prove this by induction }}{\text { on } r}$
Base case: Suppose $r=1$.
So, suppose v_{1} is an eigenvector of T. Then, $v_{1} \neq \overrightarrow{0}$.
Suppose $c_{1} v_{1}=\vec{O}$ where $c_{1} \in F_{\text {. }}$

If $c_{1} \neq 0$, then c_{1}^{-1} exists in F.
So, $c_{1}^{-1} c_{1} v_{1}=c_{1}^{-1} \overrightarrow{0}$.
Then, $v_{1}=\overrightarrow{0}$ which isn't the case.
So, if $c_{1} v_{1}=\overrightarrow{0}$, then $c_{1}=0$.
Hence, v_{1} is lin. ind.
Induction hypothesis: Suppose any k eigenvectors of T with distinct eigenvalues are lin. ind.

Proof of $k+1$ case using the ind. hyp: Suppose $V_{1}, V_{2}, \ldots, V_{k}, V_{k+1}$ are eigenvectors of T with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, \lambda_{k+1}$ where $\lambda_{i} \neq \lambda_{j} \quad$ if $i \neq j$.

Suppose

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}+c_{k+1} v_{k+1}=\overrightarrow{0} \tag{*}
\end{equation*}
$$

where $c_{i} \in F$.
Apply T to $(*)$ and vie the fact that T is linear and $T\left(V_{i}\right)=\lambda_{i} V_{i}$ and $T(\overrightarrow{0})=\overrightarrow{0}$ to get:

$$
\begin{aligned}
c_{1} \lambda_{1} V_{1}+c_{2} \lambda_{2} V_{2} & +\cdots \\
& +c_{k} \lambda_{k} V_{k}+c_{k+1} \lambda_{k+1} V_{k+1}=\overrightarrow{0}
\end{aligned}
$$

Also, multiplying $(*)$ by λ_{k+1} gives:

$$
\begin{array}{r}
c_{1} \lambda_{k+1} V_{1}+c_{2} \lambda_{k+1} v_{2}+\cdots \\
+c_{k} \lambda_{k+1} V_{k}+c_{k+1} \lambda_{k+1} v_{k+1}=\overrightarrow{0}
\end{array}
$$

Computing $(* *)-(* * *)$ gives

$$
\begin{array}{r}
c_{1}\left(\lambda_{1}-\lambda_{k+1}\right) V_{1}+c_{2}\left(\lambda_{2}-\lambda_{k+1}\right) v_{2} \\
+\cdots+c_{k}\left(\lambda_{k}-\lambda_{k+1}\right) V_{k}=\overrightarrow{0}
\end{array}
$$

Since we have k eigenvectors v_{1}, \ldots, v_{k} with distinct eigenvalues we can apply the ind. hyp. and thus $v_{1}, v_{2}, \ldots, v_{k}$ are lin. ind.
So, in $(\not * * * *)$ we get

$$
\begin{gathered}
c_{1}\left(\lambda_{1}-\lambda_{k+1}\right)=0 \\
c_{2}\left(\lambda_{2}-\lambda_{k+1}\right)=0 \\
\vdots \\
c_{k}\left(\lambda_{k}-\lambda_{k+1}\right)=0
\end{gathered}
$$

Since, $\lambda_{i}-\lambda_{k+1} \neq 0$ when $1 \leq i \leq k$ this implies that $c_{1}=c_{2}=\ldots=c_{k}=0$.

So (*) becomes

$$
c_{k+1} v_{k+1}=\overrightarrow{0}
$$

As we saw in the base case, since $V_{k+1} \neq \overrightarrow{0}$ (because its an eigenvector)
we must have $c_{k+1}=0$.

$$
\text { Thus } c_{1}=c_{2}=\ldots=c_{k}=c_{k+1}=0
$$

and $V_{1}, V_{2}, \ldots, V_{k}, V_{k+1}$ are lin. ind.

Theorem: Let V be a finite-dimensional $\frac{09}{7}$ vector space over a field F.
Let $n=\operatorname{dim}(V)$,
Let $T: V \rightarrow V$ be a linear trans formation.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be the distinct eigenvalues of T. Let $n_{1}, n_{2}, \ldots, n_{r}$ be their geometric multiplicities,
that is $n_{i}=\operatorname{dim}\left(E_{\lambda_{i}}(T)\right)$.
For each i, let

$$
\beta_{i}=\left[V_{i, 1}, v_{i, 2}, \cdots, V_{i, n_{i}}\right]
$$

be an ordered basis for $E_{\lambda_{i}}(T)$.

Let

$$
\begin{aligned}
& \beta= \beta, U \beta_{2} \cup \ldots U \beta_{r} \\
&= {\left[V_{1,1}, V_{1,2}, \ldots, V_{1, n_{1}},\right.} \\
& V_{2,1}, V_{2,2}, \ldots, V_{2, n_{2}} \\
& \ldots \\
&\left.V_{r, 1}, V_{r, 2}, \ldots, V_{r, n_{r}}\right]
\end{aligned}
$$

Then β is a linearly independent set. But β might not be a basis for V.

Moreover,
β is a basis for V
iff $|\beta|=n_{1}+n_{2}+\cdots+n_{r}=n$
ff T is diagunalizable.
proof: We first show that β is a linearly independent set.
Suppose that

$$
\sum_{i=1}^{r} \sum_{k=1}^{n_{i}} c_{i, k} v_{i, k}=\overrightarrow{0}
$$

where $c_{i, k} \in F$.
For each i, we have that

$$
\begin{aligned}
& \text { For each } i, \text { we have that } \\
& V_{i, 1}, V_{i, 2}, \ldots, V_{i, n_{i}} \in E_{\lambda_{i}}(T) \text {. }
\end{aligned}
$$

By HW5 \#6, $E_{\lambda_{i}}(T)$ is a subspace of V, thus

$$
w_{i}=\sum_{k=1}^{n_{i}} c_{i, k} v_{i, k}
$$

is in $E_{\lambda_{i}}(T)$.

So, $(*)$ becomes

$$
w_{1}+w_{2}+\cdots+w_{r}=\overrightarrow{0} \quad(x \not x)
$$

We will now show that $w_{i}=\overrightarrow{0}$ for all i.
Suppose that this isn't the case. By renumbering/reordering if necessary, there exists m with $1 \leq m \leq r$ such that $w_{i} \neq \overrightarrow{0}$ for $1 \leq i \leq m$ and $w_{i}=\overrightarrow{0}$ for $m<i$.
$\underbrace{W_{1}, W_{2}, \ldots, W_{m}}_{a \| \neq \overrightarrow{0}}, \underbrace{W_{m+1}, \ldots, w_{r}}_{a \|=\overrightarrow{0}}$

So, $(* *)$ becomes

$$
w_{1}+w_{2}+\cdots+w_{m}=\overrightarrow{0} \quad(* * k)
$$

But then since each W_{i} is $E_{\lambda_{i}}(T)$ and nen-zero, we have m eigenvectors with distinct eigenvalues with a dependency relation $(\not \not \not \not \pm \neq)$ $i e, w_{1}, w_{2}, \ldots, w_{m}$ are lin. dep. Which contradicts the lemma.
Thus, $w_{1}=w_{2}=\ldots=w_{r}=\overrightarrow{0}$.
$E r g_{0}, w_{i}=\sum_{k=1}^{n_{i}} c_{i, k} v_{i, k}=\overrightarrow{0}$
for each i. But by assumption $\beta_{i}=\left[v_{i, 1}, v_{i, 2}, \ldots g v_{i, n_{i}}\right]$ is a basis, and so lin. ind,, thus $c_{i, k}=0.4$

Hence β is a lin. ind. set.
Moreover part:
Note that β is a basis for V iff $|\beta|=n$ iff $n=n_{1}+n_{2}+\ldots+n_{r}$.
Now we show $n=n_{1}+n_{2}+\cdots+n_{r}$ of T is diagonalizable.
$((=)$ Suppose that T is diagonalizable. This means there exists an ordered basis γ of V of eigenvectors of T.
Let $\gamma_{i}=\gamma \cap E_{\lambda_{i}}(T)$
for $i=1,2, \ldots, r$.
So, $\gamma=\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{r}$.

Then,

$$
\begin{aligned}
& \text { Then, } \\
& n=\operatorname{dim}(\underbrace{\operatorname{span}(\gamma)})=\sum_{i=1}^{r} \operatorname{dim}(v) \\
& V
\end{aligned}
$$

And

$$
\operatorname{dim}(\underbrace{\operatorname{span}\left(\gamma_{i}\right)}_{\begin{array}{c}
\text { subspace } \\
\text { of } E_{\lambda_{i}}(T)
\end{array}}) \leq \operatorname{dim}\left(E_{\lambda_{i}}(T)\right)=n_{i}
$$

So putting this together gives

$$
\begin{aligned}
& \text { So putting this together gin } \left.\sum_{i=1}^{r} \operatorname{dim}\left(\operatorname{span}\left(\gamma_{i}\right)\right) \leq n_{1}+n_{2}+\ldots+n_{r}\right) \\
& n \text { lind. set }
\end{aligned}
$$

But since β is a lin, ind, set of $n_{1}+n_{2}+\ldots+n_{r}$ elements inside of V which has dimension n, we must have $n_{1}+n_{2}+\ldots+n_{r} \leqslant n_{1}$

$$
S_{0}, n=n_{1}+n_{2}+\ldots+n_{r}
$$

$(叩)$ Suppose that

$$
\underbrace{n}_{\operatorname{dim}(v)}=\underbrace{n_{1}+n_{2}+\ldots+n_{r}}_{\# \text { elements in } \beta}
$$

Then, β is a basis for V of eigenvectors of T. [Because we know β is lin. ind set, and if $|\beta|=\operatorname{dim}(v)$ it must span V also.]
Thus, T is diagonalizable.

$$
\begin{gathered}
\text { Math } 4570 \\
\hline 11 / 30 / 20 \\
\hline
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Final is cumulative covers up to HWS (Eigenvalues, Eigenvectors, Diagonalízation)
- We will talk about HW 6 material but it won't be on the final

$11 / 30$	$12 / 2$
Topic 6	Topic 6
$12 / 7$	$12 / 9$
Topic 6 Review	
$12 / 14$ FinAL $12-2$ We will do	

One more thing with eigenvalues
Let V be a finite-dimensional vector space oven a field F. Let $T: V \rightarrow V$ be a linear transformation.
Let $n=\operatorname{dim}(V)$.
Then:
(1) Let λ be an eigenvalue of T. Let k be the algebraic multiplicity of λ. Then

$$
\left.\begin{array}{l}
1 \leq \operatorname{dim}\left(E_{\lambda}(T)\right) \leq k \\
\left.1 \leq \begin{array}{c}
\text { geometric multi. } \\
\text { of } \lambda
\end{array}\right] \quad \text { alg.mult. of } \lambda
\end{array}\right]
$$

(2) T is diagonalizable if (geometric mull, of λ) $=\binom{$ algebraic multi) }{ of $\lambda}$ for all eigenvalues λ of T.

Topic 6- Inner Product Spaces
Def: Let $z=x+i y$ be in \mathbb{C}. The conjugate of z is $\bar{z}=x-i y$
The absolute value of z is $|z|=\sqrt{x^{2}+y^{2}}$
The real part of z is $\operatorname{Re}(z)=x$
The imaginary part of z is $\operatorname{Im}(z)=y$

$$
\begin{aligned}
& \frac{E x_{0}}{5-3 i}=5+3 i \\
& |5-3 i|=\sqrt{(5)^{2}+(-3)^{2}}=\sqrt{34} \\
& \operatorname{Re}(10+13 i)=10 \\
& \operatorname{Im}(2-3 i)=-3 \\
& (2+i)(1-3 i)=2-6 i+i-3 i^{2} \\
& i^{2}=-1=2-5 i+3=5-5 i
\end{aligned}
$$

Theorem: (HW 6)
Let $z, w \in \mathbb{C}$.
Then:
(1) $\overline{\bar{z}}=z$
(2) $\overline{z+w}=\bar{z}+\bar{w}$
(3) $\overline{z w}=\bar{z} \bar{w}$
(4) $\overline{\left(\frac{z}{\omega}\right)}=\frac{\bar{z}}{\bar{\omega}} \quad($ if $\omega \neq 0)$
(5) $z \bar{z} \in \mathbb{R}$ with $z \bar{z} \geqslant 0$.

Furthermore, $z \bar{z}=0$ iff $z=0$.
(6) $|z|^{2}=z \bar{z}$

So, $|z|=0$ iff $z=0$.

Def: Let V be a vector space over the field $F=\mathbb{R}$ or $F=\mathbb{C}$. An inner product on V is a function that assigns to any ordered pair of vectors x and y in V a scalar in F, denoted by $\langle x, y\rangle$, such that the following are true for all $x, y, z \in V$ and $c \in F$:
(1) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
(2) $\langle c x, y\rangle=c\langle x, y\rangle$
(3) $\overline{\langle x, y\rangle}=\langle y, x\rangle$
(4) $\langle x, x\rangle \in \mathbb{R}$ and if $x \neq \overrightarrow{0}$ then $\langle x, x\rangle\rangle 0$.
We call such a V an inner product space.

Ex: Let
$V=\mathbb{R}^{n}$ and $F=\mathbb{R}$
or

$$
V=\mathbb{C}^{n} \text { and } F=\mathbb{C} \text {. }
$$

Given $x, y \in V$ with

$$
\begin{aligned}
& \text { Given } x, y \in V \text { with } \\
& x=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

define

$$
\begin{aligned}
& \text { define } \\
& \langle x, y\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\cdots+a_{n} \bar{b}_{n}
\end{aligned}
$$

Note if $V=\mathbb{R}^{n}$, then

$$
\begin{aligned}
& \text { Note if } V=\mathbb{R}^{n}, \text { then } \\
& \left.\begin{array}{rl}
\langle x, y\rangle & =a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\cdots+a_{n} \bar{b}_{n} \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
\end{array}\right\} \begin{array}{l}
\text { normal } \\
\text { dot } \\
\text { product }
\end{array} \\
& \text { because } \bar{r}=\overline{r+i O}=r-i 0=r \\
& \text { if } r \in \mathbb{R}
\end{aligned}
$$

Ex: Using the previous example.

$$
\begin{aligned}
& V=\mathbb{C}^{3}, F=\mathbb{C} \\
& \left\langle\left(i, 1, \frac{1}{2}\right),(1+i, 0,10)\right\rangle \\
& =(i) \overline{(1+i)}+(1) \overline{(0)}+\left(\frac{1}{2}\right)(\overline{10}) \\
& =(i)(1-i)+(1)(0)+\left(\frac{1}{2}\right)(10) \\
& =i-i^{2}+0+5=i+1+5=6+i \\
& =i i^{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& V=\mathbb{R}^{2}, F=\mathbb{R} \\
& \left\langle(1, \pi),\left(-1, \frac{1}{2}\right)\right\rangle=(1)(-1)+(\pi)\left(\frac{1}{2}\right) \\
& =-1+\frac{\pi}{2}
\end{aligned}
$$

These inner products are called the standard inner products on \mathbb{R}^{n} and \mathbb{C}^{n}

Let's prove that the standard inner product is actually an inner product.
Let $V=\mathbb{C}^{n}, F=\mathbb{C}$ or $V=\mathbb{R}^{n}, F=\mathbb{R}$.
Let $x, y, z \in V$ and $c \in F$.
So, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$,
and $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.
Then,
(1)

$$
\begin{aligned}
& \langle x+y, z\rangle \\
& =\left(x_{1}+y_{1}\right) \bar{z}_{1}+\left(x_{2}+y_{2}\right) \bar{z}_{2}+\cdots+\left(x_{n}+y_{n}\right) \bar{z}_{n} \\
& =x_{1} \bar{z}_{1}+x_{2} \bar{z}_{2}+\cdots+x_{n} \bar{z}_{n} \\
& +y_{1} \bar{z}_{1}+y_{2} \bar{z}_{2}+\cdots+y_{n} \bar{z}_{n} \\
& =\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) }\langle c x, y\rangle \\
& =\left(c x_{1}\right) \bar{y}_{1}+\left(c x_{2}\right) \bar{y}_{2}+\ldots+\left(c x_{n}\right) \bar{y}_{n} \\
& =c\left[x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots+x_{n} \bar{y}_{n}\right] \\
& =c\langle x, y\rangle
\end{aligned}
$$

(3)

$$
\text { (3) } \begin{aligned}
\overline{\langle x, y\rangle} & =\overline{x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\cdots+x_{n} \bar{y}_{n}} \\
\overline{a+b}=\bar{a}+\bar{b} & =\overline{x_{1} \bar{y}_{1}}+\overline{x_{2} \bar{y}_{2}}+\cdots+\overline{x_{n} \bar{y}_{n}} \\
\overline{a b}=\bar{a} \bar{b} & =\bar{x}_{1} \overline{\bar{y}_{1}}+\bar{x}_{2} \overline{\bar{y}}_{2}+\cdots+\bar{x}_{n} \overline{\bar{y}}_{n} \\
& =\bar{x}_{1} y_{1}+\bar{x}_{2} y_{2}+\cdots+\bar{x}_{n} y_{n} \\
\overline{\bar{a}=a} & =y_{1} \bar{x}_{1}+y_{2} \bar{x}_{2}+\cdots+y_{n} \bar{x}_{n} \\
& =\langle y, x\rangle
\end{aligned}
$$

(4) Note that $x_{i} \bar{X}_{i} \in \mathbb{R}$ and

$$
x_{i} \bar{x}_{i} \geqslant 0
$$

So,

$$
\langle x, x\rangle=x_{1} \bar{x}_{1}+x_{2} \bar{x}_{2}+\cdots+x_{n} \bar{x}_{n}
$$

is also a real number and $\langle x, x\rangle \geqslant 0$.
If $x \neq \overrightarrow{0}$, then at least one of $x_{i} \neq 0$ and so $x_{i} \bar{x}_{i}>0$ and so

$$
\begin{aligned}
& \text { and so } \\
& \langle x, x\rangle=\underbrace{x_{1} \bar{x}_{1}}_{\geqslant 0}+\cdots+\underbrace{x_{i} \bar{x}_{i}}_{>0}+\cdots+\underbrace{x_{n} \bar{x}_{n}}_{\geqslant 0} \\
& \\
& >0
\end{aligned}
$$

If $z=a+i b$, then

$$
\begin{aligned}
z \bar{z} & =(a+i b)(a-i b) \\
& =a^{2}-i a b+i a b-i^{2} b^{2} \\
& =a^{2}+b^{2} \in \mathbb{R} \text { and } z \bar{z} \geqslant 0
\end{aligned}
$$

Theorem: Let V be an inner product space oven $F=\mathbb{R}$ or $F=\mathbb{C}$. Then for all $x, y, z \in V$ and $c \in F$ we have that:
(1) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
(2) $\langle x, c y\rangle=\bar{c}\langle x, y\rangle$
(3) $\langle x, x\rangle=0$ iff $x=\overrightarrow{0}$
(4) If $\langle v, y\rangle=\langle v, z\rangle$
for all $v \in V$, then $y=z$.
Similarly if $\langle y, v\rangle=\langle z, v\rangle$ for all $v \in V$, then $y=z$.
pf: (1), (2) (3) are in HW 6
(4) Set $v=y-z$,

Then,

$$
\begin{aligned}
\langle y-z, y\rangle
\end{aligned} \begin{aligned}
& \langle y-z, z\rangle
\end{aligned} \begin{aligned}
& \left\{\begin{array}{l}
\text { by } \\
\text { assumption } \\
\langle v, y\rangle \\
\\
=\langle v, z\rangle
\end{array}\right.
\end{aligned}
$$

So,

$$
\langle y-z, y\rangle-\langle y-z, z\rangle=0
$$

By part 2,

$$
\begin{aligned}
& \langle y-z, y\rangle+\langle y-z,-z\rangle=0
\end{aligned}
$$

By part 1,

$$
\langle y-z, y-z\rangle=0
$$

By part 3,

$$
y-z=\overrightarrow{0}
$$

So, $y=z$.

$$
\begin{array}{cc}
\text { Math } & 4570 \\
12 / 2 / 20 \\
\hline
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Def: Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
We say that two vectors $x, y \in V$ are orthogonal if $\langle x, y\rangle=0$.
We write $x \perp y$ to mean that x and y are orthogonal.
A subset $S \subseteq V$ is orthogonal if $x \perp y$ for all $x, y \in S$ with $x \neq y$.
Ex: Let $V=\mathbb{C}^{n}, F=\mathbb{C}$, using the standard inner product.

$$
\begin{aligned}
\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right)\right\rangle & =(1) \overline{(0)}+(0) \overline{(3)}+(1) \overline{(0)} \\
& =(1)(0)+(0)(3)+(1)(0)=0
\end{aligned}
$$

So, $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 0\end{array}\right)$ are orthogonal.

$$
\begin{aligned}
\left\langle\left(\begin{array}{c}
i \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-i \\
0 \\
10
\end{array}\right)\right\rangle & =(i) \overline{(-i)}+(2) \overline{(0)}+(1) \overline{(10)}\left(\begin{array}{c}
p g \\
2
\end{array}\right. \\
& =(i)(i)+(2)(0)+(1)(10) \\
& =-1+0+10=9 .
\end{aligned}
$$

So, $\left(\begin{array}{l}i \\ z \\ 1\end{array}\right),\left(\begin{array}{c}-i \\ 0 \\ 10\end{array}\right)$ are not orthogonal.
Let $S=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$.

$$
\begin{aligned}
& \left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\rangle=0 \\
& \left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle=0 \\
& \left\langle\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle=0
\end{aligned}
$$

So, S is an orthogonal set.

Def: Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
Given $x \in V$ we define the norm or length of x to be

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Ex: Using the standard inner product,

$$
\begin{aligned}
& \text { product, } \\
& \text { if } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \text { then } \\
& \frac{\bar{v}+x_{2} \bar{x}_{2}+\cdots+t}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C} \\
& \|x\|=\sqrt{\langle x, x\rangle}=\sqrt{x_{1} \bar{x}_{1}+x_{2} \bar{x}_{2}+\cdots+x_{n} \overline{x_{n}}} \\
& \left., x_{n}\right) \in \mathbb{R}^{n} \text { then }
\end{aligned}
$$

$$
\begin{aligned}
& \|x\|=J\langle x, x\rangle=\sqrt{x}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x} \\
& \text { if } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \text { then }
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } x=\left(x_{1}, x_{2}, \ldots ., x_{n}\right) \in \mathbb{R} \\
& \|x\|=\sqrt{\langle x, x\rangle}=\underbrace{\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}}
\end{aligned}
$$

Usual norm youre used to in \mathbb{R}^{n}

Ex: Using the standard inner product we have

$$
\begin{aligned}
\left\|\binom{i}{1}\right\| & =\sqrt{\left\langle\binom{ i}{1},\binom{i}{i}\right\rangle} \\
& =\sqrt{(i)(i)+(1)(1)} \\
& =\sqrt{(i)(-i)+(1)(1)} \\
& =\sqrt{-i^{2}+1}=\sqrt{2} \\
\left\|\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)\right\| & =\sqrt{\left\langle\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)\right\rangle} \\
& =\sqrt{1^{2}+0^{2}+2^{2}}=\sqrt{5}
\end{aligned}
$$

Def: Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
A vector X is called a unit vector if $\|x\|=1$.
A subset S of V is called an orthonormal set if
(1) S is an orthogonal set
and (2) every vector in S is a unit vector

Ex: $V=\mathbb{R}^{n}, F=\mathbb{R}$

$$
\begin{aligned}
& E x: V=\mathbb{R}, \\
& S=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text {, }\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

From earlier S is an orthogonal set and

$$
\left.\begin{array}{l}
S=\left\{\begin{array}{l}
S \\
\text { From earlier } S \text { is an orthogonal } \\
\left\|\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\|
\end{array}=\sqrt{1^{2}+0^{2}+0^{2}}=1,\left\|\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\|=\|=1\right. \\
1
\end{array}\right) \text { So, } S \text { is an orthonormal set }
$$

So, S is an orthonormal set

Theorem: Let V be an innerproduct space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal set of non-zero vectors from V g then S is a linearly independent set,
proof: Suppose

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=\overrightarrow{0}
$$

where $c_{i} \in F$.
Pick v_{i} and inner-product both sides with v_{i} to get

$$
\text { sides with } \left.v_{i} c_{1} v_{1}+\ldots+c_{i} v_{i}+\ldots+c_{n} v_{n}, v_{i}\right\rangle=\left\langle\overrightarrow{0}, v_{i}\right\rangle
$$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \begin{array}{r}
\left\langle c_{1} v_{1}, v_{i}\right\rangle+\ldots+\left\langle c_{i} v_{i}, v_{i}\right\rangle+\ldots+\left\langle c_{n} v_{n}, v_{i}\right\rangle \\
=0
\end{array}
\end{aligned}
$$

Which becomes

$$
c_{1}\left\langle v_{1}, v_{i}\right\rangle+\ldots+c_{i}\left\langle v_{i}, v_{i}\right\rangle+\ldots+c_{n}\left\langle v_{n}, v_{i}\right\rangle=0
$$

Since S is an orthogonal set, $\left\langle v_{j}, v_{i}\right\rangle=0$ when $i \neq j$.
Thus the a bove equation becomes

$$
c_{1} \cdot 0+\ldots+c_{i}\left\langle v_{i}, v_{i}\right\rangle+\ldots+c_{n} \cdot 0=0
$$

That is,

$$
c_{i}\left\langle v_{i}, v_{i}\right\rangle=0
$$

Since $v_{i} \neq \overrightarrow{0},\left\langle v_{i}, v_{i}\right\rangle \neq 0$,
so $c_{i}=0$.
So, $c_{1}=c_{2}=\ldots=c_{n}=0$ and S is a lin. ind. set.

Theorem: Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V. Let $x \in V$.
(1) If β is an orthogonal set, then

$$
\begin{aligned}
& \text { (1) If } \beta \text { is an orthogonal } \\
& x=\frac{\left\langle x, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle x, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}+\cdots+\frac{\left\langle x, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} v_{n}
\end{aligned}
$$

(2) If β is an orthonormal set, then

$$
\begin{aligned}
& \text { (2) If } \beta \text { is an orthonormal } \\
& x=\left\langle x, v_{1}\right\rangle v_{1}+\left\langle x, v_{2}\right\rangle V_{2}+\ldots+\left\langle x, v_{n}\right\rangle V_{n} \\
& \text { to prove } 1 .
\end{aligned}
$$

pf: We just need to prove 1 . Suppose β is an orthogonal basis for V.

Let $x \in V$.
Then since β spans V, we can write

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

where $c_{i} \in F$.
Pick a v_{i} and inner product both sides with v_{i} to get

$$
\begin{aligned}
& \left\langle x, v_{i}\right\rangle=\left\langle c_{1} v_{1}+\cdots+c_{n} v_{n}, v_{i}\right\rangle \\
& =\left\langle c_{1} v_{1}, v_{i}\right\rangle+\ldots+\left\langle c_{i} v_{i}, v_{i}\right\rangle+\cdots+\left\langle c_{n} v_{n}, v_{i}\right\rangle \\
& =c_{1}\langle\underbrace{\left\langle v_{1}, v_{i}\right\rangle}_{0}+\ldots+c_{i}\left\langle v_{i}, v_{i}\right\rangle+\ldots+c_{n}\left\langle v_{n} v_{i}\right\rangle v_{i}\rangle \\
& =c_{i}\left\langle v_{i}, v_{i}\right\rangle
\end{aligned}
$$

Solve for c_{i} to get

$$
\begin{aligned}
& \text { Solve for } c_{i} \text { to get } \\
& c_{i}=\frac{\left\langle x, v_{i}\right\rangle}{\left\langle v_{i}, v_{i}\right\rangle}=\frac{\left\langle x, v_{i}\right\rangle}{\left(\sqrt{\left\langle v_{i}, v_{i}\right)^{2}}\right.}=\frac{\left\langle x, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}
\end{aligned}
$$

Gram -Schmidt Process
Let V be an inner product space over $F=\mathbb{R}$ or $F=\mathbb{C}$.
Let $S=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ be a linearly independent subset of V.
Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as follows!

$$
v_{k}=w_{k}-\underbrace{\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}}_{\substack{\text { this is the projection of } \\ w_{k} \text { onto span }\left(\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right)}}, 2 \leq k \leq n
$$

Then S^{\prime} is an orthogonal set of linearly independent vectors where $\operatorname{span}(S)=\operatorname{span}\left(S^{\prime}\right)$.

Therefore, if S above is a basis for V, then given S^{\prime} as above we can construct

$$
S^{\prime \prime}=\left\{\frac{1}{\left\|v_{1}\right\|} v_{1}, \ldots, \frac{1}{\left\|v_{n}\right\|} v_{n}\right\}
$$

And $S^{\prime \prime}$ will be an orthonormal basis for V.

Hence every finite-dimensional inner-product space V wen $F=\mathbb{R}$ or $F=\mathbb{C}$ has an orthonormal basis.

Math 4570

$$
12 / 7 / 20
$$

More on eigenvectors

Theorem: Let V be a finitedimensional inner-product space over $F=\mathbb{C}$ or $F=\mathbb{R}$. Let $T: V \rightarrow V$ be a linear transformation. There exists a unique function $T^{*}: V \rightarrow V$ such that

$$
\begin{array}{ll}
T^{*}: V \rightarrow V & \text { such } \\
\langle T(x), y\rangle=\langle x, & \left.T^{*}(y)\right\rangle \\
& \text { Fur therm }
\end{array}
$$

for all $x, y \in V$. Furthermore, T^{*} is a linear transformation.
T^{*} is called the adjoint of T.
$E x: V=\mathbb{C}^{3}, F=\mathbb{R}$
Use the standard inner-product.

$$
T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}, \quad T\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
2 b+i c \\
i a \\
b
\end{array}\right)
$$

T is a linear transformation.
Let's find T^{*}.

$$
\begin{aligned}
& \text { Let's find } \\
& \text { Then) } \\
& \left.\left\langle\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), T^{+}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right\rangle=\left\langle\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right\rangle \\
& =\left\langle\left(\begin{array}{c}
2 x_{2}+i x_{3} \\
i x_{1} \\
x_{2}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right\rangle \\
& =\left(2 x_{2}+i x_{3}\right) \bar{y}_{1}+\left(i x_{1}\right) \bar{y}_{2}+x_{2} \bar{y}_{3} \\
& =2 x_{2} \overline{y_{1}}+i x_{3} \bar{y}_{1}+i x_{1} \bar{y}_{2}+x_{2} \bar{y}_{3} \\
& =x_{1}\left(i \overline{y_{2}}\right)+x_{2}\left(2 \overline{y_{1}}+\bar{y}_{3}\right)+x_{3}\left(i \overline{y_{1}}\right) \\
& =x_{1}\left(\overline{-i} \bar{y}_{2}\right)+x_{2}\left(\overline{2 y_{1}+y_{3}}\right)+x_{3}\left(\overline{-i} \overline{y_{1}}\right) \\
& =x_{1}\left(\overline{-i y_{2}}\right)+x_{2}\left(\overline{z y_{1}+y_{3}}\right)+x_{3}\left(\overline{-i y_{1}}\right)
\end{aligned}
$$

Then,

$$
=\left\langle\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
-i y_{2} \\
2 y_{1}+y_{3} \\
-i y_{1}
\end{array}\right)\right\rangle
$$

Since T^{*} is unique,

$$
T^{*}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
-i y_{2} \\
2 y_{1}+y_{3} \\
-i y_{1}
\end{array}\right)
$$

$$
\text { If } \beta=\left[\left(\begin{array}{l}
1 \tag{is}\\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right]
$$

the standard basis for α^{3} then

$$
\begin{aligned}
& \text { the standard } \\
& {[T]_{\beta}=\left(\begin{array}{lll}
0 & 2 & i \\
i & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \\
& {\left[T^{*}\right]_{\beta}=\left(\begin{array}{ccc}
0 & -i & 0 \\
2 & 0 & 1 \\
-i & 0 & 0
\end{array}\right)}
\end{aligned}
$$

You
can
calculate these
$\left[T^{*}\right]_{\beta}$ is gotten from $[T]_{\beta}$ by transposing and conjugating the elements in the matrix $[T]_{\beta}$

Def: Let A be an $n \times n$ matrix with entries from \mathbb{C}, Then A^{*} is defined by

$$
\left(A^{*}\right)_{i, j}=\overline{\left(A_{j, i}\right)}
$$

That is, A^{*} is obtained by transposing A and conjugating the elements.

Ex:

$$
\frac{\text { Ex: }}{\left(\begin{array}{cc}
1+i & 3 \\
i & \frac{1}{2}+2 i
\end{array}\right)^{*}=\left(\begin{array}{cc}
1-i & -i \\
3 & \frac{1}{2}-2 i
\end{array}\right)}
$$

Theorem: Let V be a
finite-dimensional inner product space over $F=\mathbb{C}$ or $F=\mathbb{R}$.
Let β be an ordered orthonormal basis for V.
Let $T: V \rightarrow V$ be a linear transformation.

Then,

$$
\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}
$$

Def: Let V be a finitedimensional inner product space over $F=\mathbb{C}$ or $F=\mathbb{R}$.
Let $T: V \rightarrow V$ be a linear trans formation.
(a) We say that T is
normal if $T T^{*}=T^{*} T$.

$$
\left(T \circ T^{*}\right)(x)=\left(T^{*} \circ T\right)(x)
$$

for all $x \in V$
(b) We say that T is self-adjoint or Hermitian if $T=T^{*}$.

Note: If T is relf-adjoint, then T is normal.

Theorem: Let V be a finitedimensional inner product space over $F=\mathbb{I}$ Let $T: V \rightarrow V$ be a linear transformation. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Theorem: Let V be a finitedimensional inner product space over $F=\mathbb{R}$. Let $T: V \rightarrow V$ be a linear transformation. Then T is self-adjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Spectral Theorem for symmetric
real matrices
Suppose that A is an $n \times n$ symmetric matrix $\left(A^{\top}=A\right)$ with real entries. Then:
(1) All the eigenvalues of A are real.
(2) There is an orthonormal basis for \mathbb{C}^{n} consisting of n real eigenvectors of A.
(3) If λ is an eigenvalue of A, then the alg. mull. of A equals the geometric multi, of A.

Final on Monday $12 / 14$.
Final is cumulative
Covers up to HWS
$[H W 6$ is not on the final $]$
I'll email you the final by 8 am un Monday. I'll try to make it appear on canvas at Sam.

Use up to $2 \frac{1}{2}$ hours.
Email it back to me by Tuesday 12/15 at noon.
lastname. firstname. pdf lastrame-firstname. pdf

Test 1-90\%
Test 2-70\%
Final 3 - 80%
syllabus:

$$
\frac{1}{3} 90 \%+\frac{1}{3} 70 \%+\frac{1}{3} 80 \%=80 \%
$$

new method:

$$
\frac{\text { new method: }}{\frac{1}{2} 90 \%+\frac{1}{2} 80 \%}=85 \%
$$

$(1)(c)$

$$
\begin{gathered}
T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
3 a+b \\
3 b \\
4 c
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& (i) \beta=\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right] \\
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)=3 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)=1 \cdot\binom{1}{0}+3 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)=0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+4\binom{0}{1} \\
& {[T]_{\beta}=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)} \\
& f_{T}(\lambda)=\operatorname{det}\left([T]_{\beta}-\lambda I_{3}\right)=
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\operatorname{det}\left(\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
=\operatorname{det}\left(\begin{array}{ccc}
3-\lambda \\
0 & 1 & 0 \\
0 & 0 & 4-\lambda
\end{array}\right) \\
=(3-\lambda)\left(\begin{array}{cc}
3-\lambda & 0 \\
0 & 4-\lambda
\end{array}\right)+0+0 \\
=(3-\lambda)[(3-\lambda)(4-\lambda)-0
\end{array}\right] \quad \begin{aligned}
& =(3-\lambda)^{2}(4-\lambda) \\
& =\frac{\operatorname{eigenvalve}}{3=3} 9 \\
& \hline \lambda=4 \\
& \hline
\end{aligned}
$$

$$
\left.\left.\left.\left.\begin{array}{rl}
E_{3}(T) & =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\, T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=3\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
3 a+b \\
3 b \\
b
\end{array}\right)=\left(\begin{array}{l}
3 a \\
3 b \\
b c
\end{array}\right)\right.\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{l}
b \\
0 \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\} \\
\left.\begin{array}{l}
b=0 \\
0 \\
c
\end{array}\right) \\
E_{3}(T) & =0
\end{array}\right\} \left.\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\},\right\} \left.a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\},
$$

So, $\beta_{1}=\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]$ is a basis for $E_{3}(T)$, So, geometric mult of $\lambda=3$ is 1.

$$
\begin{aligned}
E_{4}(T) & =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\, T\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)=4\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\} \quad\left(\begin{array}{c}
p s \\
6
\end{array}\right. \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
3 a+b \\
3 b \\
4 c
\end{array}\right)=\left(\begin{array}{l}
4 a \\
4 b \\
4 c
\end{array}\right)\right.\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
-a+b \\
-b \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\}
\end{aligned}
$$

$$
\begin{aligned}
-a+b & =0 \\
-b & =0 \\
0 & =0
\end{aligned} \leftrightarrows b=0 .
$$

c can be any real \#

$$
\begin{aligned}
& E_{4}(T)=\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\} \\
&\left.=\left\{\left.c\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}=\operatorname{span}\left(\left\{\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}\right) \\
&
\end{aligned}
$$

basis for $E_{4}(T)$ is $\beta_{2}=\left[\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]$
geometric molt. of $\lambda=4$ is 1 .
$\left(\begin{array}{c|c|c|c}\lambda & \begin{array}{c}\text { alg. mull } \\ \text { of } \lambda\end{array} & \text { basis for } E_{\lambda}(T) & \begin{array}{c}\text { geometric } \\ \text { mull of } \lambda\end{array} \\ \hline 3 & 2 & \binom{1}{0} & 1 \\ \hline 4 & 1 & \left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) & 1\end{array}\right)\left(\begin{array}{c}\text { pg } \\ 7\end{array}\right.$
T is not diagonalizable since (alg. mull, of $\lambda=3) \neq\binom{$ geom, mull. }{ of $\lambda=3}$ Not enough eigenvectors to diagonalize
(3) $A \in M_{n, n}(F)$ is diagonalizable if $\exists Q \in M_{n, n}(F)$ where Q^{-1} exists such that $Q^{-1} A Q=D$ where d is diagonal.
(a) $T: V \rightarrow V, V$ finte-dim.
β is an ordered basic of V
T is diagunalizable ff $[T]_{\beta}$ is diasonalizalle
\leadsto Suppose T is diagonalizable.
Then there exists an ordered basis γ of eigenvectors of T, where $[T]_{\gamma}$ is diagonal. Let $Q=[I]_{\gamma}^{\beta}$ be the change of basis matrix from γ to β.
Then, $Q^{-1}[T]_{\beta} Q=[I]_{\beta}^{\gamma}[T]_{\beta}[I]_{\gamma}^{\beta}=[T]_{\gamma}$ so, $[T]_{\beta}$ is invertible.
$(<\nabla)$ Suppose $[T]_{\beta}$ is diagona/izable.
Then there exists a matrix Q where Q^{-1} exists and

$$
Q^{-1}[T]_{\beta} Q=D
$$

where

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

is a diagonal matrix.

$$
\text { is a alagora } \beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]
$$

Let $Q=\left(\begin{array}{l:l:l:l}c_{1} & c_{2} & \cdots & c_{n} \\ & & & \\ \end{array}\right) \quad\left(\begin{array}{l}\text { pg } \\ 10\end{array}\right.$
Where C_{i} is the eth column of Q. We have $Q^{-1}[T]_{\beta} Q=D$.
So, $[T]_{\beta} Q=Q D$.

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \begin{array}{rl:c:c}
Q D & =\left(\begin{array}{c:ccc}
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & &
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) \\
& =\left(\begin{array}{c:cc:c}
\lambda_{1} c_{1} & \lambda_{2} c_{2} & \cdots & \lambda_{n} c_{n}
\end{array}\right)
\end{array}
\end{aligned}
$$

So, $[T]_{\beta} c_{i}=\lambda_{i} c_{i}$.
Since Q^{-1} exists, none of Q^{\prime} 's columns are $\overrightarrow{0}$. So, $c_{i} \neq \overrightarrow{0} \quad \forall i$.
So, c_{i} is an eigenvector of $[T]_{\beta}$ with eigenvalue λ_{i}.
Suppose $C_{i}=\left(\begin{array}{c}q_{1 i} \\ q_{2 i} \\ \vdots \\ q_{n i}\end{array}\right)$.

Define

$$
m_{i}=q_{1 i} v_{1}+q_{2 i} v_{2}+\cdots+q_{n i} v_{n}
$$

so that

$$
\left[m_{i}\right]_{\beta}=c_{i}
$$

$$
\begin{aligned}
& m_{i} \in V \\
& T: V \rightarrow V
\end{aligned}
$$

Then,

$$
\begin{aligned}
{\left[T\left(m_{i}\right)\right]_{\beta} } & =[T]_{\beta}\left[m_{i}\right]_{\beta}=[T]_{\beta} C_{i}=\lambda_{i} C_{i} \\
& =\lambda_{i}\left(\begin{array}{c}
q_{1 i} \\
q_{i i} \\
\vdots \\
q_{n i}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{i} q_{1 i} \\
\lambda_{i} q_{2 i} \\
\vdots \\
\lambda_{i} q_{n i}
\end{array}\right)
\end{aligned}
$$

So,

$$
T\left(m_{i}\right)=\left(\lambda_{i} q_{1 i}\right) V_{1}+\left(\lambda_{i} q_{2 i}\right) V_{2}
$$

$$
+\ldots+\left(\lambda_{i} q_{n i}\right) v_{n}
$$

$$
=\lambda_{i}\left(q_{1 i} v_{1}+q_{2 i} v_{2}+\cdots+q_{n i} v_{n}\right)
$$

$$
=\lambda_{i} m_{i}
$$

Since $\left[m_{i}\right]_{\beta}=c_{i} \neq \overrightarrow{0}, \quad m_{i} \neq \overrightarrow{0}$.
So, $m_{1}, m_{2}, \ldots, m_{n}$ are eigenvectors of T with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
$n=\operatorname{dim}(V)$.
We just need to show $m_{1}, m_{2}, \ldots, m_{n}$ are lin. ind.
Then we will have a basis of V of eigenvectors of T.

Suppose

$$
\begin{aligned}
& \text { uppose } \\
& \alpha_{1} m_{1}+\alpha_{2} m_{2}+\cdots+\alpha_{n} m_{n}=\overrightarrow{0} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { Then } \\
& \quad \alpha_{1}\left(q_{11} v_{1}+q_{21} v_{2}+\ldots+q_{n 1} v_{n}\right) \\
& +\alpha_{2}\left(q_{12} v_{1}+q_{22} v_{2}+\ldots+q_{n 2} v_{n}\right) \\
& +\ldots+ \\
& +\alpha_{n}\left(q_{1 n} v_{1}+q_{2 n} v_{2}+\ldots+q_{n n} v_{n}\right)=\overrightarrow{0}
\end{aligned}
$$

So,

$$
\left(\alpha_{1} q_{11}+\ldots+\alpha_{n} q_{1 n}\right) V_{1}+\ldots+\left(\alpha_{1} q_{n 1}+\alpha_{2} q_{n_{2}}+\ldots x\right.
$$

Since $v_{1}, v_{2}, \ldots, v_{n}$ is a basis,

$$
\begin{aligned}
& \alpha_{1} q_{11}+\ldots+\alpha_{n} q_{1 n}=0 \\
& \alpha_{1} q_{21}+\ldots+\alpha_{n} q_{2 n}=0
\end{aligned}
$$

$$
\alpha_{1} q_{n 1}+\ldots+\alpha_{n} q_{n n}=0
$$

$$
\left(\begin{array}{ccc}
q_{11} & \cdots & q_{1 n} \\
q_{21} & \ldots . & q_{2 n} \\
\vdots & & q_{n 1} \\
q_{n 1} & \ldots & q_{n n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

So, $Q^{-1} Q\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{n}\end{array}\right)=Q^{-1}\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$
So, $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right) . \quad \begin{aligned} & \text { So, } m_{1}, \ldots, m_{n} \\ & \text { one } l i n . \\ & i n d,\end{aligned}$

